Multiple Metamorphic Events Recorded within Eclogites of the Chandman District, SW Mongolia
Abstract
:1. Introduction
2. Geology
3. Petrography and Mineral Chemistry
3.1. Eclogite
3.1.1. Garnet
3.1.2. Clinopyroxene
3.1.3. Amphibole
3.1.4. Other Minerals
3.2. Amphibolitized Eclogite
3.2.1. Garnet
3.2.2. Amphibole
3.2.3. Other Minerals
4. Discussion
4.1. Metamorphic Evolution of Chandman Eclogite and Amphibolitized Eclogite
4.1.1. HP Metamorphic Event
Precursor Stage
Prograde to Peak Stage
Decompression Stage (HP)
4.1.2. MP Metamorphic Event
Prograde to Peak Stage (MP)
Retrograde Stage of Greenschist Facies (MP)
4.2. Tectonic Implication of Chandman Eclogites
5. Conclusions and Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groppo, C.; Lombardo, B.; Rolfo, F.; Pertusati, P. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). J. Metamorph. Geol. 2007, 25, 51–75. [Google Scholar] [CrossRef]
- Togonbaeva, A.; Takasu, A.; Tagiri, M.; Bakirov, A.B.; Bakirov, A.A.; Sakiev, K. Newly described eclogites from the Neldy Formation, Makbal district, Northern Tien-Shan, Kyrgyzstan. J. Miner. Pet. Sci. 2010, 105, 80–85. [Google Scholar] [CrossRef]
- Liu, F.; Liou, J. Zircon as the best mineral for P–T–time history of UHP metamorphism: A review on mineral inclusions and U–Pb SHRIMP ages of zircons from the Dabie–Sulu UHP rocks. J. Asian Earth Sci. 2011, 40, 1–39. [Google Scholar] [CrossRef]
- Kabir, M.F.; Takasu, A. Evidence for multiple burial-partial exhumation cycles from the Onodani eclogites in the Sambagawa metamorphic belt, central Shikoku, Japan. J. Metamorph. Geol. 2010, 28, 873–893. [Google Scholar] [CrossRef]
- Janák, M.; Froitzheim, N.; Georgiev, N.; Nagel, T.J.; Sarov, S. P–T evolution of kyanite eclogite from the Pirin Mountains (SW Bulgaria): Implications for the Rhodope UHP Metamorphic Complex. J. Meta. Geol. 2011, 29, 317–332. [Google Scholar] [CrossRef]
- Li, B.; Massonne, H.-J. Two Tertiary metamorphic events recognized in high-pressure metapelites of the Nevado-Filábride Complex (Betic Cordillera, S Spain). J. Metamorph. Geol. 2018, 36, 603–630. [Google Scholar] [CrossRef]
- Mossakovsky, A. Central Asian fold belt: Geodynamic evolution and formation history. Geotectonics 1994, 24, 445–474. [Google Scholar]
- Jahn, B.-M.; Wu, F.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 181–193. [Google Scholar]
- Jahn, B.-M.; Windley, B.; Natal’In, B.; Dobretsov, N. Phanerozoic continental growth in Central Asia. J. Asian Earth Sci. 2004, 23, 599–603. [Google Scholar] [CrossRef]
- Kröner, A.; Windley, B.F.; Badarch, G.; Tomurtogoo, O.; Hegner, E.; Jahn, B.M.; Gruschka, S.; Khain, E.V.; Demoux, A.; Wingate, M.T.D. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian Nubian shield. Memoirs-Geol. Society of America 2007, 200, 181–209. [Google Scholar]
