SIMS Dating of Granite-Hosted Uranium Deposits in the Xiazhuang Ore Field and Its Geological Significance
Abstract
1. Introduction
2. Basis for the Applicability of Reference Material Gbw04420 to Micro-Area In Situ U-Pb Isotope Dating in Sandstone-Hosted Uranium Deposits
2.1. GBW04420: A Certified Uranium-Lead Isotopic Age Reference Material Jointly Developed by Six Domestic Institutions
2.2. Validation of GBW04420 as a Reliable Uranium Mineral Dating Standard
2.3. Current Study: Validation of GBW04420 for Microscale U-Pb Dating
2.3.1. Methodology and Result
2.3.2. Analysis of Age Uniformity and Reasonableness
3. Geological Setting
4. Test Methods and Procedures
4.1. Technical Methods and Instrument Performance
4.2. Preparation Before Sample Testing
5. Test Results
5.1. Age Results
5.1.1. Xianshi Ore Deposit
5.1.2. Zhaixia Ore Deposit
5.1.3. Xiwang Ore Deposit
5.2. Micro-Area In Situ Uranium Mineral Rare Earth Element Analysis
6. Discussion
6.1. In Situ Microscale Geochronology of Uranium Mineralization in the Xiazhuang Ore Field
6.2. Coupling Characteristics Between Mineralization and Tectonic Dynamics
6.2.1. Tectonic Evolution Background
6.2.2. Metallogenesis-Regional Tectonic Event Coupling Mechanism: Regional Magmatic-Hydrothermal Activity
6.3. Evidence from Uranium Sources and REE Characteristics
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SIMS | Secondary ion mass spectrometry |
EPMA | Electron probe microanalysis |
LA-(MC)-ICP-MS | Laser ablation-(multi-collector) inductively coupled plasma mass spectrometry |
LA-ICP-MS | Laser ablation inductively coupled plasma mass spectrometry |
fs-LA-ICP-MS | Femtosecond laser ablation inductively coupled plasma mass spectrometry |
REE | Rare earth element |
ns-LA-MC-ICP-MS | Nanosecond laser ablation-(multi-collector) inductively coupled plasma mass spectrometry |
LREE | Light rare earth element |
HREE | Heavy rare earth element |
References
- Suzuki, K.; Adachi, M.; Tanaka, T. Middle Precambrian Provenance of Jurassic Sandstone in the Mino Terrane, Central Japan: Th-U-Total Pb Evidence from an Electron Microprobe Monazite Study. Sediment. Geol. 1991, 75, 141–147. [Google Scholar] [CrossRef]
- Zhou, J.X.; Chen, Z.Y.; Rui, Z.Y. Th-U-TPb Chemical Dating of Monazite by Electron Probe. Rock Miner. Anal. 2002, 21, 241–246. [Google Scholar]
- Chen, Q.; Chen, N.S.; Wang, Q.Y.; Sun, M.; Wang, X.Y.; Li, X.Y.; Shu, G.M. EPMA Chemical Dating of Monazite from the Qinling Group in the Qinling Orogen: Evidence for Late Pan-African Metamorphism. Chin. Sci. Bull. 2006, 51, 2512–2516. [Google Scholar]
- Chen, N.S.; Sun, M.; Wang, Q.Y.; Zhao, G.C.; Chen, Q.; Shu, G.M. EPMA Chemical Ages of Monazite from the Central Kunlun Belt in East Kunlun Orogen: Records of Polyphase Tectonometamorphic Events. Chin. Sci. Bull. 2007, 52, 1297–1306. [Google Scholar]
- Förster, H.J. The Chemical Composition of Uraninite in Variscan Granites of the Erzgebirge, Germany. Mineral. Mag. 1999, 62, 239–252. [Google Scholar] [CrossRef]
