Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro, S.; Miranda, C.; Toledo, P.; Laskowski, J.S. Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int. J. Miner. Process. 2013, 124, 8–14. [Google Scholar] [CrossRef]
- Cho, Y.S.; Laskowski, J.S. Effect of flotation frothers on bubble size and foam stability. Int. J. Min. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Finch, J.A.; Gélinas, S.; Moyo, P. Frother-related research at McGill University. Miner. Eng. 2006, 19, 726–733. [Google Scholar] [CrossRef]
- Finch, J.A.; Nesset, J.E.; Acuna, C. Role of frother in bubble production and behaviour in flotation. Miner. Eng. 2008, 21, 949–957. [Google Scholar] [CrossRef]
- Grau, R.; Laskowski, J.S.; Heiskanen, K. Effect of frothers on bubble size. Int. J. Miner. Process. 2005, 76, 225–233. [Google Scholar] [CrossRef]
- Kracht, W.; Finch, J.A. Bubble break-up and the role of frother and salt. Int. J. Miner. Process. 2009, 92, 153–161. [Google Scholar] [CrossRef]
- Kracht, W.; Finch, J.A. Effect of frother on initial bubble shape and velocity. Int. J. Miner. Process. 2010, 94, 115–120. [Google Scholar] [CrossRef]
- Kracht, W.; Rebolledo, H. Study of the local critical coalescence concentration (l-CCC) of alcohols and salts at bubble formation in two-phase systems. Miner. Eng. 2013, 50–51, 77–82. [Google Scholar] [CrossRef]
- Melo, F.; Laskowski, J.S. Fundamental properties of flotation frothers and their effect on flotation. Miner. Eng. 2006, 19, 766–773. [Google Scholar] [CrossRef]
- Nassif, M.; Finch, J.A.; Waters, K.E. Developing critical coalescence concentration curves for industrial process waters using dilution. Miner. Eng. 2013, 50–51, 64–68. [Google Scholar] [CrossRef]
- Finch, J.; Zhang, W. Frother function-structure relationship: Dependence of CCC95 on HLB and H-ratio. Miner. Eng. 2014, 61, 1–8. [Google Scholar] [CrossRef]
- Schwarz, S.; Alexander, D. Gas dispersion measurements in industrial cells. Miner. Eng. 2006, 19, 554–560. [Google Scholar] [CrossRef]
- Gorian, B.K.; Franzidis, J.P.; Manlaping, E.V. Studies on impeller type, impeller speed and air flow rate in an industrial flotation cell—Part 4 Effect of bubble surface area flux on flotation performance. Miner. Eng. 1997, 10, 367–379. [Google Scholar] [CrossRef]
- Harris, P.J. Chapter 13: Frothing phenomena and frothers. In Principles of Flotation; King, R.P., Ed.; Monograph Series 3; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 1982. [Google Scholar]
- Kracht, W.; Finch, J.A. Using sound to study bubble coalescence. J. Colloid Interface Sci. 2009, 332, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Pugh, R.J. Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 1996, 64, 67–102. [Google Scholar] [CrossRef]
- Drzymala, J. Mineral. Processing, Foundations of Theory and Practice of Minerallurgy; Oficyna Wydawnicza Politechniki Wroclawskiej: Wroclaw, Poland, 2007. [Google Scholar]
- Cho, Y.S.; Laskowski, J.S. Bubble coalescence and its effect on bubble size and foam stability. Can. J. Chem. Eng. 2002, 80, 299–305. [Google Scholar] [CrossRef]
- Laskowski, J.S. Fundamental properties of flotation frothers. In Proceedings of the 22nd International Mineral Processing Congress, Cape Town, South Africa, 28 September–3 October 2003; Volume 2, pp. 788–797. [Google Scholar]
