Ore Genesis and Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon U-Pb Dating and Pb Isotopes
Abstract
:1. Introduction
2. Geological Setting
3. Geology of the Laochang Deposit
3.1. Strata
3.2. Structure
3.3. Porphyry Intrusion
3.4. Sulfide Mineralization
3.5. Hydrothermal Alteration
3.6. Ore Texture and Paragenesis
4. Sample and Analytical Methods
5. Results
5.1. Major and Trace Elements of Volcanic Rocks
5.2. Zircon U-Pb Geochronology
5.3. Trace Elements in Sphalerite
5.4. Pb Isotopes
6. Discussion
6.1. Age of Stratabound Mineralization
6.2. Source of Metals
6.3. Trace Element Constraints
6.4. Implications for Ore Genesis of Stratabound Ores
6.5. Tectonic Setting and Geodynamic Setting of VMS Deposit
7. Conclusions
- Newly geochronological data show the basaltic tuff (SHRIMP zircon U-Pb = 312 ± 4 Ma), combined with previous studies (zircon U-Pb = 323.6 ± 2.8 Ma, Chen et al. [60]; galena and sphalerite Re-Os = 308 ± 5 Ma, Liu et al. [61]), we consider that that the stratabound mineralization occur in the Late Paleozoic (~323–308 Ma).
- The trace element in sphalerite from stratabound ores is characterized by elevated Fe, In, Sn, and Ga, similar to typical VMS deposit; and Pb isotope ratios in sulfides display a steep linear trend, indicating the Pb originated from multiple sources via the mixing effect of leaching between the host rock and mantle reservoir.
- The combined evidence of geology, Pb isotope, trace elements in sphalerite, along with the geochronology suggested that the stratabound ores formed in Carboniferous at Laochang deposit would be better attributed to a VMS deposit.
- The volcanic rocks hosting the stratabound ore show elevated HFSEs (Nb, Ta, Zr and Hf) abundance, slight enrichment of LREE and depletion of Ba and Sr with obvious Nb-Ta anomalies. Such characteristics suggest that their magma is similar to typical oceanic island basalt, which suggests that Laochang VMS mineralization was generated in the oceanic island setting preceding the initial subduction of the Paleo-Tethys oceanic plate.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sengor, A.M.C. Tectonics of the Tethysides: Orogenic collage development in a collisional setting. Ann. Rev. Earth Planet. Sci. 1987, 15, 213–244. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zaw, K.; Pan, G.; Mo, X.; Xu, Q.; Hu, Y.; Li, X. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types. Ore Geol. Rev. 2007, 31, 48–87. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Li, G.J. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrol. Sin. 2012, 28, 639–648. (In Chinese) [Google Scholar]
- Deng, J.; Wang, Q.F.; Li, G.J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, Southwestern China. Earth Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Carranza, E.J.M.; Santosh, M. Tin metallogenesis associated with granitoids in the southwest Sanjiang Tethyan Domain: Nature, types, and tectonic setting. Gondwana Res. 2014, 26, 576–593. [Google Scholar] [CrossRef]
- Xue, B.G. Mineralization Characteristics of the Laochang Ag-Pb Polymetallic Deposit, Lancang. Miner. Resour. Geol. 1998, 12, 26–32. (In Chinese) [Google Scholar]
- Chen, B.Y.; Wang, Z.R.; Peng, S.L. Study on the genesis of Laochang Ag-Pb-Zn-Cu Polymetallic deposit. Yunnan Geol. 2002, 21, 134–144. (In Chinese) [Google Scholar]
- Li, F.; Lu, W.J.; Yang, Y.Z.; Tang, X.P.; Shi, Z.L. The Research of Crisis Miners Ore-Forming Regularity and Prospecting: On Yunnan Lancang Old Miners Bed for Example; Yunnan Science and Technology Press: Kunming, China, 2010; pp. 1–155. (In Chinese) [Google Scholar]
- Yang, K.H.; Mo, X.X. Main features and genetical type of the Laochang volcanic Massive sulfide deposit Yunnan Province. Bull. Chin. Acad. Geol. Sci. 1993, 26, 79–96. (In Chinese) [Google Scholar]
- Chen, M.; Huang, Z.L.; Luo, T.Y.; Yan, Z.F.; Long, H.S. Petrogenesis and tectonic significance of the Laochang basalt in western Yunnan Province, China. Acta Mineral. Sin. 2011, 31, 55–61. (In Chinese) [Google Scholar] [CrossRef]