- Kempe, U. Precise Electron Microprobe Age Determination in Altered Uraninite: Consequences on the Intrusion Age and the Metallogenic Significance of the Kirchberg Granite (Erzgebirge, Germany). Contrib. Mineral. Petrol. 2003, 145, 107–118. [Google Scholar] [CrossRef]
- Hurtado, J.M.; Chatterjee, N.; Ramezani, J. Electron Microprobe Chemical Dating of Uraninite as a Reconnaissance Tool for Leucogranite Geochronology. Nat. Preced. 2007. [Google Scholar] [CrossRef]
- Guo, G.L.; Zhang, Z.S.; Liu, X.D.; Feng, Z.S.; Lai, D.R. Chemical Dating of Uraninite from the Guangshigou Uranium Deposit by Electron Microprobe Analysis. J. East China Univ. Technol. (Nat. Sci.) 2012, 35, 309–314. [Google Scholar]
- Ge, X.K.; Qin, M.K.; Fan, G. Application Progress of Electron Microprobe Chemical Dating Method for Uraninite/Pitchblende Geochronology. World Nucl. Geosci. 2011, 28, 55–62. [Google Scholar]
- Gray, A.L. Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source-Mass Spectrometry. Analyst 1985, 110, 551–556. [Google Scholar] [CrossRef]
- Günther, D.; Hattendorf, B. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. TrAC Trends Anal. Chem. 2005, 24, 255–265. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Liu, X.; Su, L.; Sun, W.; Huang, H.; Yi, K. Accuracy of LA-ICP-MS Zircon U-Pb Age Determination: An Inter-Laboratory Comparison. Sci. China Earth Sci. 2015, 58, 1722–1730. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Zircon Genetic Mineralogy and Its Constraints on U-Pb Age Interpretation. Chin. Sci. Bull. 2004, 49, 1589–1604. [Google Scholar] [CrossRef]
- Liu, X.M.; Gao, S.; Diwu, C.R.; Yuan, H.L.; Hu, Z.C. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Single Zircon Grains Using 20 μm Micro-Spot LA-ICP-MS. Chin. Sci. Bull. 2007, 52, 228–235. [Google Scholar]
- Yuan, H.L.; Gao, S.; Dai, M.N.; Zong, C.L.; Günther, D.; Fontaine, G.H.; Liu, X.M.; Diwu, C.R. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser Ablation Quadrupole and Multiple Collector ICP-MS. Chem. Geol. 2008, 247, 100–117. [Google Scholar] [CrossRef]
- Sun, J.F.; Yang, J.H.; Wu, F.Y. In Situ U-Pb Dating of Titanite by LA-ICP-MS. Chin. Sci. Bull. 2012, 57, 1591–1615. [Google Scholar] [CrossRef]
- Yuan, H.L.; Chen, K.Y.; Bao, Z.A.; Zong, C.L.; Dai, M.N.; Fan, C.; Yin, C. Precise Determination of Lead Isotopic Compositions in Geological Samples by Femtosecond Laser Ablation Multi-Collector ICP-MS. Chin. Sci. Bull. 2013, 58, 1511–1520. [Google Scholar] [CrossRef]
- Compston, W.; Williams, I.S.; Meyer, C. U-Pb Geochronology of Zircons from Lunar Breccia 73217 Using a Sensitive High Mass-Resolution Ion Microprobe. J. Geophys. Res. 1984, 89, B525–B534. [Google Scholar] [CrossRef]
- Ireland, T.R. Ion Microprobe Mass Spectrometry: Techniques and Applications in Cosmochemistry, Geochemistry and Geochronology. In Advances in Analytical Geochemistry; JAI Press: Greenwich, CT, USA, 1995; Volume 2, pp. 1–118. [Google Scholar]
- Fayek, M.; Harrison, T.M.; Ewing, R.C. O and Pb Isotopic Analyses of Uranium Minerals by Ion Microprobe and U–Pb Ages from the Cigar Lake Deposit. Chem. Geol. 2002, 185, 205–225. [Google Scholar] [CrossRef]
