Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U–Pb and Muscovite Ar–Ar Dating
Abstract
:1. Introduction
2. Regional Geology
3. Geology of the Ore Deposit
4. Sample Description and Analytical Methods
4.1. In Situ LA-ICP-MS Zircon U–Pb Dating and Trace Element Compositions
4.2. Muscovite 40Ar–39Ar Dating
5. Results
5.1. Zircon U–Pb Dating
5.2. Trace Element Compositions of Zircons
5.3. Muscovite 40Ar–39Ar Dating
6. Discussion
6.1. Timing of Mineralization and Granitic Magmatism
6.2. Physico-Chemical of Condition of the Granitic Magma
6.3. Implications to the Sn Mineralization
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hu, R.; Chen, W.T.; Xu, D.; Zhou, M. Reviews and new metallogenic models of mineral deposits in South China: An introduction. J. Asian Earth Sci. 2017, 137, 1–8. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Yuan, S.D.; Cheng, Y.B.; Chen, Y.C. Spatial–temporal distribution of Mesozoic ore deposits in south China and their metallogenic settings. Geol. J. China Univ. 2008, 14, 510–526. [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Chen, Y.C. Large-scale tungsten–tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrol. Sin. 2007, 23, 2329–2338. [Google Scholar]
- Zhou, M.; Gao, J.; Zhao, Z.; Zhao, W.W. Introduction to the special issue of Mesozoic W–Sn deposits in South China. Ore Geol. Rev. 2018, 101, 432–436. [Google Scholar] [CrossRef]
- Cao, J.Y.; Yang, X.Y.; Du, J.G.; Wu, Q.H.; Kong, H.; Li, H.; Wan, Q.; Xi, X.S.; Gong, Y.S.; Zhao, H.R.; et al. Formation and geodynamic implication of the Early Yanshanian granites associated with W–Sn mineralization in the Nanling Range, South China: An overview. Int. Geol. Rev. 2018, 60, 1744–1771. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wu, Q.H.; Yang, X.Y.; Kong, H.; Li, H.; Xi, X.S.; Huang, Q.H.; Liu, B. Geochronology and Genesis of the Xitian W-Sn Polymetallic Deposit in Eastern Hunan Province, South China: Evidence from Zircon U–Pb and Muscovite Ar–Ar Dating, petrochemistry, and Wolframite Sr–Nd–Pb Isotopes. Minerals 2018, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, J.; Chen, J.; Wang, H.; Xiang, Y. Petrogenesis of Jurassic tungsten-bearing granites in the Nanling Range, South China: Evidence from whole-rock geochemistry and zircon U–Pb and Hf–O isotopes. Lithos 2017, 278, 166–180. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Sun, W.; Ireland, T.; Tian, X.; Hu, Y.; Yang, W.; Chen, C.; Xu, D. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W–Sn mineralization and tectonic evolution. Lithos 2016, 266, 435–452. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.; Zhu, J.; Lu, J.; Ma, D. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China. Sci. China Earth Sci. 2013, 56, 2045–2055. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Ma, X. Petrogenesis of the Late Mesozoic Guposhan composite plutons from the Nanling Range, South China: Implications for W–Sn mineralization. Am. J. Sci. 2014, 314, 235–277. [Google Scholar] [CrossRef]
- Yang, L.Z.; Wu, X.B.; Cao, J.Y.; Hu, B.; Zhang, X.W.; Gong, Y.S.; Liu, W.D. Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions. Minerals 2018, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Jiang, S.; Yang, S.; Dai, B.; Lu, J. Mineral chemistry, trace elements and Sr–Nd–Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Res. 2012, 22, 310–324. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, J.; Hao, S.; Li, H.; Geng, J.; Zhang, D. In situ LA-MC-ICP-MS and ID-TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, J.; Hu, R.; Li, H.; Shen, N.; Zhang, D. A precise U–Pb age on cassiterite from the Xianghualing tin–polymetallic deposit (Hunan, South China). Miner. Depos. 2008, 43, 375–382. [Google Scholar] [CrossRef]
- Yuan, S.D.; Zhang, D.L.; Du, A.D.; Qu, W.J. Re–Os dating of molybdenite from the Xintianling giant tungsten–molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrol. Sin. 2012, 28, 27–38. [Google Scholar]
- Yang, J.; Kang, L.; Peng, J.; Zhong, H.; Gao, J.; Liu, L. In-situ elemental and isotopic compositions of apatite and zircon from the Shuikoushan and Xihuashan granitic plutons: Implication for Jurassic granitoid-related Cu–Pb–Zn and W mineralization in the Nanling Range, South China. Ore Geol. Rev. 2018, 93, 382–403. [Google Scholar] [CrossRef]
- Zhang, X.J.; Luo, H.; Wu, Z.H.; Fan, X.W.; Xiong, J.; Yang, J.; Mou, J.Y. Rb–Sr isochron age and its geological significance of Baishaziling tin deposit in Dayishan ore field, Hunan Province. Earth Sci. 2014, 39, 1322–1332. [Google Scholar]