- Li, G.J.; Deng, J.; Wang, Q.F.; Liang, K. Metallogenic model for the Laochang Pb–Zn–Ag–Cu volcanogenic massive sulfide deposit related to a Paleo-Tethys OIB-like volcanic center, SW China. Ore Geol. Rev. 2015, 70, 578–594. [Google Scholar] [CrossRef]
- Fan, C.J. Discussion on the origin and the regional geological background of Laochang Pb-Zn deposits in Lancang country. Yunnan Geol. 1985, 4, 3–16. (In Chinese) [Google Scholar]
- Mo, X.X.; Lu, F.X.; Shen, S.Y. Sanjiang Tethyan Volcanism and Related Mineralization; Geological Publishing House: Beijing, China, 1993; pp. 1–239. (In Chinese) [Google Scholar]
- Hou, Z.Q.; Li, H.Y. A tentative discussion on the mantle plume tectonics and metallogenic system as exemplified by the Sanjiang Tethyan metallogenic domain. Miner. Depos. 1998, 17, 97–113. (In Chinese) [Google Scholar]
- Xue, B.G. The discussion of the gensis of Laochang Pb-Zn deposit in Lancang. Yunnan Geol. 1989, 8, 181–188. (In Chinese) [Google Scholar]
- O’yang, C.P.; Xu, C.M. Geochemical features and genesis of the Laochang Diwa-type silver-lead ore deposit in Langchang, Yunnan, China. Geotecton. Metallog. 1991, 15, 317–326. (In Chinese) [Google Scholar]
- Deng, X.D.; Li, J.W.; Zhao, X.F.; Qi, L. Re-Os and U-Pb geochronology of the Laochang Pb–Zn–Ag and concealed porphyry-skarn Mo mineralization along the Changning-Menglian suture, SW China: Implications for ore genesis and porphyry Cu-Mo exploration. Mineral. Depos. 2016, 51, 237–248. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic massive sulfide deposits. In 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 523–560. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-hosted lead-zinc deposits: A global perspective. In 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 561–607. [Google Scholar]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. In 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 251–298. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Bozhko, N.A. The evolution of the mobile zones of Gondwana and Laurasia in the Late Precambrian. Tectonophysics 1986, 126, 125–135. [Google Scholar] [CrossRef]
- Feng, Q.L.; Liu, B. A new Early Devonian radiolarian genus from western Yunnan. Sci. China Ser. B 1993, 36, 242–248. (In Chinese) [Google Scholar]
- Duan, X.D.; Li, J.; Zeng, W.T.; Feng, W.J. The discovery of Ganlongtang tectonic melange in the middle section of Changning-Menglian zone. Yunnan Geol. 2006, 25, 53–62. (In Chinese) [Google Scholar]
- Yu, S.Y.; Li, K.Q.; Shi, Y.P.; Zhang, H.H. A study on the granodiorite in the middle part of Lincang granite batholith. Yunnan Geol. 2003, 22, 426–442. (In Chinese) [Google Scholar]
- Wei, J.Q.; Wang, X.D.; Zhuang, X.; Liu, Y.H. Zircon SHRIMP U–Pb dating of diorite among Jicha serpentine and Eza gabbro from Lancangjiang belt, Yunnan Province and its geological significance. Acta Petrol. Sin. 2008, 24, 1297–1301. (In Chinese) [Google Scholar]
- Hennig, D.; Lehmann, B.; Frei, D.; Belyatsky, B.; Zhao, X.F.; Cabral, A.R.; Zeng, P.S.; Zhou, M.F.; Schmidt, K. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang Zone, Yunnan, China. Lithos 2009, 113, 408–422. [Google Scholar] [CrossRef]
- Jian, P.; Liu, D.Y.; Kröner, A.; Zhang, Q.; Wang, Y.Z.; Sun, X.M.; Zhang, W. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos 2009, 113, 767–784. [Google Scholar] [CrossRef]
- Wang, T.; Jahn, B.M.; Kovach, V.P.; Tong, Y.; Hong, D.W.; Han, B.F. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 2009, 110, 359–372. [Google Scholar] [CrossRef]
- Li, G.Z.; Su, S.G.; Lei, W.Y.; Duan, X.D. Precise ID-TIMS zircon U-Pb age and whole rock geochemistry of the Nanlinshan mafic intrusion in the southern Lancangjiang arc terrane, Sanjiang area, SW China. Earth Sci. Front. 2011, 18, 206–212. (In Chinese) [Google Scholar]