- Laskowski, J.S.; Tlhone, T.; Williams, P.; Ding, K. Fundamental properties of the polyoxypropylene alkyl ether flotation frothers. Int. J. Miner. Process. 2003, 72, 289–299. [Google Scholar] [CrossRef]
- Zhang, W.; Nesset, J.E.; Rao, R.; Finch, J.A. Characterizing Frothers through Critical Coalescence Concentration (CCC)95-Hydrophile-Lipophile Balance (HLB) Relationship. Minerals 2012, 2, 208–227. [Google Scholar] [CrossRef]
- Gupta, A.K.; Banerjee, P.K.; Mishra, A. Effect of frothers on foamability, foam stability and bubble size. Coal Prep. 2007, 27, 107–125. [Google Scholar] [CrossRef]
- Laskowski, J.S. Testing flotation frothers. Physicochem. Probl. Miner. Process. 2004, 38, 13–22. [Google Scholar]
- Szyszka, D.; Glapiak, E.; Drzymała, J. Entrainment-flotation activity of quartz in the presence of selected frothers. Physicochem. Probl. Miner. Process. 2008, 42, 85–90. [Google Scholar]
- Szyszka, D. Krytyczne stężenie koalescencji potencjalnych spieniaczy do flotacji łupka miedzionośnego, In Lupek Miedzionosny II; Kowalczuk, P.B., Drzymala, J., Eds.; WGGG PWr: Wroclaw, Poland, 2016; pp. 222–227. (In Polish) [Google Scholar]
- Kowalczuk, P.B. Determination of Critical Coalescence Concentration and Bubble Size for Surfactants Used as Flotation Frothers. Ind. Eng. Chem. Res. 2013, 52, 11752–11757. [Google Scholar] [CrossRef]
- Małysa, K.; Czubak-Pawlikowska, J.; Pomianowski, A. Frothing properties of solutions and their influence on the floatability. In Proceedings of the 7th International Congress Surface Actives Substances, Moscow, Russia, 1978; Volume 3, pp. 513–520. [Google Scholar]
- Czarnecki, J.; Małysa, K.; Pomianowski, A. Dynamic frothability index. J. Colloid Interface Sci. 1982, 86, 570–572. [Google Scholar] [CrossRef]
- Moyo, P.; Gomez, C.O.; Finch, J.A. Characterizing frothers using water carrying rate. Can. Matallurgical Q. 2007, 46, 215–220. [Google Scholar] [CrossRef]
- Szyszka, D. Mechaniczna flotacja hydrofilnych ziarn kwarcu w obecności spieniacza. Min. Sci. 2007, 31, 81–88. (In Polish) [Google Scholar]
- Szyszka, D.; Drzymała, J.; Resiak, P.; Mielczarski, E.; Mielczarski, J. Entrainment of quartz in flotation tests with frothers. In Proceedings of the XXIV International Mineral Processing Congress, Beijing, China, 24–28 September 2008; pp. 1068–1073. [Google Scholar]
- Szyszka, D.; Drzymała, J.; Łuczyński, J.; Wilk, K.A.; Patkowski, J. Concentration of α-Terpineol and (2-Dodecanoyloxyethyl)trimethyl ammonium bromide required for prevention of air buble coalescence in aqueous solutions. Physicochem. Probl. Miner. Process. 2006, 40, 53–59. [Google Scholar]
- Szyszka, D. Critical coalescence concetration (CCC) as a parameter for evaluation of selected quaternary ammonium compounds. Min. Sci. 2013, 20, 101–113. [Google Scholar]
- Pacek, A.W.; Man, C.C.; Nienow, A.W. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem. Eng. Sci. 1998, 53, 2005–2011. [Google Scholar] [CrossRef]