- Volkova, N.; Sklyarov, E.; Sklyarov, E. High-pressure complexes of Central Asian Fold Belt: Geologic setting, geochemistry, and geodynamic implications. Russ. Geol. Geophys. 2007, 48, 83–90. [Google Scholar] [CrossRef]
- Schertl, H.-P.; Sobolev, N. The Kokchetav Massif, Kazakhstan: “Type locality” of diamond-bearing UHP metamorphic rocks. J. Asian Earth Sci. 2013, 63, 5–38. [Google Scholar] [CrossRef]
- Shatsky, V.; Malkovets, V.; Belousova, E.; Skuzovatov, S.; Malkovets, V.; Skuzovatov, S. Evolution history of the Neoproterozoic eclogite-bearing complex of the Muya dome (Central Asian Orogenic Belt): Constraints from zircon U–Pb age, Hf and whole-rock Nd isotopes. Precambrian Res. 2015, 261, 1–11. [Google Scholar] [CrossRef]
- Klemd, R.; Gao, J.; Li, J.-L.; Meyer, M. Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): Geodynamic implications. Gondwana Res. 2015, 28, 1–25. [Google Scholar] [CrossRef]
- Hanžl, P.; Aichler, J. Geological Survey of the Mongolian Altay at a scale of 1:50,000 (Zamtyn Nuruu-50): A Final Report; Czech Geological Survey: Ulaanbaatar, Mongolia, 2007. [Google Scholar]
- Štípská, P.; Schulmann, K.; Lehmann, J.; Corsini, M.; Lexa, O.; Tomurhuu, D. Early Cambrian eclogites in SW Mongolia: Evidence that the Palaeo-Asian Ocean suture extends further east than expected. J. Metamorph. Geol. 2010, 28, 915–933. [Google Scholar] [CrossRef]
- Kroner, A.; Lehmann, J.; Schulmann, K.; Demoux, A.; Lexa, O.; Tomurhuu, D.; Štípská, P.; Liu, D.; Wingate, M.T.D. Lithostratigraphic and geochronological constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic rifting followed by late Paleozoic accretion. Am. J. Sci. 2010, 310, 523–574. [Google Scholar] [CrossRef]
- Kozakov, I.K.; Yarmolyuk, V.V.; Kovach, V.P.; Bibikova, E.V.; Kirnozova, T.I.; Kozlovskii, A.M.; Plotkina, Y.V.; Fugzan, M.M.; Lebedev, V.I.; Erdenezhargal, C. The Early Baikalian crystalline complex in the basement of the Dzabkhan microcontinent of the Early Caledonian orogenic area, Central Asia. Strat. Geol. Correl. 2012, 20, 231–239. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia 1996; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Ao, S.J.; Xiao, W.J.; Han, C.M.; Mao, Q.G.; Zhang, J.E. Geochronology and geochemistry of Early Permian mafic–ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Res. 2010, 18, 466–478. [Google Scholar] [CrossRef]
- Xiao, W.J.; Mao, Q.G.; Windley, B.F.; Han, C.M.; Qu, J.F.; Zhang, J.E.; Ao, S.J.; Guo, Q.Q.; Cleven, N.R.; Lin, S.; et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am. J. Sci. 2010, 310, 1553–1594. [Google Scholar] [CrossRef]