- Sun, H.; Zhao, Z.; Yan, G.; Lü, Z.; Huang, Z.; Yu, X. Geological and geochronological constraints on the formation of the Jurassic Maozaishan Sn deposit, Dayishan orefield, South China. Ore Geol. Rev. 2018, 94, 212–224. [Google Scholar] [CrossRef]
- Brooks, C.; Hart, S.R.; Wendt, I. Realistic use of two-error regression treatments as applied to Rb–Sr data. Rev. Geophys. 1972, 10, 551–577. [Google Scholar] [CrossRef]
- Hu, X.; Gong, Y.; Pi, D.; Zhang, Z.; Zeng, G.; Xiong, S.; Yao, S. Jurassic magmatism related Pb–Zn–W–Mo polymetallic mineralization in the central Nanling Range, South China: Geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 2017, 91, 877–895. [Google Scholar] [CrossRef]
- Wang, D.H.; Chen, Y.C.; Chen, Z.H.; Liu, S.B.; Xu, J.X.; Zhang, J.J.; Zeng, Z.L.; Chen, F.W.; Li, H.Q.; Guo, C.L.; et al. Assessment on mineral resource in Nanling region and suggestion for further prospecting. Acta Geol. Sin. 2007, 81, 882–890. [Google Scholar]
- Yu, C. The characteristic target-pattern regional ore zonality of the Nanling region, China (I). Geosci. Front. 2011, 2, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Cao, J.; Kong, H.; Shao, Y.; Li, H.; Xi, X.; Deng, X. Petrogenesis and tectonic setting of the early Mesozoic Xitian granitic pluton in the middle Qin-Hang Belt, South China: Constraints from zircon U–Pb ages and bulk-rock trace element and Sr–Nd–Pb isotopic compositions. J. Asian Earth Sci. 2016, 128, 130–148. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Li, X.; Li, S.; Santosh, M.; Huang, G. Zircon U–Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization. Lithos 2018, 308, 19–33. [Google Scholar] [CrossRef]
- Fan, W.M.; Wang, Y.; Guo, F.; Peng, T.P. Mezosic mafic magmatism in Hunan-Jiangxi provinces and the lithospheric extension. Earth Sci. Front. 2003, 10, 159–169. [Google Scholar]
- Zhao, Z.X.; Xu, Z.W.; Zuo, C.H.; Lu, J.J.; Wang, R.C.; Miu, B.H.; Lu, R. Emplacement Time and Material Source of the Southern Dayishan Granitic Batholith (Taipingshan Body), Guiyang City, Hunan Province. Geol. Rev. 2017, 63, 395–412. [Google Scholar]
- Wu, G.Y.; Pan, Z.F.; Hou, Z.Q.; Li, J.D.; Che, Q.J.; Chen, H.M. Ore body distribution pattern, ore-controlling factors and prospecting potentiality in the Dayishan tin deposit. Geol. Prospect. 2005, 41, 6–11. [Google Scholar]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; p. 39. [Google Scholar]
- Wang, S.S. Age determinations of 40Ar–40K, 40Ar–40Ar and radiogenic 40Ar released characteristics on K–Ar geostandards of China. Chin. J. Geol. 1983, 4, 315–323. [Google Scholar]
- Qiu, H.N.; Bai, X.J.; Liu, W.G.; Mei, L.F. Automatic 40Ar/39Ar dating technique using multicollector ArgusVI MS with home-made apparatus. Geochimica 2015, 44, 477–484. [Google Scholar]
- Koppers, A. ArArCALC—software for 40Ar/39Ar age calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Hoskin, P.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Hoskin, P. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. An examination of the geochemical record preserved in sedimentary rocks. In The Continental Crust: Its Composition and Evolution; Blackwell Science Inc.: Hoboken, NJ, USA, 1985; p. 312. [Google Scholar]
- Li, Y.; Zhang, Y.Q.; Su, J.B.; Li, J.H.; Dong, S.W. Zircon U–Pb dating of Dayishan and Tashan Plutons in Hunan Province and its tectonic implications. Acta Geosci. Sin. 2015, 36, 303–312. [Google Scholar]
- Zhao, Z.; Zhao, W.W.; Lu, L.; Wang, H. Constraints of multiple dating of the Qingshan tungsten deposit on the Triassic W(-Sn) mineralization in the Nanling region, South China. Ore Geol. Rev. 2018, 94, 46–57. [Google Scholar] [CrossRef]
- Cai, M.H.; Chen, K.X.; Chen, K.X.; Liu, G.Q.; Fu, J.M.; Yin, J.P. Geological characteristics and Re–Os dating of molybdenites in Hehuaping tin–polymetallic deposit, Southern Hunan Province. Miner. Depos. 2006, 25, 263–268. [Google Scholar]
- Yang, F.; Li, X.F.; Feng, Z.H.; Bai, Y. 40Ar/39Ar dating of muscovite from greisenized granite and geological significance in Limu tin deposit. J. Guilin Univ. Technol. 2009, 29, 21–24. [Google Scholar]
