Monazite Alteration in H2O ± HCl ± NaCl ± CaCl2 Fluids at 150 ºC and psat: Implications for Uranium Deposits
Abstract
:1. Introduction
2. Background
2.1. Proterozoic Basins and Uranium Deposits
2.2. Monazite Alteration and U Sources in Proterozoic Basins and Basements
2.3. Fluid Conditions for Monazite Alteration
3. Experimental
3.1. Scanning Electron Microscope Analyses
3.2. Starting Material
Concentration | SiO2 | P2O5 | CaO | Y2O3 | La2O3 | Ce2O3 | Pr2O3 | Nd2O3 | Sm2O3 | Gd2O3 | Dy2O3 | PbO | ThO2 | UO2 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µ (wt %) | 1.99 | 26.58 | 0.95 | 0.12 | 13.76 | 28.31 | 2.91 | 9.78 | 1.05 | 0.43 | 0.04 | 0.31 | 12.93 | 0.28 | 99.44 |
±1σ (wt %) | 0.13 | 0.30 | 0.08 | 0.07 | 0.41 | 0.48 | 0.35 | 0.39 | 0.28 | 0.27 | 0.08 | 0.17 | 0.75 | 0.09 | - |
3.3. Sample Preparation
3.4. Batch Experiments
4. Results
Experiment # | Cl (molal) | Na/(Na + Ca) | pH | Observations |
---|---|---|---|---|
EXP# 1 | 6 | 0 | 1 | no alteration |
EXP# 2 | 6 | 0 | 3 | no alteration |
EXP# 3 | 6 | 0 | 7 | no alteration |
EXP# 4 | 6 | 0.5 | 1 | etch pits and roughened surfaces |
EXP# 5 | 6 | 0.5 | 3 | etch pits |
EXP# 6 | 6 | 0.5 | 7 | no alteration |
EXP# 7 | 6 | 1 | 1 | etch pits and roughened surfaces |
EXP# 8 | 6 | 1 | 3 | no alteration |
EXP# 9 | 6 | 1 | 7 | no alteration |
EXP# 10 | H2O + HCl | 1 | no alteration | |
EXP# 11 | H2O + HCl | 3 | no alteration | |
EXP# 12 | H2O | 7 | no alteration |
Experiment # | Cl (molal) | Na/(Na + Ca) | pH | Observations |
---|---|---|---|---|
EXP# 13 | 6 | 0 | 1 | etch pits and roughened surfaces |
EXP# 14 | 6 | 0 | 3 | no alteration |
EXP# 15 | 6 | 0 | 7 | no alteration |
EXP# 16 | 6 | 0.5 | 1 | etch pits and roughened surfaces |
EXP# 17 | 6 | 0.5 | 3 | roughened surfaces |
EXP# 18 | 6 | 0.5 | 7 | no alteration |
EXP# 19 | 6 | 1 | 1 | etch pits and roughened surfaces |
EXP# 20 | 6 | 1 | 3 | etch pits |
EXP# 21 | 6 | 1 | 7 | no alteration |
EXP# 22 | H2O + HCl | 1 | etch pits and roughened surfaces | |
EXP# 23 | H2O + HCl | 3 | no alteration | |
EXP# 24 | H2O | 7 | no alteration |
4.1. One Month Experiments
4.2. Six Months Experiments
5. Discussion
5.1. Significance of Alteration Features
5.2. Influence of Starting Material
5.3. Influence of Temperature and Pressure
5.4. Influence of Experiment Duration
5.5. Influence of Fluid/Rock Ratio
5.6. Influence of pH and Fluid Composition
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Förster, H.J. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgerbirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. Am. Mineral. 1998, 83, 259–272. [Google Scholar]
- Boatner, L.A. Synthesis, structure, and properties of monazite, pretulite, and xenotime. Rev. Mineral. Geochem. 2002, 48, 87–121. [Google Scholar] [CrossRef]
- Spear, F.S.; Pyle, J.M. Apatite, monazite and xenotime in metamorphic rocks. Rev. Mineral. Geochem. 2002, 48, 293–335. [Google Scholar] [CrossRef]
- Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C. Radiation damage in zircon and monazite. Geochim. Cosmochim. Acta 1998, 62, 2509–2520. [Google Scholar]
- Seydoux-Guillaume, A.M.; Wirth, R.; Deutsch, A.; Schärer, U. Microstructure of 24-1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits. Geochim. Cosmochim. Acta 2004, 68, 2517–2527. [Google Scholar] [CrossRef]
- Roy, P.S. Heavy mineral beach placers in southeastern Australia; their nature and genesis. Econ. Geol. 1999, 94, 567–588. [Google Scholar] [CrossRef]