- Glorie, S.; De Grave, J.; Buslov, M.M.; Zhimulev, F.I.; Stockli, D.F.; Batalev, V.Y.; Izmer, A.; Haute, P.V.D.; Vanhaecke, F.; Elburg, M.A.; et al. Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: The role of inherited structures during deformation-propagation. Tectonics 2011, 30, 30. [Google Scholar] [CrossRef]
- Rojas-Agramonte, Y.; Kröner, A.; Demoux, A.; Xia, X.; Wang, W.; Donskaya, T.; Liu, D.; Sun, M. Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Res. 2011, 19, 751–763. [Google Scholar] [CrossRef]
- Badarch, G.; Cunningham, W.D.; Windley, B.F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Buriánek, D.; Schulmann, K.; Hrdličková, K.; Hanžl, P.; Janoušek, V.; Gerdes, A.; Lexa, O. Geochemical and geochronological constraints on distinct Early-Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag Continent in western Mongolia. Gondwana Res. 2017, 47, 200–227. [Google Scholar] [CrossRef]
- Rauzer, A.; Zhanchiv, D.; Golyakov, V.; Ykhina, I.; Ivanov, I.; Tsukernik, A.; Afonin, V.; Smirnov, I.; Bykhover, V.; Kravtsev, A. Report on Results of Geological Mapping on Scale 1: 200,000 in the South-Western Part of Mongolian Altay in 1983–1986, Mongolian National Republic; Tekhnoexport: Moscow, Russia, 1987; pp. 1–352. [Google Scholar]
- Javkhlan, O.; Takasu, A.; Bat-Ulzii, D.; Kabir, M.F. Metamorphic pressure-temperature evolution of garnet-chloritoid schists from the Lake Zone, SW Mongolia. J. Miner. Pet. Sci. 2013, 108, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Bence, A.E.; Albee, A.L. Empirical Correction Factors for the Electron Microanalysis of Silicates and Oxides. J. Geol. 1968, 76, 382–403. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.R.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canad. Miner. 1997, 35, 219–246. [Google Scholar]
- Javkhlan, O.; Takasu, A.; Kabir, M.F.; Bat-Ulzii, D. K-Ar ages of amphibole-rich metamorphosed veins in eclogite bodies from the Lake Zone, SW Mongolia. Earth Sci. (Chikyu Kagaku) 2014, 68, 89–96. [Google Scholar]
- Orozbaev, R.T.; Takasu, A.; Bakirov, A.B.; Tagiri, M.; Sakiev, K.S. Metamorphic history of eclogites and country rock gneisses in the Aktyuz area, Northern Tien-Shan, Kyrgyzstan: A record from initiation of subduction through to oceanic closure by continent-continent collision. J. Metamorph. Geol. 2010, 28, 317–339. [Google Scholar] [CrossRef]
- Faryad, S.W.; Bernhardt, H. Taramite-bearing metabasites from Rakovec (Gemeric Unit, The Western Carpathians. Geol. Carpathica 1996, 47, 349–357. [Google Scholar]
- Skuzovatov, S.Y.; Shatsky, V.S.; Dril, S.I.; Perepelov, A.B. Elemental and isotopic (Nd-Sr-O) geochemistry of eclogites from the Zamtyn-Nuruu area (SW Mongolia): Crustal contribution and relation to Neoproterozoic subduction-accretion events. J. Asian Earth Sci. 2017, 167, 33–51. [Google Scholar] [CrossRef]