- Wang, C.M.; Deng, J.; Santosh, M.; McCuaig, T.C.; Lu, Y.J.; Carranza, E.J.M.; Wang, Q.F. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning–Menglian Paleo-Tethys Orogen. J. Asian Earth Sci. 2015, 113, 656–676. [Google Scholar] [CrossRef]
- Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Zhu, D.C.; Goodman, R.C.; Kong, H.L.; Wang, S. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China: Implications for the closure of the PaleoTethys Ocean. J. Asian Earth Sci. 2013, 62, 282–294. [Google Scholar] [CrossRef]
- Peng, T.P.; Wang, Y.J.; Fan, W.M.; Liu, D.Y.; Shi, Y.M.; Miao, L.C. The SHRIMP zircon U–Pb dating of the felsic igneous rocks from Southern Lancangjiang and its tectonic implications. Sci. China Ser. D 2006, 10, 123–132. (In Chinese) [Google Scholar]
- Wang, Y.; Zhang, A.; Fan, W.; Peng, T.; Zhang, F.; Zhang, Y.; Bi, X. Petrogenesis of late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, southwest China, and tectonic implications for the evolution of the eastern Paleotethys: Geochronological and geochemical constraints. Lithos 2010, 120, 529–546. [Google Scholar] [CrossRef]
- Peng, T.P.; Wilde, S.A.; Wang, Y.J.; Fan, W.M.; Peng, B.X. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos 2013, 168–169, 15–32. [Google Scholar] [CrossRef]
- Nie, F.; Dong, G.C.; Mo, X.X.; Zhu, D.C.; Dong, M.L.; Wang, X. Geochemistry, zircon U–Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications. Acta Petrol. Sin. 2012, 28, 1465–1476. (In Chinese) [Google Scholar]
- He, F.X.; Liu, B.P. Recognition of ancient oceanic island in Paleo-Tethys, western Yunnan. J. China Univ. Geosci. 1993, 4, 23–29. (In Chinese) [Google Scholar]
- Feng, Q.L. Stratigraphy of volcanic rocks in the Changning-Menglian Belt in southwestern Yunnan, China. J. Asian Earth Sci. 2002, 20, 657–664. [Google Scholar] [CrossRef]
- Wu, H.R.; Boulter, C.A.; Ke, B.; Stow, D.A.V.; Wang, Z.C. The Changning–Menglian suture zone; a segment of the major Cathaysian-Gondwana divide in Southeast Asia. Tectonophysics 1995, 242, 267–280. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J. Superimposed orogeny and composite metallogenic system: Case study from the Sanjiang Tethyan belt, SW China. Acta Petrol. Sin. 2016, 32, 2225–2247. (In Chinese) [Google Scholar]
- Long, H.S. Geochronology and Geochemistry of the Laochang Large Silver Polymetallic Deposit, Yunnan Province, China. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Science, Guiyang, China, 2009. (In Chinese). [Google Scholar]
- Ye, Q.T.; Shi, G.H.; Ye, J.H.; Yang, C.Q. Geological Characteristics and Mineralogenic Series of the Lead-Zinc Deposits in Sanjiang Region; Science and Technology Publishing House: Beijing, China, 1992; pp. 1–120. (In Chinese) [Google Scholar]
- Li, H.J.; Tian, X. The study on fluid inclusion and its ore-forming physicochemical conditions for Langcang Pb-Zn-Ag-Cu deposit. Miner. Resour. Geol. 1995, 9, 107–111. (In Chinese) [Google Scholar]
- Li, F.; Lu, W.J.; Yang, Y.Z.; Chen, H.; Luo, S.L.; Shi, Z.L. The rock and ore-forming ages of the Laochang porphyry molybdenum deposit in Lancang Yunnan. Geoscience 2009, 23, 1049–1055. (In Chinese) [Google Scholar]
- Yang, F.; Li, F.; Chen, H.; Xiao, J.; Zhao, X. Geochemistry and tectonic setting of the Laochang concealed granite porphyry in Lancang, Yunnan Province. Acta Petrol. Mineral. 2012, 31, 39–49. (In Chinese) [Google Scholar]
- Gao, J.G. Research on the Synthetic Metallogenic Information and the Positioning Location and Quantitative Prediction of Resource Orientation for Lancang-Laochang Lead Zinc-Polymetallic Deposit. Ph.D. Thesis, Kumming University of Science and Technology, Yunan, China, 2006. (In Chinese). [Google Scholar]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 1998, 7, 1–35. [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. Temorai: A new zircon standard for Phanerozoic U-Pb geochemistry. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Ludwig, K.R. Squid 1.02: A User’s Manual; Berkeley Geochronology Center Specia Publication: Berkeley, CA, USA, 2001; Volume 2, pp. 1–21. [Google Scholar]