- Chipley, D.; Polito, P.A.; Kyser, T.K. Measurement of U-Pb Ages of Uraninite and Davidite by Laser Ablation-HR-ICP-MS. Am. Mineral. 2007, 92, 1925–1935. [Google Scholar] [CrossRef]
- Zou, D.F.; Li, F.L.; Zhang, S.; Huang, B.; Zong, K.Q. Timing of No. 335 Ore Deposit in Xiazhuang Uranium Orefield, Northern Guangdong Province: Evidence from LA-ICP-MS U-Pb Dating of Pitchblende. Min. Depos. 2011, 30, 912–922. [Google Scholar]
- Luo, J.C.; Qi, Y.Q.; Wang, L.X.; Chen, Y.W.; Tian, J.J.; Shi, S.H. Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China: A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization. Acta Petrol. Sin. 2019, 35, 2660–2678. [Google Scholar]
- Song, Z.S. Metallogenic Chronology and Geological Significance of the Hangjinqi Sandstone-Type Uranium Deposit, Ordos Basin. Ph.D. Thesis, Northwest University, Xi’an, China, 2013. [Google Scholar]
- Xiao, Z.B.; Zhang, R.; Ye, L.J.; Tu, J.; Geng, J.; Guo, H.; Xu, Y.; Zhou, H.; Li, H. In Situ U-Pb Dating of Pitchblende (GBW04420). Geol. Surv. Res. 2020, 43, 1–4. [Google Scholar]
- Sylvester, P.J. Matrix Effects in Laser Ablation ICP-MS. In Laser Ablation-ICP-MS in the Earth Sciences; Sylvester, P.J., Ed.; Mineralogical Association of Canada: Vancouver, BC, Canada, 2008; pp. 67–78. [Google Scholar]
- Hu, Z.C.; Liu, Y.S.; Chen, L.; Zhou, L.; Li, M.; Zong, K.Q.; Zhu, L.Y.; Gao, S. Contrasting Matrix-Induced Elemental Fractionation in NIST SRM and Rock Glasses During Laser Ablation ICP-MS Analysis at High Spatial Resolution. J. Anal. At. Spectrom. 2011, 26, 425–430. [Google Scholar] [CrossRef]
- Kuhn, H.R.; Günther, D. Laser Ablation-ICP-MS: Particle Size Dependent Elemental Composition Studies on Filter-Collected and Online Measured Aerosols from Glass. J. Anal. At. Spectrom. 2004, 19, 1158–1164. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Li, M.; Gao, S. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chin. Sci. Bull. 2013, 58, 3753–3769. [Google Scholar] [CrossRef]
- Zong, K.Q.; Chen, J.Y.; Hu, Z.C.; Liu, Y.S.; Li, M.; Fan, H.H.; Meng, Y.N. In Situ Micro Area U-Pb Dating of Uranium Ore Using fs-LA-ICP-MS. Sci. China Earth Sci. 2015, 45, 1304–1315. [Google Scholar]
- Zhao, P.Y.; Li, X.B.; Ying, J.L.; Li, J.Y.; Xu, Z.Y.; Hou, Y.X. Uranium-Lead Isotopic Age Reference Material of Pitchblende; Beijing Research Institute of Uranium Geology: Beijing, China, 1995. [Google Scholar]
- Zhang, W.Y. In Situ Micro-Scale U-Pb Dating of Sandstone-Type Uranium Deposits by SIMS and fs-LA-ICP-MS: Case Studies from Ordos and Yili Basins. Ph.D. Thesis, Northwest University, Xi’an, China, 2019. [Google Scholar]
- Li, Q. Geochronology and Genetic Significance of the Qianjiadian U-Re Deposit in Songliao Basin. Ph.D. Thesis, Northwest University, Xi’an, China, 2023. [Google Scholar]
- He, D.B. A Comparative Study on the Ore-Forming Mechanisms of Different Types of Uranium Deposits in the Xiazhuang Ore Field of Northern Guangdong Province. Ph.D. Thesis, Beijing Research Institute of Uranium Geology, Beijing, China, 2017. [Google Scholar]