- Zhang, R.-Y.; Liou, J.G. Coesite-bearing eclogite in Henan Province, central China: Detailed petrography, glaucophane stability and PT-path. Eur. J. Miner. 1994, 6, 217–234. [Google Scholar] [CrossRef]
- Tian, Z.L.; Wei, C.J. Coexistence of garnet blueschist and eclogite in South Tianshan, NW China: Dependence of P-T evolution and bulk-rock composition. J. Metamorph. Geol. 2014, 32, 743–764. [Google Scholar] [CrossRef]
- Evans, B.W. Phase relations of epidote-blueschists. Lithos 1990, 25, 3–23. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T.J.B. Optimal geothermometry and geobarometry. Am. Mineral. 1994, 79, 120–133. [Google Scholar]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Meta. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Dale, J.; Holland, T.J.B. Geothermobarometry, P-T paths and metamorphic field gradients of high-pressure rocks from the Adula Nappe, Central Alps. J. Metamorph. Geol. 2003, 21, 813–829. [Google Scholar] [CrossRef]
- Holland, T.; Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Miner. Pet. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Maruyama, S.; Suzuki, K.; Liou, J.G. Greenschist-Amphibolite Transition Equilibria at Low Pressures. J. Pet. 1983, 24, 583–604. [Google Scholar] [CrossRef]
- Brown, E.H. The Crossite Content of Ca-Amphibole as a Guide to Pressure of Metamorphism. J. Pet. 1977, 18, 53–72. [Google Scholar] [CrossRef]
- Holland, T.J.B. The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes. Contrib. Miner. Pet. 1983, 82, 214–220. [Google Scholar] [CrossRef]
- Ernst, W.G. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 1988, 16, 1081. [Google Scholar] [CrossRef]
- Thompson, A.B.; England, P. Pressure—Temperature—Time Paths of Regional Metamorphism II. Their Inference and Interpretation using Mineral Assemblages in Metamorphic Rocks. J. Pet. 1984, 25, 929–955. [Google Scholar] [CrossRef]
- Schröter, F.C.; Will, T.M.; Klemd, R.; Gao, J. P-T evolution of glaucophane-omphacite bearing HP-LT rocks in the western Tianshan Orogen, NW China:new evidence for ‘Alpine-type’ tectonics. J. Metamorph. Geol. 2002, 20, 239–254. [Google Scholar]
- Otsuki, M.; Banno, S. Prograde and retrograde metamorphism of hematite-bearing basic schists in the Sambagawa belt in central Shikoku. J. Metamorph. Geol. 1990, 8, 425–439. [Google Scholar] [CrossRef]
- Massonne, H.-J.; Schreyer, W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Miner. Pet. 1987, 96, 212–224. [Google Scholar] [CrossRef]
- Thompson, A.; Schulmann, K.; Ježek, J.; Tolar, V. Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts. Tectonophysics 2001, 332, 115–141. [Google Scholar] [CrossRef]
- Peacock, S.M.; Wang, K. Seismic Consequences of Warm Versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan. Science 1999, 286, 937–939. [Google Scholar] [CrossRef] [Green Version]