- Goto, A.; Tatsumi, Y. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (I). Rigaku J. 1994, 11, 40–59. [Google Scholar]
- Goto, A.; Tatsumi, Y. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (II). Rigaku J. 1996, 13, 20–39. [Google Scholar]
- Liu, Y.S.; Gao, S.; Kelemen, P.B.; Xu, W.L. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim. Cosmochim. Acta 2008, 72, 2349–2376. [Google Scholar] [CrossRef]
- Qi, L.; Hu, J.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar]
- Belshaw, N.S.; Freedman, P.A.; O’Nions, R.K.; Frank, M.; Guo, Y. A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes. Int. J. Mass Spectrom. 1998, 181, 51–58. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef]
- Niu, Y.L.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacifc mantle. Earth Planet. Sci. Lett. 1997, 148, 471–484. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Xu, C.M.; Ou’yang, C.P. A study on the genesis of the Ag-Pb-Zn deposit in Laochang, Lancang, Yunnan. J. Guilin Coll. Geol. 1991, 11, 245–252. (In Chinese) [Google Scholar]
- Zhao, X.Y.; Li, F.; Yang, F. Isotopic geochemical evidence of the sources of ore-forming materials for the Laochang deep porphyry Mo(Cu)deposit in Lancang, Yunnan. Acta Petrol. Mineral. 2012, 31, 712–722. (In Chinese) [Google Scholar]
- Chen, M.; Huang, Z.L.; Luo, T.Y.; Yan, Z.F.; Long, H.S. SHRIMP dating and its geological significance of zircon in volcanic from Laochang large silver–lead–zinc deposit in western Yunnan Province, China. Acta Miner. Sin. 2010, 30, 456–462. (In Chinese) [Google Scholar]
- Liu, Y.Y.; Qi, L.; Gao, J.F.; Ye, L.; Huang, Z.L.; Zhou, J.X. Re-Os dating of galena and sphalerite from lead-zinc sulfide deposits in Yunnan Province, SW China. J. Earth Sci. 2015, 26, 343–351. [Google Scholar] [CrossRef]
- Han, N.R.; O’yang, C.P.; Li, W.H.; Li, R.L. Current opinion in the Laochang Carboniferous-Permian strata, Lancang, Yunnan. J. Stratigr. 1991, 1, 56–58. (In Chinese) [Google Scholar]
- Ye, L.; Gao, W.; Yang, Y.L.; Liu, T.G.; Peng, S.S. Trace elements in sphalerite in Laochang Pb–Zn polymetallic deposit, Lancang, Yunnan Province. Acta Petrol. Sin. 2012, 28, 1362–1372. (In Chinese) [Google Scholar]
- Wan, B.; Zhang, L.; Xiao, W.J. Geological and geochemical characteristics and ore genesis of the Keketale VMS Pb-Zn deposit, Southern Altai Metallogenic Belt, NW China. Ore Geol. Rev. 2010, 37, 114–126. [Google Scholar] [CrossRef]
- Zhu, W.G.; Zhong, H.; Yang, Y.J.; Ren, T. The origin of the Dapingzhang volcanogenic Cu-Pb-Zn ore deposit, Yunnan province, SW China: Constraints from host rock geochemistry and ore Os-Pb-S-C-O-H isotopes. Ore Geol. Rev. 2016, 75, 327–344. [Google Scholar] [CrossRef]
- Mortensen, J.K.; Hall, B.V.; Bissig, T.; Oliver, J.; Rhys, D.A.; Ross, K.V.; Gabites, J.E. Age and paleotectonic setting of volcanogenic massive sulfide deposits in the Guerrero Terrane of central Mexico: Constraints from U-Pb age and Pb isotope studies. Econ. Geol. 2008, 103, 117–140. [Google Scholar] [CrossRef]
- Lode, S.; Piercey, S.J.; Layne, G.D.; Piercey, G.; Cloutier, J. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada. Miner. Depos. 2017, 52, 1–24. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, J.Y.; Liu, J.J.; Shao, S.X.; Liu, Z.H. Determination and application of the upper mantal lead composition in western Yunnan. Geol. Geochem. 2002, 30, 1–6. (In Chinese) [Google Scholar]
- Zhang, Q. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chin. J. Geochem. 1987, 6, 177–190. [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.P.; Zhang, Q.; Liu, T.G.; Gao, W.; Yang, Y.L.; Danyushevskiy, L. Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICP-MS Study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Wen, H.J.; Qin, C.; Liu, L. Geochemical and isotopic evidence for a magmatichydrothermal origin of the polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen, South China. Ore Geol. Rev. 2017, 86, 673–691. [Google Scholar] [CrossRef]