- Zheng, X. In Situ Microzonation U-Pb Chronology of Granite-Type Uranium Ores in the Xiazhuang Mine Field. Ph.D. Thesis, Northwest University, Xi’an, China, 2019. [Google Scholar]
- Wang, J.; Zhang, H.R.; Lai, Z.X.; Yang, K.G. Fault Controls on Uranium Mineralization and Metallogenic Model of the Xiazhuang Ore Field, Northern Guangdong. J. East China Univ. Technol. (Nat. Sci. Ed.) 2014, 37, 136–142. [Google Scholar]
- Xu, X.S.; Deng, P.; O’Reilly, S.Y.; Griffin, W.L.; Zhou, X.M.; Tan, Z.Z. LA-ICP-MS U-Pb Dating of Single Zircon from the Guidong Complex, South China: Implications for Petrogenesis. Chin. Sci. Bull. 2003, 48, 1328–1334. [Google Scholar] [CrossRef]
- Ling, H.F.; Shen, W.Z.; Deng, P.; Jiang, S.Y.; Gao, J.F.; Ye, H.M.; Pu, W.; Tan, Z.Z. Formation Age, Geochemical Characteristics and Petrogenesis of the Sundong Granite in Northern Guangdong Province. Acta Petrol. Sin. 2004, 20, 413–424. [Google Scholar]
- Ling, H.F.; Shen, W.Z.; Deng, P.; Jiang, S.Y.; Jiang, Y.H.; Qiu, J.S.; Huang, G.L.; Ye, H.M.; Tan, Z.Z. Geochemical Characteristics and Petrogenesis of the Maofeng Granite Pluton in Northern Guangdong Province. Acta Petrol. Sin. 2005, 21, 677–687. [Google Scholar]
- Wu, J.; Wu, J.H.; Liu, X.D.; Wang, K.X.; Liu, S. Zircon SHRIMP U-Pb Ages and Geological Significance of the Late-Stage Small Granitic Body in the Middle-Eastern Part of Guidong Complex Massif. Geol. J. China Univ. 2024, 30, 56–71. [Google Scholar]
- Feng, Z.J.; Lai, Z.X.; Mo, J.H.; Hu, F.; Yang, W. A Study of Metallogenic Mechanism of “Intersection-Type” Uranium Deposit and Exploration Strategy in the Xiazhuang Orefield. Min. Depos. 2016, 35, 1047–1061. [Google Scholar]
- Pei, L.N.; Guo, C.Y.; Zou, M.L. EPMA Chemical Age of Pitchblende and Its Geological Significance in Xianshi Uranium Deposit of Xiazhuang Ore Field, Northern Guangdong, China. J. Earth Sci. Environ. 2021, 43, 814–828. [Google Scholar]
- Li, Z.Y. Guidong Magmatic Rocks and Uranium Mineralization in the Nanling Range; Geological Publishing House: Beijing, China, 2010. [Google Scholar]
- Deng, P.; Shen, W.Z.; Ling, H.F.; Ye, H.M.; Wang, X.C.; Pu, W.; Tan, Z.Z. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica 2003, 6, 520–528. [Google Scholar]
- Wu, L.Q.; Tan, Z.Z.; Liu, R.Z.; Huang, G.L. Discussion on Uranium Ore-Formation Age in Xiazhuang Ore Field, Northern Guangdong. Uranium Geol. 2003, 1, 28–33. [Google Scholar]
- Vermeesch, P. Isoplot R: A Free and Open Toolbox for Geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Shang, P.Q.; Hu, R.Z.; Bi, X.W.; Liu, L. Discussions on Several Issues of Hydrothermal Uranium Mineralization in South China. Bull. Mineral. Petrol. Geochem. 2007, 26, 218–227. [Google Scholar]
- Zhang, W.L. Types, Characteristics and Spatial Distribution of Uranium Deposits in South China. Mineral. Resour. Geol. 2011, 25, 291–298. [Google Scholar]