- Grau, R.A. An Investigation of the Effect of Physical and Chemical Variables on Bubble Generation and Coalescence in Laboratory Scale Flotation; Helsinki University of Technology Doctoral Theses in Materials and Earth Sciences, 4; Laboratory of Mechanical Process Technology and Recycling: Espoo, Finland, 2006. [Google Scholar]
- Grau, R.; Heiskanen, K. Gas dispersion measurements in a flotation cell. Miner. Eng. 2003, 16, 1081–1089. [Google Scholar] [CrossRef]
- Quinn, J.J.; Kracht, W.; Gomez, C.O.; Gagnon, C.; Finch, J.A. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Miner. Eng. 2007, 20, 1296–1302. [Google Scholar] [CrossRef]
- Quinn, J.J.; Sovechles, J.M.; Finch, J.A.; Waters, K.E. Critical coalescence concentration of inorganic salt solutions. Miner. Eng. 2014, 58, 1–6. [Google Scholar] [CrossRef]
- Drzymala, J.; Kowalczuk, P.B. Classification of Flotation Frothers. Minerals 2018, 8, 53. [Google Scholar] [CrossRef]
- Sobczyk, M. Statistics Practical and Theoretical Aspects; Publisher UMTS: Lublin, Poland, 2006. [Google Scholar]
- Malysa, E.; Malysa, K.; Czarnecki, J. A Method of comparison of the frothing and collecting properties of frother. Colloids Surf. 1987, 23, 29–39. [Google Scholar] [CrossRef]
- Gupta, A.K.; Banerjee, P.K.; Mishra, A.; Satish, P.; Pradip. Frother Characterization with Two-Phase Foam System. In Proceedings of the International Seminar on Mineral Processing Technology and Indo-Korean Workshop on Resource Recycling (MPT-2006), NML, Chennai, India, 8–10 March 2006. [Google Scholar]
Reagent | Purity (%) | Concentration (mmol/dm3) | |
---|---|---|---|
Ethylene glycol butyl ether (C4E1) | 100 | 1.06 | 8.46 |
1.27 | 16.92 | ||
2.12 | |||
Diethylene glycol butyl ether (C4E2) | ≥99 | 0.77 | 4.62 |
1.54 | 6.16 | ||
3.08 | |||
Triethylene glycol butyl ether (C4E3) | ~70 | 0.48 | 12.12 |
2.42 | 24.24 | ||
4.85 |
Properties | Ethylene Glycol Butyl Ether | Diethylene Glycol Butyl Ether | Triethylene Glycol Butyl Ether |
---|---|---|---|
Structural formula | |||
Formula | CH3(CH2)3(OC2H4)OH | CH3(CH2)3OC2H4OC2H4OH | CH3(CH2)3(OC2H4)3OH |
Molecular formula | C6H14O2 (C4E1) | C8H18O3 (C4E2) | C10H22O4 (C4E3) |
Family | Polyglycols | Polyglycols | Polyglycols |
Purity | 100% | ≥99% | ~70% |
Density | 0.990 g/mL at 25 °C | 0.953 g/mL at 20 °C | 0.990 g/mL at 20 °C |
Molecular weight (g/mol) | 118.17 | 162.23 | 206.28 |
Number CAS | 9004-77-7 | 112-34-5 | 143-22-6 |
Producer | Sigma-Aldrich | Fluka Analytical | Sigma-Aldrich |
Frother | CCC (mmol/dm3) | CCC (ppm) |
---|---|---|
Ethylene glycol butyl ether (C4E1) | 1.19 | 140.62 |
Diethylene glycol butyl ether (C4E2) | 0.84 | 136.27 |
Triethylene glycol butyl ether (C4E3) | 0.54 | 105.20 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyszka, D. Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions. Minerals 2018, 8, 431. https://doi.org/10.3390/min8100431
Szyszka D. Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions. Minerals. 2018; 8(10):431. https://doi.org/10.3390/min8100431
Chicago/Turabian StyleSzyszka, Danuta. 2018. "Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions" Minerals 8, no. 10: 431. https://doi.org/10.3390/min8100431
APA StyleSzyszka, D. (2018). Critical Coalescence Concentration (CCC) for Surfactants in Aqueous Solutions. Minerals, 8(10), 431. https://doi.org/10.3390/min8100431