- Ye, L.; Li, Z.L.; Hu, Y.S.; Huang, Z.L.; Zhou, Z.J.; Fan, H.F.; Danyushevskiy, L. Trace element in sulfide from Tianbaoshan Pb-Zn deposit, Sichuan province, China: A LA-ICPMS study. Acta Petrol. Sin. 2016, 32, 3377–3393. (In Chinese) [Google Scholar]
- Wei, H.T. Mineralization of the Huayuan Pb-Zn Orefield Western Hunan. Ph.D. Thesis, Central South University, Hunan, China, 2017. (In Chinese). [Google Scholar]
- Wang, Z.R.; Wu, Y.Z.; Duan, J.R.; Chen, X.H.; Peng, S.L.; Liu, S.N.; Hu, X.Z. The Metallogensis of Lancang rift and the genesis of Laochang Cu-Pb-Ag deposit in Western Yunnan. Geol. Explor. Non-Ferrous Met. 1992, 1, 207–215. (In Chinese) [Google Scholar]
- Wang, Z.R.; Huang, Z.; Peng, S.L.; Chen, S.L.; Hu, X.Z. Genesis and metallogenic model of Laochang type silver multimetal massive sulfide deposits in Lancang, Yunnan Province. Trans. Nonferr. Met. Soc. Chin. 1997, 7, 1–6. (In Chinese) [Google Scholar]
- Yui, S. Textures of some Japanese Besshi-type ores and their implications for Kuroko deposits. Econ. Geol. Monogr. 1983, 5, 231–240. [Google Scholar]
- Liu, B.; Feng, Q.L.; Fang, N. Tectonic evolution of the Palaeo-Tethys in Changning–Menglian belt and adjacent regions, western Yunnan. J. China Univ. Geosci. 1991, 2, 18–28. (In Chinese) [Google Scholar]
- Ueno, K.; Wang, Y.; Wang, X. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China: An overview. Island Arc 2003, 12, 145–161. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Wang, C.M. Research advance of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrol. Sin. 2011, 27, 2501–2509. (In Chinese) [Google Scholar]
- Deng, J.; Wang, C.M.; Zi, J.W.; Xia, R.; Li, Q. Constraining subduction-collision processes of the Paleo-Tethys along the Changning–Menglian Suture: New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Res. 2018, 62, 75–92. [Google Scholar] [CrossRef]
- Heppe, K.; Helmcke, D.; Wemmer, K. The Lancang River zone of southwestern Yunnan, China: A questionable location for the active continental margin of Paleo-Tethys. J. Asia Earth Sci. 2007, 30, 706–720. [Google Scholar] [CrossRef]
- Bi, L.S. Metamorphism and Deformation Characteristics of Metamorphic Rocks in Shangyun-Huimin Section of Changning-Menglian Suture, Yunnan. Master’s Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Li, G.Z.; Su, S.G.; Duan, X.D. Precise ID-TIMS zircon U-Pb age, whole rock geochemistry and plate tectonic setting of the Banpo Complex in the south Lancangjiang arc terrane, Sanjiang area, SW China. Earth Sci. Front. 2012, 19, 96–109. (In Chinese) [Google Scholar]
- Vermeesch, P. Tectonic discrimination of basalts with classification trees. Geochim. Cosmochim. Acta 2006, 70, 1839–1848. [Google Scholar] [CrossRef]
- Vermeesch, P. Tectonic discrimination diagrams revisited. Geochem. Geophy. Geosyst. 2006, 7, 1–55. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.J.; Zhao, D.S.; Peng, X.J.; Luo, W.L.; Liu, X.P. Wilson Cycle of the Paleo-Tethyan Orogenic Belt in Western Yunnan: Record of Magmatism and Discussion on Mantle Processes. Acta Petrol. Sin. 1996, 12, 17–28. (In Chinese) [Google Scholar]
- Gao, J.; Klemd, R.; Zhang, L.; Wang, Z.; Xiao, X. P-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China. J. Metamorph. Geol. 1999, 17, 621–636. [Google Scholar] [CrossRef]
- Sandeman, H.A.; Hanmer, S.; Tella, S.; Armitage, A.A.; Davis, W.J.; Ryand, J.J. Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt: A backarc setting for the northwestern Hearne subdomain, western Churchill Province, Canada. Precambrian Res. 2006, 144, 126–139. [Google Scholar] [CrossRef]