- Luo, J.C.; Hu, R.Z.; Shi, S.H. Timing of uranium mineralization and geological implications of Shazijiang Granite-Hosted uranium deposit in Guangxi, South China: New constraint from chemical U-Pb age. J. Earth Sci. 2015, 26, 911–919. [Google Scholar] [CrossRef]
- He, D.B.; Fan, H.H.; Wang, Y. Metallogenic Model in Xiazhuang Uranium Ore Field. Uranium Geol. 2016, 32, 152–158. [Google Scholar]
- Liu, C.D.; Li, Z.W.; Liu, J.H.; Liang, L. Research Progress in Mantle Fluids Involved Uranium Metallization: A Case Study of Granite-Type Uranium Deposit Cluster Area, Northern Guangdong. Uranium Geol. 2016, 32, 193–199. [Google Scholar]
- Chung, S.L.; Wang, K.L.; Crawford, A.J.; Kamenetsky, V.S.; Chen, C.H.; Lan, C.Y.; Chen, C.H. High-Mg potassic rocks from Taiwan:Implications for the genesiso for ogenic potassic lavas. Lithos 2001, 59, 153–170. [Google Scholar] [CrossRef]
- Miller, C.; Schuster, R.; Klotzli, U.; Frank, W.; Purtscheller, F. Postcollisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. J. Petrol. 1999, 40, 1399–1424. [Google Scholar] [CrossRef]
- Li, X.H.; Hu, R.Z.; Rao, B. Geochronology and Geochemistry of Cretaceous Mafic Dikes in Northern Guangdong. Geochimica 1997, 26, 14–31. [Google Scholar]
- Rosenbaum, J.M.; Zindler, A.; Rubenstone, J.L. Mantle Fluids: Evidence from Fluid Inclusions. Geochim. Cosmochim. Acta 1996, 60, 3229–3252. [Google Scholar] [CrossRef]
Sample Number | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 208Pb/232Th | 1σ | 207Pb/235U age | Age Error (Ma) | 206Pb/238Uage | Age Error (Ma) | Variance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GBW04420-001 | 0.04674 | 0.00047 | 0.07411 | 0.00075 | 0.0115 | 0.00012 | 93.28062 | 20.42509 | 72.59 | ±1.38 | 73.71 | ±1.49 | 3.50 |
GBW04420-003 | 0.04714 | 0.00047 | 0.07214 | 0.00073 | 0.0111 | 0.00011 | 29.24225 | 6.15272 | 70.73 | ±1.35 | 71.16 | ±1.37 | 0.08 |
GBW04420-007 | 0.04791 | 0.00048 | 0.06661 | 0.00068 | 0.01008 | 0.0001 | 6.64627 | 0.35004 | 65.48 | ±1.26 | 64.65 | ±1.25 | 9.22 |
GBW04420-008 | 0.04711 | 0.00047 | 0.08032 | 0.00082 | 0.01235 | 0.00013 | 13.649 | 1.31843 | 78.45 | ±1.51 | 79.12 | ±1.62 | 11.09 |
GBW04420-009 | 0.04782 | 0.00048 | 0.07189 | 0.00074 | 0.01089 | 0.00011 | 18.8446 | 2.1794 | 70.49 | ±1.37 | 69.82 | ±1.37 | 1.97 |
GBW04420-010 | 0.04729 | 0.00047 | 0.07738 | 0.0008 | 0.01185 | 0.00012 | 27.51763 | 2.61259 | 75.68 | ±1.47 | 75.94 | ±1.49 | 6.63 |
GBW04420-011 | 0.04644 | 0.00046 | 0.073 | 0.00075 | 0.01139 | 0.00012 | 16.77671 | 2.7532 | 71.54 | ±1.39 | 73 | ±1.49 | 2.50 |
GBW04420-012 | 0.04773 | 0.00047 | 0.06354 | 0.00066 | 0.00964 | 0.0001 | 24.81961 | 1.48822 | 62.55 | ±1.23 | 61.84 | ±1.25 | 13.17 |
GBW04420-013 | 0.04807 | 0.00048 | 0.07447 | 0.00078 | 0.01122 | 0.00012 | 20.00116 | 2.02329 | 72.93 | ±1.44 | 71.92 | ±1.49 | 0.98 |
GBW04420-014 | 0.04679 | 0.00046 | 0.06937 | 0.00072 | 0.01074 | 0.00011 | 30.43513 | 2.66617 | 68.1 | ±1.33 | 68.86 | ±1.37 | 3.31 |
GBW04420-015 | 0.04638 | 0.00046 | 0.07758 | 0.0008 | 0.01211 | 0.00013 | 65.30703 | 16.40085 | 75.87 | ±1.47 | 77.59 | ±1.62 | 8.94 |
GBW04420-016 | 0.04694 | 0.00046 | 0.0745 | 0.00077 | 0.01149 | 0.00012 | 128.10147 | 24.73144 | 72.96 | ±1.42 | 73.64 | ±1.49 | 3.40 |