- Stern, R.J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 2005, 33, 557. [Google Scholar] [CrossRef] [Green Version]
- Hrdličková, K.; Gerdes, A.; Gilikova, H.; Bat-Ulzii, D.; Hanzl, P. Burd Gol Granite Massif as a product of the Late Cambrian post-orogenic magmatism in the SE part of the Lake Zone, Gobi Altay, SW Mongolia. J. Geosci. 2010, 55, 369–386. [Google Scholar] [CrossRef]
- Demoux, A.; Kroner, A.; Badarch, G.; Jian, P.; Tomurhuu, D.; Wingate, M.T.D. Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction- and Accretion-Related Magmatism in Central Mongolia. J. Geol. 2009, 117, 377–397. [Google Scholar] [CrossRef]
Grt1 in Eclogite | Grt1 in Amp. Eclogite | Gr2 in Amp. Eclogite | |||||||
---|---|---|---|---|---|---|---|---|---|
Core | → | Rim | Core | Rim | Out.rim | Core | Rim | Out.rim | |
SiO2 | 37.16 | 36.26 | 36.91 | 38.54 | 38.52 | 38.29 | 38.29 | 38.50 | 37.82 |
TiO2 | 0.28 | 0.27 | 0.04 | 0.13 | 0.00 | 0.00 | 0.00 | 0.05 | 0.10 |
Al2O3 | 20.84 | 20.89 | 20.93 | 21.14 | 21.55 | 21.08 | 21.08 | 21.37 | 20.44 |
FeO | 26.93 | 28.73 | 28.35 | 25.43 | 26.80 | 22.66 | 22.66 | 28.13 | 22.43 |
MnO | 4.41 | 2.39 | 0.47 | 0.47 | 0.57 | 5.00 | 5.00 | 0.51 | 4.18 |
MgO | 1.27 | 1.34 | 3.76 | 4.39 | 4.47 | 0.98 | 0.98 | 6.22 | 1.09 |
CaO | 9.71 | 9.47 | 8.54 | 9.96 | 8.16 | 12.58 | 12.58 | 5.12 | 13.00 |
Total | 100.7 | 99.4 | 99.1 | 100.1 | 100.1 | 100.6 | 100.6 | 99.9 | 99.1 |
Si | 2.96 | 2.93 | 2.94 | 3.01 | 3.01 | 3.02 | 3.02 | 3.01 | 3.03 |
Ti | 0.02 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Al | 1.96 | 1.99 | 1.97 | 1.95 | 1.99 | 1.96 | 1.96 | 1.97 | 1.93 |
Fe3+ | 0.07 | 0.10 | 0.11 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
Fe2+ | 1.73 | 1.84 | 1.78 | 1.65 | 1.75 | 1.50 | 1.50 | 1.83 | 1.50 |
Mn | 0.30 | 0.16 | 0.03 | 0.03 | 0.04 | 0.33 | 0.33 | 0.03 | 0.28 |
Mg | 0.15 | 0.16 | 0.45 | 0.51 | 0.52 | 0.12 | 0.12 | 0.72 | 0.13 |
Ca | 0.83 | 0.82 | 0.73 | 0.83 | 0.68 | 1.06 | 1.06 | 0.43 | 1.12 |
Total | 8.01 | 8.02 | 8.02 | 8.01 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
XFe | 0.57 | 0.62 | 0.60 | 0.54 | 0.59 | 0.50 | 0.50 | 0.61 | 0.50 |
XMg | 0.05 | 0.05 | 0.15 | 0.17 | 0.17 | 0.04 | 0.04 | 0.24 | 0.04 |
XMn | 0.10 | 0.05 | 0.01 | 0.01 | 0.01 | 0.11 | 0.11 | 0.01 | 0.09 |
XCa | 0.28 | 0.27 | 0.24 | 0.28 | 0.23 | 0.35 | 0.35 | 0.14 | 0.37 |
Cpx1 in Grt1 | Cpx1 in Grt2 | Cpx2 core | Cpx2 rim | Cpx2 | Symplectite (Cpx3) | ||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | 54.97 | 55.19 | 56.14 | 55.24 | 55.37 | 56.87 | 55.58 | 53.15 | 52.45 |
TiO2 | 0.12 | 0.14 | 0.06 | 0.00 | 0.06 | 0.02 | 0.02 | 0.05 | 0.01 |
Al2O3 | 10.08 | 10.56 | 9.15 | 7.80 | 9.65 | 11.06 | 6.15 | 2.78 | 1.92 |