- Montel, J.M.; Razafimahatratra, D.; Ralison, B.; de Parseval, P.; Thibault, M.; Randranja, R. Monazite from mountain to ocean: A case study from Trolognaro (Fort-Dauphin), Madagascar. Eur. J. Mineral. 2011, 23, 745–757. [Google Scholar] [CrossRef]
- Parrish, R.R. U–Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 1990, 27, 1431–1450. [Google Scholar] [CrossRef]
- Harrison, T.M.; Catlos, E.J.; Montel, J.M. U-Th-Pb dating of phosphate minerals. Rev. Mineral. Geochem. 2002, 48, 524–558. [Google Scholar] [CrossRef]
- Catlos, E.J. Generalizations about monazite: Implications for geochronologic studies. Am. Mineral. 2013, 98, 819–832. [Google Scholar] [CrossRef]
- Ewing, R.C.; Wang, L. Phosphates as nuclear waste forms. Rev. Mineral. Geochem. 2002, 48, 673–699. [Google Scholar] [CrossRef]
- Montel, J.M.; Glorieux, B.; Seydoux-Guillaume, A.M.; Wirth, R. Synthesis and sintering of a monazite-brabantite solid solution ceramic for nuclear waste storage. J. Phys. Chem. Solids 2006, 67, 2489–2500. [Google Scholar] [CrossRef]
- Dacheux, N.; Clavier, N.; Podor, R. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability. Am. Mineral. 2013, 98, 833–847. [Google Scholar] [CrossRef]
- Poitrasson, F.; Chenery, S.; Bland, D.J. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet. Sci. Lett. 1996, 145, 79–96. [Google Scholar] [CrossRef]
- Poitrasson, F.; Chenery, S.; Shepherd, T.J. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics. Geochim. Cosmochim. Acta 2000, 64, 3283–3297. [Google Scholar] [CrossRef]
- Cuney, M.; Mathieu, R. Extreme light REE mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology 2000, 28, 743–746. [Google Scholar] [CrossRef]
- Hecht, L.; Cuney, M. Hydrothermal alteration of monazite in the Precambrian basement of the Athabasca basin: Implications for the genesis of unconformity related deposits. Miner. Deposita 2000, 35, 791–795. [Google Scholar] [CrossRef]
- Mathieu, R.; Zetterström, L.; Cuney, M.; Gauthier-Lafaye, F.; Hidaka, H. Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around Oklo-Okélobondo and Bangombé natural nuclear reaction zones (Gabon). Chem. Geol. 2001, 171, 147–171. [Google Scholar] [CrossRef]
- Read, D.; Andreoli, M.A.G.; Knoper, M.; Williams, C.T.; Jarvis, N. The degradation of monazite Implications for the mobility of rare-earth and actinide elements during low-temperature alteration. Eur. J. Mineral. 2002, 14, 487–498. [Google Scholar] [CrossRef]
- Harlov, D.E.; Wirth, R.; Hetherington, C.J. The relative stability of monazite and huttonite at 300–900 °C and 200–1000 MPa: Metasomatism and the propagation of metastable mineral phases. Am. Mineral. 2007, 92, 1652–1664. [Google Scholar] [CrossRef]
- Harlov, D.E.; Wirth, R.; Hetherington, C.J. Fluid-mediated partial alteration in monazite: The role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib. Mineral. Petr. 2011, 162, 329–348. [Google Scholar] [CrossRef]
- Rasmussen, B.; Muhling, J.R. Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa. Chem. Geol. 2009, 264, 311–327. [Google Scholar] [CrossRef]
- Budzyń, B.; Hetherington, C.J.; Williams, M.L.; Jercinovic, M.J.; Michalik, M. Fluid–mineral interactions and constraints on monazite alteration during metamorphism. Mineral. Mag. 2010, 74, 659–681. [Google Scholar] [CrossRef]
- Budzyń, B.; Harlov, D.E.; Williams, M.L.; Jercinovic, M.J. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am. Mineral. 2011, 96, 1547–1567. [Google Scholar] [CrossRef]