- Taylor, B.; Martinez, F. Back-arc basin basalt systematics. Earth Planet. Sci. Lett. 2003, 210, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Stern, R.J.; Bloomer, S.H.; Fryer, P. Geochemical mapping of the Mariana Arc-Basin System: Implications for the nature and distribution of subduction components. Geochem. Geophy. Geosyst. 2005, 6, 1–27. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile Element fingerprinting of ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Franklin, J.M.; Lydon, J.W.; Sangster, D.F. Volcanic-associated massive sulfide deposits. In 75th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 1981; pp. 485–627. [Google Scholar]
Rock Type | Basalt | Basaltic Tuff | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | 06LC54 | 06LC79 | 1650-31 | 1650-34 | 1725-11 | 1725-21 | LC1650-7 | LC1840-51 | LC09-29 | ZK09-41 | ZK09-24 | ZK09-36 | ZK09-44 |
SiO2 | 44.01 | 43.38 | 44.51 | 45.20 | 46.67 | 45.39 | 45.65 | 48.97 | 48.20 | 47.69 | 48.34 | 46.76 | 48.06 |
Al2O3 | 12.76 | 12.24 | 12.97 | 11.99 | 13.81 | 13.00 | 12.33 | 13.98 | 12.86 | 15.26 | 18.06 | 15.31 | 17.22 |
FeO (Total) | 15.14 | 15.54 | 12.12 | 11.23 | 10.40 | 11.39 | 15.46 | 11.9 | 12.48 | 12.21 | 10.46 | 11.75 | 11.97 |
MgO | 9.70 | 9.86 | 10.46 | 13.01 | 9.73 | 10.12 | 10.39 | 8.09 | 1.77 | 2.56 | 2.00 | 2.29 | 1.75 |
CaO | 8.53 | 8.12 | 8.57 | 9.69 | 7.55 | 8.86 | 8.25 | 8.56 | 14.22 | 12.35 | 9.34 | 13.97 | 8.85 |
Na2O | 1.59 | 2.54 | 0.65 | 0.28 | 1.58 | 1.45 | 1.12 | 0.9 | 2.15 | 3.07 | 3.78 | 3.08 | 3.54 |
K2O | 3.17 | 3.15 | 4.88 | 4.83 | 5.58 | 5.21 | 4.19 | 3.93 | 3.57 | 2.67 | 2.68 | 2.33 | 3.68 |
MnO | 0.17 | 0.15 | 0.14 | 0.13 | 0.12 | 0.11 | 0.14 | 0.15 | 0.2 | 0.22 | 0.16 | 0.24 | 0.13 |
P2O5 | 0.77 | 0.58 | 1.40 | 0.85 | 1.29 | 0.71 | 0.12 | 0.17 | 1.03 | 1.37 | 1.46 | 1.06 | 1.23 |
TiO2 | 4.16 | 4.44 | 4.30 | 2.79 | 3.26 | 3.75 | 2.35 | 3.35 | 3.52 | 2.6 | 3.72 | 3.21 | 3.57 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
LOI | 13.38 | 10.09 | 1.75 | 8.80 | 7.81 | 6.36 | 6.29 | 2.92 | 15.17 | 11.69 | 9.90 | 15.91 | 8.26 |
Sc | 29.17 | 31.68 | 26.42 | 21.28 | 23.52 | 22.62 | 17.10 | 23.40 | 17.60 | 10.30 | 17.30 | 12.30 | 15.80 |
V | 388 | 390 | 334 | 252 | 344 | 242 | 251 | 281 | 204 | 149 | 233 | 209 | 235 |
Rb | 102.7 | 100.7 | 419.5 | 244.4 | 330.4 | 188.3 | 358.0 | 222.0 | 104.0 | 50.9 | 57.6 | 44.6 | 78.1 |
Ba | 123.5 | 104.3 | 136.2 | 128.4 | 197.3 | 103.6 | 799 | 362 | 267 | 1120 | 427 | 301 | 262 |
Th | 3.68 | 4.02 | 6.72 | 6.06 | 7.37 | 6.65 | 9.33 | 4.95 | 5.57 | 6.02 | 8.06 | 6.32 | 7.68 |
U | 0.77 | 1.11 | 1.47 | 2.16 | 2.82 | 1.57 | 1.54 | 3.02 | 9.19 | 1.49 | 1.54 | 1.14 | 0.95 |
Nb | 40.72 | 43.78 | 73.96 | 55.51 | 74.21 | 70.62 | 105.00 | 64.70 | 56.10 | 65.40 | 85.60 | 68.20 | 81.80 |
Ta | 2.36 | 2.51 | 3.96 | 2.89 | 3.86 | 3.72 | 6.57 | 4.08 | 3.39 | 4.27 | 5.69 | 4.44 | 5.43 |
La | 28.32 | 30.64 | 64.37 | 46.28 | 63.61 | 53.82 | 74 | 50.9 | 71.9 | 76.3 | 73.7 | 60.9 | 71.9 |
Ce | 63.71 | 65.98 | 133.70 | 90.95 | 133.40 | 118.80 | 163.00 | 109.00 | 126.00 | 103.00 | 162.00 | 116.00 | 152.00 |
Sr | 413.4 | 432.5 | 398.9 | 288.0 | 354.4 | 91.4 | 182.0 | 105.0 | 132.0 | 439.0 | 342.0 | 453.0 | 371.0 |
Nd | 34.43 | 34.14 | 66.38 | 41.80 | 64.16 | 57.67 | 69.70 | 59.90 | 59.60 | 75.00 | 74.50 | 55.50 | 68.10 |
Sm | 7.63 | 7.07 | 12.80 | 8.01 | 12.32 | 10.60 | 13.00 | 11.60 | 11.40 | 14.00 | 15.40 | 10.90 | 13.70 |
Zr | 231 | 254 | 305 | 199 | 288 | 275 | 356 | 220 | 247 | 295 | 378 | 296 | 360 |
Hf | 5.09 | 5.44 | 5.79 | 3.81 | 5.42 | 5.1 | 7.29 | 5.06 | 5.20 | 5.88 | 8.04 | 7.26 | 7.86 |
Eu | 3.01 | 2.41 | 4.37 | 2.38 | 4.12 | 3.63 | 4.51 | 4.39 | 6.23 | 4.57 | 4.79 | 3.62 | 4.27 |
Gd | 8.25 | 6.84 | 11.13 | 7.49 | 10.8 | 9.44 | 11.35 | 10.69 | 10.23 | 13.48 | 13.22 | 9.80 | 12.01 |
Dy | 6.50 | 5.13 | 7.26 | 5.03 | 6.73 | 5.99 | 7.31 | 6.69 | 7.19 | 8.89 | 9.99 | 7.37 | 8.94 |
Y | 29.30 | 23.56 | 30.29 | 22.95 | 28.42 | 25.32 | 32.83 | 29.72 | 37.23 | 43.67 | 45.71 | 31.65 | 40.34 |
Yb | 2.29 | 1.88 | 2.11 | 1.65 | 1.95 | 1.84 | 2.3 | 1.87 | 2.25 | 3.18 | 3.54 | 2.35 | 3.25 |
Lu | 0.33 | 0.26 | 0.29 | 0.23 | 0.27 | 0.25 | 0.33 | 0.27 | 0.31 | 0.44 | 0.51 | 0.33 | 0.46 |