FeO | 6.59 | 5.91 | 5.59 | 6.31 | 4.57 | 3.68 | 5.79 | 5.72 | 8.41 |
MnO | 0.06 | 0.06 | 0.02 | 0.01 | 0.04 | 0.02 | 0.09 | 0.04 | 0.10 |
MgO | 8.25 | 8.09 | 9.18 | 10.07 | 9.50 | 9.03 | 10.70 | 13.55 | 12.72 |
CaO | 12.82 | 12.29 | 14.97 | 16.12 | 14.84 | 13.16 | 18.93 | 22.88 | 22.70 |
Na2O | 7.05 | 7.37 | 6.08 | 5.80 | 6.31 | 7.09 | 3.88 | 1.57 | 1.50 |
Total | 100.0 | 99.7 | 101.2 | 101.5 | 100.4 | 101.0 | 101.2 | 99.8 | 99.8 |
O | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Si | 1.96 | 1.96 | 1.98 | 1.95 | 1.96 | 1.99 | 1.99 | 1.95 | 1.94 |
Ti | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 0.04 | 0.04 | 0.02 | 0.05 | 0.04 | 0.01 | 0.01 | 0.05 | 0.06 |
Fe | 0.38 | 0.41 | 0.37 | 0.27 | 0.36 | 0.45 | 0.25 | 0.07 | 0.03 |
Fe3+ | 0.14 | 0.13 | 0.06 | 0.17 | 0.11 | 0.05 | 0.02 | 0.09 | 0.14 |
Fe2+ | 0.06 | 0.05 | 0.10 | 0.01 | 0.03 | 0.06 | 0.15 | 0.08 | 0.12 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mg | 0.44 | 0.43 | 0.48 | 0.53 | 0.50 | 0.47 | 0.57 | 0.74 | 0.70 |
Ca | 0.49 | 0.47 | 0.57 | 0.61 | 0.56 | 0.49 | 0.73 | 0.90 | 0.90 |
Na | 0.49 | 0.51 | 0.42 | 0.40 | 0.43 | 0.48 | 0.27 | 0.11 | 0.11 |
Total | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Jadeite | 38 | 41 | 37 | 27 | 36 | 45 | 25 | 7 | 3 |
Aegirine | 14 | 13 | 6 | 17 | 11 | 5 | 2 | 9 | 14 |
Augite | 48 | 46 | 57 | 55 | 53 | 51 | 72 | 84 | 83 |
Eclogite (MG801, MG802) | |||||||||||
Amp1 incl. in Grt1 | Amp2 mtx | Amp3 symplectitic | |||||||||
Trm | Brs | Fe-Brs | Gln | Brs | Mg-Hbl | Mg-Hbl | Act | Prg | Ed | ||
SiO2 | 40.34 | 42.35 | 41.02 | 55.24 | 49.95 | 47.8 | 47.96 | 53.99 | 40.2 | 46.8 | |
TiO2 | 0.59 | 1.26 | 0.75 | 0.11 | 0.29 | 0.17 | 0.26 | 0.06 | 0.42 | 0.29 | |
Al2O3 | 16.79 | 15.57 | 16.69 | 11.53 | 11.24 | 9.92 | 10.34 | 0.84 | 16.83 | 10.83 | |
FeO | 19.8 | 15.27 | 18.08 | 10.3 | 12.14 | 12.38 | 11.23 | 14.87 | 13.82 | 11.93 | |
MnO | 0.01 | 0.01 | 0.12 | 0.07 | 0.01 | 0.04 | 0.1 | 0.2 | 0.06 | 0.05 | |
MgO | 6.21 | 9.77 | 6.76 | 11.28 | 11.85 | 13.51 | 13.65 | 14.41 | 10.09 | 13.24 | |
CaO | 8.99 | 8.68 | 8.82 | 2.68 | 6.85 | 10.11 | 10.14 | 12.7 | 11.3 | 10.71 | |
Na2O | 3.67 | 3.6 | 3.43 | 6.28 | 4.52 | 2.87 | 2.96 | 0.2 | 2.5 | 2.89 | |
K2O | 0.28 | 0.3 | 0.28 | 0.09 | 0.17 | 0.16 | 0.47 | 0.09 | 1.91 | 0.68 | |
Total | 96.7 | 96.81 | 96.01 | 97.62 | 97.03 | 96.99 | 97.14 | 97.37 | 97.13 | 97.45 | |
O | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | |
Si | 6.07 | 6.19 | 6.16 | 7.6 | 7.12 | 6.89 | 6.91 | 7.88 | 6.01 | 6.79 | |
Ti | 0.07 | 0.14 | 0.08 | 0.01 | 0.03 | 0.02 | 0.03 | 0.01 | 0.05 | 0.03 | |
Al | 2.98 | 2.68 | 2.95 | 1.87 | 1.89 | 1.69 | 1.76 | 0.14 | 2.96 | 1.85 | |
Fe3+ | 0.36 | 0.44 | 0.33 | 0.2 | 0.22 | 0.26 | 0.15 | 0.02 | 0.11 | 0.1 | |