- Liu, P.; Mao, J.; Cheng, Y.; Yao, W.; Wang, X.; Hao, D. An Early Cretaceous W–Sn deposit and its implications in southeast coastal metallogenic belt: Constraints from U–Pb, Re–Os, Ar–Ar geochronology at the Feie’shan W–Sn deposit, SE China. Ore Geol. Rev. 2017, 81, 112–122. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, W.; Wang, J.; Zhang, L.; Sun, S.; Wu, K. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim. Cosmochim. Acta 2017, 206, 343–363. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79–238. [Google Scholar] [CrossRef]
- Eugster, H.P.; Wones, D.R. Stability relations of the ferruginous Biotite. J. Petrol. 1962, 3, 82–89. [Google Scholar] [CrossRef]
- Burnham, A.D.; Berry, A.J. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim. Cosmochim. Acta 2012, 95, 196–212. [Google Scholar] [CrossRef]
- Barth, A.P.; Wooden, J.L. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem. Geol. 2010, 277, 149–159. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, J.M.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Miner. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; He, B. Implications from zircon-saturation temperatures and lithological assemblages for Early Permian thermal anomaly in northwest China. Lithos 2013, 182, 125–133. [Google Scholar] [CrossRef]
- Hayden, L.A.; Watson, E.B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci. Lett. 2007, 258, 561–568. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Štemprok, M. Solubility of tin, tungsten and molybdenum oxides in felsic magmas. Miner. Depos. 1990, 25, 205–212. [Google Scholar] [CrossRef]
- Sato, K. Sedimentary Crust and Metallogeny of Granitoid Affinity: Implications from the Geotectonic Histories of the Circum-Japan Sea Region, Central Andes and Southeastern Australia. Resour. Geol. 2012, 62, 329–351. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016, 31, 60–95. [Google Scholar] [CrossRef]
- Linnen, R.L.; Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Lehmann, B. Metallogeny of tin: Magmatic differentiation versus geochemical heritage. Econ. Geol. 1982, 77, 50–59. [Google Scholar] [CrossRef]
- Vigneresse, J. Element mobility in melts during successive intrusions of crustal-derived magmas and Sn–W mineralization. Resour. Geol. 2006, 56, 293–314. [Google Scholar] [CrossRef]
- Thomas, R.; Förster, H.J.; Rickers, K.; Webster, J.D. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contrib. Miner. Petrol. 2005, 148, 582–601. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A.; Leichmann, J.; Gabašová, A. extural and chemical evolution of a fractionated granitic system: The Podlesí stock, Czech Republic. Lithos 2005, 80, 323–345. [Google Scholar] [CrossRef]
- Cheng, Y.; Mao, J.; Yang, Z. Geology and vein tin mineralization in the Dadoushan deposit, Gejiu district, SW China. Miner. Depos. 2012, 47, 701–712. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Tin mineralisation above mantle hot spots. Nature 1974, 248, 497–499. [Google Scholar] [CrossRef]
- Lehmann, B.; Jungyusuk, N.; Khositanont, S.; Höhndorf, A.; Kuroda, Y. The tin-tungsten ore system of Pilok, Thailand. J. Southeast Asian Earth Sci. 1994, 10, 51–63. [Google Scholar] [CrossRef]
- Linnen, R.L.; Pichavant, M.; Holtz, F.; Burgess, S. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. Geochim. Cosmochim. Acta 1995, 59, 1579–1588. [Google Scholar] [CrossRef] [Green Version]
- Linnen, R.L.; Pichavant, M.; Holtz, F. The combined effects of fO2, and melt composition on SnO2, solubility and tin diffusivity in haplogranitic melts. Geochim. Cosmochim. Acta 1996, 60, 4965–4976. [Google Scholar] [CrossRef]
- Lehmann, B. Metallogeny of Tin (Lecture Notes in Earth Sciences); Springer: Berlin, Germany, 1990; 211p. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Lu, Y.; Fu, J.; Qin, Z.; Ning, Y.; Zhang, Z. Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U–Pb and Muscovite Ar–Ar Dating. Minerals 2019, 9, 773. https://doi.org/10.3390/min9120773
Guo J, Lu Y, Fu J, Qin Z, Ning Y, Zhang Z. Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U–Pb and Muscovite Ar–Ar Dating. Minerals. 2019; 9(12):773. https://doi.org/10.3390/min9120773
Chicago/Turabian StyleGuo, Jian, Youyue Lu, Jianming Fu, Zhengwei Qin, Yongyun Ning, and Zunzun Zhang. 2019. "Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U–Pb and Muscovite Ar–Ar Dating" Minerals 9, no. 12: 773. https://doi.org/10.3390/min9120773
APA StyleGuo, J., Lu, Y., Fu, J., Qin, Z., Ning, Y., & Zhang, Z. (2019). Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U–Pb and Muscovite Ar–Ar Dating. Minerals, 9(12), 773. https://doi.org/10.3390/min9120773