- Hetherington, C.J.; Harlov, D.E.; Budzyń, B. Experimental metasomatism of monazite and xenotime: Mineral stability, REE mobility and fluid composition. Miner. Petrol. 2010, 99, 165–184. [Google Scholar] [CrossRef]
- Harlov, D.E.; Hetherington, C.J. Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature. Am. Mineral. 2010, 95, 1105–1108. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Montel, J.M.; Bingen, B.; Bosse, V.; de Parseval, P.; Paquette, J.L.; Janots, E.; Wirth, R. Low-temperature alteration of monazite: Fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem. Geol. 2012, 330, 140–158. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Paquette, J.L.; Wiedenbeck, M.; Montel, J.M.; Heinrich, W. Experimental resetting of the U-Th-Pb systems in monazite. Chem. Geol. 2002, 191, 165–181. [Google Scholar] [CrossRef]
- Bosse, V.; Boulvais, P.; Gautier, P.; Tiepolo, M.; Ruffet, G.; Devidal, J.L.; Cherneva, Z.; Gerdjikov, I.; Paquette, J.L. Fluid-induced disturbance of the monazite Th-Pb chronometer: In situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem. Geol. 2009, 261, 286–302. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J.; Harlov, D.E.; Budzyń, B.; Hetherington, C.J. Resetting monazite ages during fluid-related alteration. Chem. Geol. 2011, 283, 218–225. [Google Scholar] [CrossRef]
- Didier, A.; Bosse, V.; Boulvais, P.; Bouloton, J.; Paquette, J.L.; Montel, J.M.; Devidal, J.L. Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: Textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib. Mineral. Petr. 2013, 165, 1051–1072. [Google Scholar] [CrossRef]
- Budzyń, B.; Konečný, P.; Kozub-Budzyń, G.A. Stability of monazite and disturbance of the Th-U-Pb system under experimental conditions of 250–350 °C and 200–400 MPa. Ann. Soc. Geol. Pol. 2015, 85, 405–424. [Google Scholar] [CrossRef]
- Pagel, M. The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Vosges, France. Mineral. Mag. 1982, 46, 151–163. [Google Scholar] [CrossRef]
- Negga, H.S.; Sheppard, S.M.F.; Rosenbaum, J.; Cuney, M. Late Hercynian U-vein mineralization in the Alps: Fluid-inclusions and C, O, H isotopic evidence for mixing between two externally derived fluids. Contrib. Mineral. Petr. 1986, 90, 52–62. [Google Scholar] [CrossRef]
- Pagel, M.; Pinte, G.; Rotach-Toulhoat, N. The rare earth elements in natural uranium oxides. Monogr. Ser. Miner. Depos. 1987, 27, 81–85. [Google Scholar]
- Cathelineau, M. Accessory mineral alteration in peraluminous granites at the hydrothermal stage: A review. Rendiconti-Societa Italiana di Mineralogia e Petrologia 1988, 43, 499–507. [Google Scholar]
- Cathelineau, M.; Poty, B. U-Th-REE mobility in granitic environments at the hydrothermal stage. In Metallogenesis of Uranium Deposits; International Atomic Energy Agency: Vienna, Austria, 1989; pp. 63–77. [Google Scholar]
- Mercadier, J.; Cuney, M.; Lach, P.; Boiron, M.C.; Bonhoure, J.; Richard, A.; Leisen, M.; Kister, P. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 2011, 23, 264–269. [Google Scholar] [CrossRef]
- Cuney, M.; Brouand, M.; Hecht, L.; Bruneton, P. Contrasted Rare Earth mobility during hydrothermal alteration in the Jabiluka uranium deposit (Alligator Rivers district, Northern Territory, Australia). In Proceedings of the GAC-MAC Annual Meeting, Calgary, AB, Canada, 29 May–1 June 2000.