Fe2+ | 2.13 | 1.43 | 1.94 | 0.99 | 1.23 | 1.23 | 1.2 | 1.79 | 1.62 | 1.34 | |
Mn | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | |||||
Mg | 1.39 | 2.13 | 1.51 | 2.31 | 2.52 | 2.9 | 2.93 | 3.13 | 2.25 | 2.86 | |
Ca | 1.45 | 1.36 | 1.42 | 0.39 | 1.05 | 1.56 | 1.57 | 1.98 | 1.81 | 1.67 | |
Na | 1.07 | 1.02 | 1.00 | 1.68 | 1.25 | 0.8 | 0.83 | 0.06 | 0.73 | 0.81 | |
K | 0.05 | 0.06 | 0.05 | 0.02 | 0.03 | 0.03 | 0.09 | 0.02 | 0.36 | 0.13 | |
Total | 15.57 | 15.43 | 15.47 | 15.09 | 15.32 | 15.39 | 15.48 | 15.06 | 15.9 | 15.6 | |
Na(B) | 0.55 | 0.64 | 0.58 | 1.61 | 0.95 | 0.44 | 0.43 | 0.02 | 0.19 | 0.33 | |
(Na + K)(A) | 0.57 | 0.43 | 0.47 | 0.09 | 0.32 | 0.39 | 0.48 | 0.06 | 0.9 | 0.6 | |
XMg | 0.40 | 0.60 | 0.44 | 0.70 | 0.67 | 0.70 | 0.71 | 0.64 | 0.58 | 0.68 | |
Amphibolized Eclogite (MG1220-2) | |||||||||||
Amp2-core | Amp2-rim | Amp4 vein | |||||||||
Act | Wnc | Brs | Mg-Hbl | Ts | Fe-Prg | Ed | Act | ||||
SiO2 | 54.46 | 54.28 | 52.48 | 45.41 | 43.01 | 42.35 | 43.63 | 54.11 | |||
TiO2 | 0.08 | 0.18 | 0.20 | 0.28 | 0.33 | 0.42 | 0.35 | 0.02 | |||
Al2O3 | 5.28 | 5.52 | 7.56 | 12.14 | 13.93 | 15.86 | 13.76 | 0.72 | |||
FeO | 8.56 | 8.64 | 10.02 | 16.53 | 17.06 | 16.86 | 16.26 | 17.70 | |||
MnO | 0.08 | 0.10 | 0.02 | 0.16 | 0.22 | 0.18 | 0.21 | 0.50 | |||
MgO | 17.20 | 17.02 | 15.28 | 9.69 | 8.91 | 7.75 | 8.85 | 11.94 | |||
CaO | 10.19 | 9.86 | 9.78 | 10.67 | 10.63 | 10.99 | 10.78 | 12.08 | |||
Na2O | 1.50 | 2.02 | 1.93 | 2.02 | 2.12 | 2.40 | 2.31 | 0.11 | |||
K2O | 0.35 | 0.48 | 0.23 | 0.68 | 0.56 | 0.81 | 0.79 | 0.07 | |||
Total | 97.72 | 98.10 | 97.51 | 97.59 | 96.78 | 97.61 | 96.94 | 97.25 | |||
O | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | |||
Si | 7.56 | 7.54 | 7.36 | 6.68 | 6.40 | 6.32 | 6.51 | 7.99 | |||
Ti | 0.01 | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.04 | 0.00 | |||
Al | 0.86 | 0.90 | 1.25 | 2.10 | 2.44 | 2.79 | 2.42 | 0.13 | |||
Fe3+ | 0.25 | 0.21 | 0.24 | 0.20 | 0.29 | 0.06 | 0.10 | 0.01 | |||
Fe2+ | 0.75 | 0.79 | 0.93 | 1.84 | 1.83 | 2.04 | 1.93 | 2.18 | |||
Mn | 0.01 | 0.01 | 0.00 | 0.02 | 0.03 | 0.02 | 0.03 | 0.06 | |||
Mg | 3.56 | 3.52 | 3.19 | 2.13 | 1.98 | 1.72 | 1.97 | 2.63 | |||
Ca | 1.52 | 1.47 | 1.47 | 1.68 | 1.69 | 1.76 | 1.72 | 1.91 | |||
Na | 0.40 | 0.54 | 0.53 | 0.58 | 0.61 | 0.69 | 0.67 | 0.03 | |||
K | 0.06 | 0.09 | 0.04 | 0.13 | 0.11 | 0.15 | 0.15 | 0.01 | |||
Na(B) | 0.40 | 0.53 | 0.53 | 0.32 | 0.31 | 0.24 | 0.28 | 0.03 | |||
(Na + K)(A) | 0.06 | 0.10 | 0.04 | 0.39 | 0.41 | 0.60 | 0.54 | 0.01 | |||
XMg | 0.83 | 0.82 | 0.77 | 0.54 | 0.52 | 0.46 | 0.51 | 0.55 |
Phengite | Paragonite | Chlorite | Biotite | ||||||
---|---|---|---|---|---|---|---|---|---|
Ph1 | Ph2 | Ph3* | Pg | Chl | Chl1* | Chl2* | Bt1 | Bt2 | |
SiO2 | 51.90 | 50.83 | 50.16 | 51.13 | 25.88 | 31.25 | 25.45 | 35.14 | 36.47 |