(La/Sm)N | 2.40 | 2.80 | 3.25 | 3.73 | 3.34 | 3.28 | 3.68 | 2.84 | 4.08 | 3.52 | 3.09 | 3.61 | 3.39 |
(Gd/Yb)N | 2.98 | 3.01 | 4.36 | 3.75 | 4.58 | 4.24 | 4.08 | 4.73 | 3.76 | 3.51 | 3.09 | 3.45 | 3.06 |
(La/Yb)N | 8.87 | 11.70 | 21.89 | 20.13 | 23.41 | 20.99 | 23.09 | 19.53 | 22.93 | 17.22 | 14.94 | 18.60 | 15.88 |
Analysis | Element (ppm) | Isotopic Ratio | Age (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
232Th | 238U | 232Th/238U | 207Pb/206Pb | ±1δ | 207Pb/235U | ±1δ | 206Pb/238U | ±1δ | 206Pb/238U | 1δ | 208Pb/232Th | 1δ | 207Pb/206Pb | 1δ | |
LC09-10-1 | 391 | 742 | 1.96 | 0.0518 | 17 | 0.35 | 17 | 0.05 | 2.4 | 311.0 | 7.4 | 307 | 13 | 278 | 390 |
LC09-10-2 | 286 | 568 | 2.05 | 0.0571 | 12 | 0.39 | 12 | 0.05 | 1.8 | 309.5 | 5.4 | 302.8 | 9.2 | 494 | 270 |
LC09-10-3 | 420 | 793 | 1.95 | 0.0511 | 11 | 0.34 | 11 | 0.05 | 1.6 | 304.3 | 4.9 | 296.7 | 7.8 | 243 | 260 |
LC09-10-4 | 558 | 1950 | 3.61 | 0.051 | 6.3 | 0.35 | 6.5 | 0.05 | 1.6 | 315.5 | 4.8 | 309.5 | 5.9 | 243 | 150 |
LC09-10-5 | 495 | 1688 | 3.52 | 0.0564 | 5.3 | 0.39 | 5.5 | 0.05 | 1.6 | 316.5 | 5.0 | 307.8 | 6.2 | 470 | 120 |
LC09-10-6 | 177 | 407 | 2.38 | 0.0649 | 14 | 0.43 | 14 | 0.05 | 2.1 | 303.0 | 6.1 | 293 | 13 | 772 | 300 |
LC09-10-7 | 72 | 90 | 1.29 | 0.058 | 18 | 0.96 | 19 | 0.12 | 3.9 | 730.0 | 27 | 655 | 53 | 523 | 400 |
LC09-10-8 | 301 | 592 | 2.03 | 0.0577 | 9.5 | 0.39 | 9.7 | 0.05 | 1.8 | 308.1 | 5.3 | 308.7 | 8.9 | 520 | 210 |
LC09-10-9 | 419 | 1209 | 2.99 | 0.0513 | 13 | 0.36 | 13 | 0.05 | 1.7 | 316.0 | 5.3 | 306.3 | 7.4 | 254 | 290 |
LC09-10-10 | 59 | 75 | 1.31 | 0.0677 | 6.9 | 1.09 | 7.3 | 0.12 | 2.5 | 712 | 17 | 708 | 34 | 858 | 140 |
LC09-10-11 | 115 | 173 | 1.56 | 0.067 | 9.8 | 1.13 | 10 | 0.12 | 2.1 | 741 | 15 | 738 | 31 | 839 | 200 |
LC09-10-12 | 359 | 769 | 2.21 | 0.0568 | 9.6 | 0.39 | 9.8 | 0.05 | 1.7 | 316.7 | 5.2 | 310.0 | 7.9 | 483 | 210 |
Sample Na. | Zn | Fe | Mn | Co | Ni | Cu | Ga | Ge | As | Ag | Cd | In | Sn | Sb | Pb | Bi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lcs75 | 49.79 | 112,000 | 4026 | 1.57 | 6.61 | 4912 | 30.32 | 0.64 | 88.74 | 15.0 | 4250 | 633.2 | 35.79 | 8.56 | 0.37 | 0.84 |
Lcs67 | 48.96 | 110,500 | 2768 | 3.14 | 1.64 | 1079 | 24.48 | 0.86 | 34.72 | 64.1 | 4993 | 941.7 | 19.58 | 53.34 | 2.30 | 0.87 |
Lcs76 | 50.66 | 110,500 | 3258 | 4.09 | 4.36 | 7161 | 30.65 | 0.47 | 105.80 | 27.2 | 4201 | 1576.0 | 25.7 | 19.79 | 1.19 | 1.31 |
Lcc5 | 49.59 | 98,800 | 1971 | 1.49 | 12.67 | 5058 | 21.31 | 1.30 | 80.76 | 48.7 | 3859 | 696.6 | 12.21 | 30.51 | 1.69 | 2.60 |
Lcs68 | 50.57 | 132,500 | 4594 | 1.84 | 2.92 | 2765 | 45.40 | 0.64 | 90.46 | 16.4 | 4186 | 849.4 | 702.3 | 11.86 | 0.63 | 2.74 |
Lcs69 | 48.72 | 117,800 | 2785 | 1.12 | 1.43 | 2398 | 26.55 | 0.62 | 62.35 | 11.3 | 4420 | 558.2 | 13.10 | 6.97 | 0.46 | 4.78 |
Lc117 | 48.47 | 100,400 | 3154 | 2.27 | 2.17 | 1053 | 19.29 | 0.58 | 43.45 | 13.8 | 4717 | 192.1 | 12.52 | 10.08 | 0.51 | 6.21 |
Lcb5 | 48.95 | 110,800 | 2562 | 6.53 | 1.13 | 788 | 8.15 | 0.41 | 543.30 | 17.6 | 3867 | 217.4 | 4.44 | 3.85 | 0.07 | 12.28 |
Lcs73 | 51.14 | 92,550 | 3211 | 1.10 | 26.68 | 3307 | 36.90 | 1.13 | 54.93 | 67.3 | 4690 | 289.5 | 15.84 | 13.75 | 0.96 | 27.30 |
Lcc27 | 49.81 | 123,100 | 3168 | 0.17 | 4.80 | 2887 | 44.44 | 0.67 | 543.60 | 78.7 | 4303 | 502.0 | 514.4 | 25.26 | 0.40 | 39.06 |
Lcc9 | 51.58 | 112,600 | 3052 | 0.87 | 5.89 | 4129 | 30.81 | 0.99 | 46.10 | 43.7 | 4424 | 532.0 | 20.20 | 22.80 | 1.77 | 59.02 |
Lcc16 | 48.66 | 102,400 | 2977 | 0.20 | 1.28 | 1321 | 28.56 | 0.65 | 429.40 | 43.8 | 3914 | 308.8 | 21.51 | 8.60 | 0.29 | 72.71 |
Lcc28 | 48.77 | 123,600 | 3278 | 0.93 | 2.39 | 1584 | 23.56 | 0.55 | 411.50 | 311.0 | 3874 | 353.3 | 12.49 | 22.08 | 0.92 | 131.30 |
Lcs48 | 50.52 | 121,100 | 2820 | 0.31 | 5.26 | 6720 | 12.90 | 0.41 | 82.53 | 82.5 | 3813 | 871.3 | 50.92 | 90.19 | 1.31 | 174.80 |
Lk16 | 50.44 | 107,600 | 3377 | 0.21 | 3.05 | 1096 | 38.44 | 0.90 | 589.60 | 126.0 | 4126 | 356.1 | 32.98 | 20.27 | 0.82 | 278.30 |