- Mathieu, R.; Cuney, M.; Cathelineau, M. Geochemistry of paleofluids circulation in the Franceville basin and around Oklo natural reaction zones (Gabon). J. Geochem. Explor. 2000, 69–70, 245–249. [Google Scholar] [CrossRef]
- Jefferson, C.W.; Thomas, D.J.; Gandhi, S.S.; Ramaekers, P.; Delaney, G.; Brisbin, D.; Cutts, C.; Portella, P.; Olson, R.A. Unconformity associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. Geol. Surv. Can. Bull. 2007, 588, 23–67. [Google Scholar]
- Kyser, T.K.; Cuney, M. Unconformity-related uranium deposits. In Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration; Cuney, M., Kyser, K., Eds.; Mineralogical Association of Canada Short Course Series: Quebec, QC, Canada, 2008; Volume 39, pp. 161–219. [Google Scholar]
- Hoeve, J.; Sibbald, T.I.I. On the genesis of the Rabbit Lake and other unconformity-type uranium deposits in Northern Saskatchewan, Canada. Econ. Geol. 1978, 73, 1450–1473. [Google Scholar] [CrossRef]
- Kotzer, T.G.; Kyser, T.K. Petrogenesis of the Proterozoic Athabasca Basin, Northern Saskatchewan, Canada, and its relation to diagenesis, hydrothemal uranium mineralization and paleohydrogeology. Chem. Geol. 1995, 120, 45–89. [Google Scholar] [CrossRef]
- Derome, D.; Cathelineau, M.; Cuney, M.; Fabre, C.; Lhomme, T. Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: A Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Econ. Geol. 2005, 100, 1529–1545. [Google Scholar] [CrossRef]
- Boiron, M.C.; Cathelineau, M.; Richard, A. Fluid flows and metal deposition near basement/cover unconformity: Lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids 2010, 10, 270–292. [Google Scholar] [CrossRef]
- Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Cuney, M.; Boiron, M.C.; Cathelineau, M. Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nat. Geosci. 2012, 5, 142–146. [Google Scholar] [CrossRef]
- Renac, C.; Kyser, T.K.; Durocher, K.; Dreaver, G.; O’Connor, T. Comparison of diagenetic fluids in the Proterozoic Thelon and Athabasca Basins, Canada: Implications for protracted fluid histories in stable intracratonic basins. Can. J. Earth Sci. 2002, 39, 113–132. [Google Scholar] [CrossRef]
- Beyer, S.R.; Hiatt, E.E.; Kyser, K.; Dalrymple, R.W.; Pettman, C. Hydrogeology, sequence stratigraphy and diagenesis in the Paleoproterozoic western Thelon Basin: Influences on unconformity-related uranium mineralization. Precambrian Res. 2011, 187, 293–312. [Google Scholar] [CrossRef]
- Derome, D.; Cuney, M.; Cathelineau, M.; Dubessy, J.; Bruneton, P. A detailed fluid inclusion study in silicified breccias from the Kombolgie sandstones (Northern Territory, Australia): Application to the genesis of Middle-Proterozoic unconformity-type uranium deposits. J. Geochem. Explor. 2003, 80, 259–275. [Google Scholar] [CrossRef]
- Derome, D.; Cathelineau, M.; Fabre, C.; Boiron, M.C.; Banks, D.A.; Lhomme, T.; Cuney, M. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: Application to mid-Proterozoic evaporitic Na–Ca brines (Alligator Rivers Uranium Field, northern territories Australia). Chem. Geol. 2007, 237, 240–254. [Google Scholar] [CrossRef]
- Polito, P.A.; Kyser, T.K.; Alexandre, P.; Hiatt, E.E.; Stanley, C.R. Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles. Aust. J. Earth Sci. 2011, 58, 453–474. [Google Scholar] [CrossRef]
- Fayek, M.; Kyser, T.K. Characterization of multiple fluid-flow events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan. Can. Mineral. 1997, 35, 627–658. [Google Scholar]
- Parslow, G.R.; Thomas, D.J. Uranium occurrences in the Cree Lake zone, Saskatchewan, Canada. Mineral. Mag. 1982, 46, 165–173. [Google Scholar] [CrossRef]