TiO2 | 0.42 | 0.35 | 0.03 | 0.29 | 0.00 | 0.06 | 0.05 | 3.51 | 0.75 |
Al2O3 | 28.30 | 26.72 | 27.11 | 40.21 | 16.40 | 17.59 | 20.04 | 14.45 | 18.96 |
FeO | 2.30 | 2.49 | 6.24 | 0.93 | 31.47 | 25.21 | 30.81 | 26.51 | 16.41 |
MnO | 0.00 | 0.01 | 0.06 | 0.05 | 0.42 | 0.40 | 0.55 | 0.14 | 0.14 |
MgO | 3.92 | 4.27 | 2.45 | 0.13 | 10.75 | 11.15 | 10.65 | 7.52 | 15.04 |
CaO | 0.07 | 0.00 | 0.02 | 0.27 | 0.16 | 0.23 | 0.10 | 0.14 | 0.06 |
Na2O | 0.44 | 0.26 | 0.06 | 6.20 | 0.02 | 0.05 | 0.01 | 0.02 | 0.18 |
K2O | 10.56 | 10.97 | 10.31 | 0.25 | 0.04 | 0.42 | 0.02 | 9.07 | 7.50 |
Total | 97.91 | 95.91 | 96.44 | 99.46 | 85.17 | 86.35 | 87.69 | 96.54 | 95.56 |
O | 22 | 22 | 22 | 22 | 28 | 28 | 28 | 22 | 22 |
Si | 6.74 | 6.77 | 6.73 | 6.21 | 5.86 | 6.62 | 5.54 | 5.50 | 5.39 |
Ti | 0.04 | 0.04 | 0.00 | 0.03 | 0.00 | 0.01 | 0.01 | 0.41 | 0.08 |
Al | 4.33 | 4.20 | 4.29 | 5.75 | 4.37 | 4.39 | 5.14 | 2.66 | 3.30 |
Fe | 0.25 | 0.28 | 0.70 | 0.09 | 5.96 | 4.46 | 5.61 | 3.47 | 2.03 |
Mn | 0.00 | 0.00 | 0.01 | 0.01 | 0.08 | 0.07 | 0.10 | 0.02 | 0.02 |
Mg | 0.76 | 0.85 | 0.49 | 0.02 | 3.63 | 3.52 | 3.46 | 1.75 | 3.31 |
Ca | 0.01 | 0.00 | 0.00 | 0.03 | 0.04 | 0.05 | 0.02 | 0.02 | 0.01 |
Na | 0.11 | 0.07 | 0.02 | 1.46 | 0.01 | 0.02 | 0.01 | 0.01 | 0.05 |
K | 1.75 | 1.86 | 1.77 | 0.04 | 0.01 | 0.11 | 0.00 | 1.81 | 1.41 |
Total | 13.99 | 14.06 | 14.01 | 13.64 | 19.96 | 19.25 | 19.89 | 15.66 | 15.61 |
XNa | 0.06 | 0.03 | 0.01 | 0.97 | |||||
XMg | 0.75 | 0.75 | 0.41 | 0.20 | 0.38 | 0.44 | 0.38 | 0.34 | 0.62 |
Representative Calculations | Peak Stage for HP Event | Peak Stage for MP Event |
---|---|---|
αH2O | 1 | 1 |
T (°C) | 547 | 601 |
SD (T) | 41 | 48 |
P (kbar) | 22.3 | 8.1 |
SD (P) | 1.6 | 1.6 |
Corr. | −0.042 | 0.797 |
Sigfit | 0.45 | 0.84 |
Number of independent sets of reactions | 3 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javkhlan, T.O.; Takasu, A.; Kabir, M.F.; Batulzii, D. Multiple Metamorphic Events Recorded within Eclogites of the Chandman District, SW Mongolia. Minerals 2019, 9, 495. https://doi.org/10.3390/min9080495
Javkhlan TO, Takasu A, Kabir MF, Batulzii D. Multiple Metamorphic Events Recorded within Eclogites of the Chandman District, SW Mongolia. Minerals. 2019; 9(8):495. https://doi.org/10.3390/min9080495
Chicago/Turabian StyleJavkhlan, Terbishiinkhen O., Akira Takasu, Md Fazle Kabir, and Dash Batulzii. 2019. "Multiple Metamorphic Events Recorded within Eclogites of the Chandman District, SW Mongolia" Minerals 9, no. 8: 495. https://doi.org/10.3390/min9080495
APA StyleJavkhlan, T. O., Takasu, A., Kabir, M. F., & Batulzii, D. (2019). Multiple Metamorphic Events Recorded within Eclogites of the Chandman District, SW Mongolia. Minerals, 9(8), 495. https://doi.org/10.3390/min9080495