Min | 48.47 | 98,800 | 1971 | 0.17 | 1.13 | 788 | 8.15 | 0.41 | 34.72 | 11.3 | 3813 | 192.1 | 4.44 | 3.85 | 0.07 | 0.84 |
Max | 51.58 | 132,500 | 4594 | 6.53 | 26.68 | 7161 | 45.40 | 1.30 | 589.60 | 311.0 | 4993 | 1576.0 | 702.30 | 90.19 | 2.30 | 278.30 |
Mean | 49.8 | 111,750 | 3133 | 1.70 | 5.50 | 3084 | 28.10 | 0.70 | 213.80 | 64.5 | 4243 | 591.8 | 99.60 | 23.20 | 0.90 | 54.30 |
S.D. | 3.11 | 34,500 | 2623 | 6.36 | 25.55 | 6373 | 37.25 | 0.89 | 554.88 | 299.7 | 1180 | 1383.9 | 697.96 | 86.34 | 2.23 | 277.46 |
Sample No. | Sample Na. | Sample Location | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | References |
---|---|---|---|---|---|---|
E-51 | Granitic porphyry | ZK14827–998.5 m | 18.205 | 15.586 | 38.405 | Zhao et al. [59] |
E-67 | Granitic porphyry | ZK14827–214.8 m | 18.426 | 15.601 | 38.623 | |
E-73 | Granitic porphyry | ZK14827–302.8 m | 18.564 | 15.62 | 38.774 | |
E-82 | Granitic porphyry | ZK14827–389 m | 18.621 | 15.663 | 38.910 | |
E-84 | Granitic porphyry | ZK14827–412 m | 18.283 | 15.628 | 38.524 | |
88061 | Granitic porphyry | ZK15007–355 m | 18.561 | 15.614 | 38.695 | Xu et al. [58] |
88088 | Granitic porphyry | ZK15006–427 m | 17.988 | 15.652 | 38.246 | |
88090 | Granitic porphyry | ZK15006–440 m | 18.552 | 15.661 | 38.766 | |
LC091700-27 | Pyrite | 1700 mining tunnel | 18.601 | 15.659 | 38.835 | This study |
LC091700-41 | Pyrite | 1700 mining tunnel | 18.623 | 15.646 | 38.823 | |
LC091700-45 | Pyrite | 1700 mining tunnel | 18.657 | 15.682 | 38.935 | |
LC091700-49 | Sphalerite | 1700 mining tunnel | 18.651 | 15.643 | 38.880 | |
LC091700-53 | Sphalerite | 1700 mining tunnel | 18.449 | 15.487 | 38.423 | |
LC091700-54 | Sphalerite | 1700 mining tunnel | 18.452 | 15.528 | 38.396 | |
Lc1925-3 | Galena | 18.736 | 15.758 | 39.09 | Ye et al. [42] | |
Lc1925-5 | Galena | 18.700 | 15.732 | 39.100 | ||
Lc1925-12 | Galena | 18.748 | 15.77 | 39.197 | ||
Lc1925-13 | Galena | 18.716 | 15.729 | 39.087 | ||
Ly017 | Galena | 18.500 | 15.480 | 38.380 | Li et al. [8] | |
Ly020 | Galena | 18.510 | 15.500 | 38.410 | ||
Ly016 | Galena | 18.590 | 15.600 | 38.68 | ||
Lc-3G | Galena | 18.726 | 15.761 | 39.200 | ||
Lc-9G | Galena | 18.657 | 15.700 | 38.973 | ||
Lc-12G | Galena | 18.726 | 15.762 | 39.200 | ||
Lc-4P | Pyrite | 18.676 | 15.699 | 39.000 | ||
Lc-9P | Pyrite | 18.709 | 15.763 | 39.191 | ||
1700-23 | Basalt | 1700 mining tunnel | 18.668 | 15.597 | 38.852 | This study |
1725-27 | Basalt | 1725 mining tunnel | 18.595 | 15.672 | 38.867 | |
1700-5 | Basalt | 1700 mining tunnel | 18.619 | 15.672 | 38.905 | |
1650-19 | Basalt | 1650 mining tunnel | 18.612 | 15.657 | 38.901 | |
1700-6 | Basalt | 1700 mining tunnel | 18.751 | 15.668 | 39.112 | |
87-B8 | Basalt | 18.661 | 15.709 | 38.902 | Xu et al. [58] | |
8725_1 | Volcanic rock | 18.918 | 15.749 | 39.037 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Ye, L.; Huang, Z.; Gao, W.; Hu, Y.; Li, Z.; Zhang, J. Ore Genesis and Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon U-Pb Dating and Pb Isotopes. Minerals 2018, 8, 516. https://doi.org/10.3390/min8110516
Wei C, Ye L, Huang Z, Gao W, Hu Y, Li Z, Zhang J. Ore Genesis and Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon U-Pb Dating and Pb Isotopes. Minerals. 2018; 8(11):516. https://doi.org/10.3390/min8110516
Chicago/Turabian StyleWei, Chen, Lin Ye, Zhilong Huang, Wei Gao, Yusi Hu, Zhenli Li, and Jiawei Zhang. 2018. "Ore Genesis and Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon U-Pb Dating and Pb Isotopes" Minerals 8, no. 11: 516. https://doi.org/10.3390/min8110516
APA StyleWei, C., Ye, L., Huang, Z., Gao, W., Hu, Y., Li, Z., & Zhang, J. (2018). Ore Genesis and Geodynamic Setting of Laochang Ag-Pb-Zn-Cu Deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from Whole Rock Geochemistry, Trace Elements in Sphalerite, Zircon U-Pb Dating and Pb Isotopes. Minerals, 8(11), 516. https://doi.org/10.3390/min8110516