- McKechnie, C.L.; Annesley, I.R.; Ansdell, K.M. Radioactive abyssal granitic pegmatites and leucogranites in the Wollaston Domain, northern Saskatchewan, Canada: Mineral compositions and conditions of emplacement in the Fraser Lakes area. Can. Mineral. 2012, 50, 1637–1667. [Google Scholar] [CrossRef]
- Mercadier, J.; Annesley, I.R.; McKechnie, C.L.; Bogdan, T.S.; Creighton, S. Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson Orogen (Saskatchewan, Canada): A uranium source for unconformity-related uranium deposits? Econ. Geol. 2013, 108, 1037–1065. [Google Scholar] [CrossRef]
- Gaboreau, S.; Cuney, M.; Quirt, D.; Beaufort, D.; Patrier, P.; Mathieu, R. Aluminium phosphate sulfate minerals associated with Proterozoic unconformity-type deposits in the Athabasca Basin, Canada. Am. Mineral. 2007, 92, 267–280. [Google Scholar] [CrossRef]
- Gaboreau, S.; Beaufort, D.; Vieillard, P.; Patrier, P.; Bruneton, P. Aluminum phosphate–sulfate minerals associated with Proterozoic unconformity-type uranium deposits in the East Alligator River Uranium Field, Northern Territories, Australia. Can. Mineral. 2005, 43, 813–827. [Google Scholar] [CrossRef]
- Pagel, M. Détermination des conditions physico-chimiques de la silicification diagénétique des grès Athabasca (Canada) au moyen des inclusions fluides. CR. Acad. Sci. Paris 1975, 280, 2301–2304. (In French) [Google Scholar]
- Mercadier, J.; Richard, A.; Boiron, M.C.; Cathelineau, M.; Cuney, M. Brine migration in the basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposit, Canada). Lithos 2010, 115, 121–136. [Google Scholar] [CrossRef]
- Richard, A.; Pettke, T.; Cathelineau, M.; Boiron, M.C.; Mercadier, J.; Cuney, M.; Derome, D. Brine-rock interaction in the Athabasca basement (McArthur River U deposit, Canada): Consequences for fluid chemistry and uranium uptake. Terra Nova 2010, 22, 303–308. [Google Scholar] [CrossRef]
- Richard, A.; Cauzid, J.; Cathelineau, M.; Boiron, M.C.; Mercadier, J.; Cuney, M. Synchrotron-XRF and XANES investigation of uranium speciation and element distribution in fluid inclusions from unconformity-related uranium deposits. Geofluids 2013, 13, 101–111. [Google Scholar] [CrossRef]
- Richard, A.; Cathelineau, M.; Boiron, M.C.; Mercadier, J.; Banks, D.A.; Cuney, M. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada). Miner. Deposita 2015, in press. [Google Scholar] [CrossRef]
- Richard, A.; Banks, D.A.; Mercadier, J.; Boiron, M.C.; Cuney, M.; Cathelineau, M. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl study of fluid inclusions. Geochim. Cosmochim. Acta 2011, 75, 2792–2810. [Google Scholar] [CrossRef]
- Richard, A.; Boulvais, P.; Mercadier, J.; Boiron, M.C.; Cathelineau, M.; Cuney, M.; France-Lanord, C. From evaporated seawater to uranium-mineralizing brines: Isotopic and trace element study of quartz–dolomite veins in the Athabasca system. Geochim. Cosmochim. Acta 2013, 113, 38–59. [Google Scholar] [CrossRef]
- Richard, A.; Kendrick, M.A.; Cathelineau, M. Noble gases (Ar, Kr, Xe) and halogens (Cl, Br, I) in fluid inclusions from the Athabasca Basin (Canada): Implications for unconformity-related U deposits. Precambrian Res. 2014, 247, 110–125. [Google Scholar] [CrossRef]
- Leisen, M.; Boiron, M.C.; Richard, A.; Dubessy, J. Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis: Implications for the origin of salinity in crustal fluids. Chem. Geol. 2012, 330, 197–206. [Google Scholar] [CrossRef]
- Mercadier, J.; Richard, A.; Cathelineau, M. Boron- and magnesium-rich marine brines at the origin of giant unconformity-related uranium deposits: δ11B evidence from Mg-tourmalines. Geology 2012, 40, 231–234. [Google Scholar] [CrossRef]
- De la Roche, H. Les indices de monazite du col de Manangotry. Etude d’ensemble provisoire. Arch. Serv. Géol. Madagasikara 1956, A1082. (In French) [Google Scholar]
- Razafimahatratra, D. La Monazite des Chaînes Anosyennes: Des Gisements en Place aux Sables de Plages à Ilménite-Zircon-Monazite. Ph.D. Thesis, Université d’Antananarivo, Antananarivo, Madagascar, 2008. [Google Scholar]
- Oelkers, E.H.; Poitrasson, F. An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. Chem. Geol. 2002, 191, 73–87. [Google Scholar] [CrossRef]
- Tropper, P.; Manning, C.E.; Harlov, D.E. Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800 °C and 1 GPa: Implications for REE and Y transport during high-grade metamorphism. Chem. Geol. 2011, 282, 58–66. [Google Scholar] [CrossRef]
- Gysi, A.P.; Williams-Jones, A.E.; Harlov, D. The solubility of xenotime-(Y) and other HREE phosphates (DyPO4, ErPO4 and YbPO4) in aqueous solutions from 100 to 250° C and psat. Chem. Geol. 2015, 401, 83–95. [Google Scholar] [CrossRef]
- Eglinger, A.; Tarantola, A.; Durand, C.; Ferraina, C.; Vanderhaeghe, O.; André-Mayer, A.S.; Paquette, J.L.; Deloule, E. Uranium mobilization by fluids associated with Ca–Na metasomatism: A P–T–t record of fluid–rock interactions during Pan-African metamorphism (Western Zambian Copperbelt). Chem. Geol. 2014, 386, 218–237. [Google Scholar] [CrossRef]
- Eglinger, A.; Ferraina, C.; Tarantola, A.; André-Mayer, A.S.; Vanderhaeghe, O.; Boiron, M.C.; Dubessy, J.; Richard, A.; Brouand, M. Hypersaline fluids generated by high-grade metamorphism of evaporites: Fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt. Contrib. Mineral. Petr. 2014, 167. [Google Scholar] [CrossRef]
- Pourtier, E.; Devidal, J.L.; Gibert, F. Solubility measurements of synthetic neodymium monazite as a function of temperature at 2kbars, and aqueous neodymium speciation in equilibrium with monazite. Geochim. Cosmochim. Acta 2010, 74, 1872–1891. [Google Scholar] [CrossRef]
- Raffensperger, J.P.; Garven, G. The formation of unconformity-type uranium ore deposits 2. Coupled hydrochemical modeling. Am. J. Sci. 1995, 295, 639–696. [Google Scholar] [CrossRef]
- Dargent, M.; Truche, L.; Dubessy, J.; Bessaque, G.; Marmier, H. Reduction kinetics of aqueous U (VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits. Geochim. Cosmochim. Acta 2015, 167, 11–26. [Google Scholar] [CrossRef]
- Lorilleux, G.; Cuney, M.; Jébrak, M.; Rippert, J.C.; Portella, P. Chemical brecciation processes in the Sue unconformity-type uranium deposits, Eastern Athabasca Basin (Canada). J. Geochem. Explor. 2003, 80, 241–258. [Google Scholar] [CrossRef]
- Davisson, M.L.; Criss, R.E. Na-Ca-Cl relations in basinal fluids. Geochim. Cosmochim. Acta 1996, 60, 2743–2752. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, A.; Montel, J.-M.; Leborgne, R.; Peiffert, C.; Cuney, M.; Cathelineau, M. Monazite Alteration in H2O ± HCl ± NaCl ± CaCl2 Fluids at 150 ºC and psat: Implications for Uranium Deposits. Minerals 2015, 5, 693-706. https://doi.org/10.3390/min5040518
Richard A, Montel J-M, Leborgne R, Peiffert C, Cuney M, Cathelineau M. Monazite Alteration in H2O ± HCl ± NaCl ± CaCl2 Fluids at 150 ºC and psat: Implications for Uranium Deposits. Minerals. 2015; 5(4):693-706. https://doi.org/10.3390/min5040518
Chicago/Turabian StyleRichard, Antonin, Jean-Marc Montel, Romain Leborgne, Chantal Peiffert, Michel Cuney, and Michel Cathelineau. 2015. "Monazite Alteration in H2O ± HCl ± NaCl ± CaCl2 Fluids at 150 ºC and psat: Implications for Uranium Deposits" Minerals 5, no. 4: 693-706. https://doi.org/10.3390/min5040518
APA StyleRichard, A., Montel, J.-M., Leborgne, R., Peiffert, C., Cuney, M., & Cathelineau, M. (2015). Monazite Alteration in H2O ± HCl ± NaCl ± CaCl2 Fluids at 150 ºC and psat: Implications for Uranium Deposits. Minerals, 5(4), 693-706. https://doi.org/10.3390/min5040518