GBW04420-017 | 0.04771 | 0.00047 | 0.06226 | 0.00065 | 0.00945 | 0.0001 | 161.02843 | 60.03397 | 61.33 | ±1.21 | 60.63 | ±1.25 | 14.87 |
GBW04420-018 | 0.04695 | 0.00046 | 0.07474 | 0.00078 | 0.01153 | 0.00012 | 82.06559 | 12.92677 | 73.19 | ±1.44 | 73.9 | ±1.49 | 3.76 |
GBW04420-022 | 0.0469 | 0.00046 | 0.07372 | 0.00077 | 0.01138 | 0.00012 | 5.88539 | 0.29386 | 72.22 | ±1.42 | 72.94 | ±1.49 | 2.42 |
GBW04420-023 | 0.04561 | 0.00044 | 0.06831 | 0.00072 | 0.01085 | 0.00012 | 94.0015 | 29.81958 | 67.09 | ±1.34 | 69.56 | ±1.49 | 2.33 |
GBW04420-026 | 0.04589 | 0.00044 | 0.07669 | 0.00081 | 0.01211 | 0.00013 | 86.75533 | 25.92044 | 75.03 | ±1.49 | 77.59 | ±1.62 | 8.94 |
GBW04420-025 | 0.04581 | 0.00045 | 0.06631 | 0.00071 | 0.01049 | 0.00012 | 34.29167 | 7.6253 | 65.19 | ±1.32 | 67.27 | ±1.50 | 5.55 |
GBW04420-030 | 0.04446 | 0.00043 | 0.06372 | 0.00068 | 0.01039 | 0.00012 | 26.44255 | 3.57038 | 62.72 | ±1.27 | 66.63 | ±1.50 | 6.44 |
GBW04420-002 | 0.0472 | 0.00048 | 0.06277 | 0.00064 | 0.00965 | 0.0001 | 8.04932 | 0.56565 | 61.82 | ±1.19 | 61.9 | ±1.25 | 13.09 |
GBW04420-019 | 0.04368 | 0.00044 | 0.07172 | 0.00076 | 0.01189 | 0.00013 | 19.65723 | 4.83027 | 70.33 | ±1.41 | 76.19 | ±1.62 | 6.98 |
GBW04420-021 | 0.04493 | 0.00044 | 0.07168 | 0.00076 | 0.01155 | 0.00012 | 86.79568 | 37.20795 | 70.29 | ±1.41 | 74.02 | ±1.49 | 3.93 |
GBW04420-024 | 0.04596 | 0.00044 | 0.07718 | 0.00081 | 0.01216 | 0.00013 | 7.46836 | 1.00378 | 75.49 | ±1.49 | 77.91 | ±1.62 | 9.39 |
GBW04420-027 | 0.04584 | 0.00044 | 0.07676 | 0.00081 | 0.01213 | 0.00013 | 8.63204 | 0.49288 | 75.09 | ±1.49 | 77.72 | ±1.62 | 9.13 |
GBW04420-028 | 0.04709 | 0.00046 | 0.06389 | 0.00068 | 0.00983 | 0.00011 | 25.35171 | 2.03068 | 62.88 | ±1.27 | 63.05 | ±1.37 | 11.47 |
Mean Deviation | 6.52 |
Sampling Location | Sample | |
---|---|---|
Xianshi mineral deposit | High-grade ore, 510 level | 510-1 |
High-grade ore, 511 level | 510-2 | |
High-grade ore, 512 level | 510-3 | |
High-grade ore, 513 level | 510-4 | |
High-grade ore, 514 level | 510-5 | |
High-grade ore, 515 level | 510-6 | |
High-grade ore, 516 level | 510-7 | |
High-grade ore, 517 level | 510-8 | |
Xiwang mineral deposit | Pit No. 8 | XW-1 |
Zhaixia mineral deposit | Section 410 Middle | ZX-13 |
Sample_ Grain.Spot | 206Pb*/238U (204Pb Corrected) | ±% | 207Pb*/235U (204Pb Corrected) | ±% | Error Correlation | 206Pb*/238U Age (Ma) (207Pb Corrected) | ± 1 s |
---|---|---|---|---|---|---|---|
510-4-2_U_0.1 | 0.00730 | 7.90 | 0.0470 | 32.60 | 0.240 | 46.70 | 4 |
510-4-2_U_0.2 | 0.00760 | 8.20 | 0.0530 | 35.20 | 0.230 | 48.50 | 4 |
510-4-2_U_1.1 | 0.00660 | 7.10 | 0.0460 | 7.60 | 0.940 | 42.60 | 3 |
510-4-2_U_2.1 | 0.00690 | 7.00 | 0.0480 | 7.10 | 0.990 | 44.60 | 3 |
510-4-2_U_3.1 | 0.00770 | 7.00 | 0.0510 | 7.20 | 0.980 | 49.20 | 3 |
510-4-2_U_4.1 | 0.00740 | 7.10 | 0.0510 | 7.30 | 0.980 | 47.40 | 3 |
510-4-2_U_6.1 | 0.00720 | 7.10 | 0.0490 | 7.90 | 0.890 | 46.30 | 3 |
510-4-2_U_5.1 | 0.00720 | 7.00 | 0.0490 | 7.50 | 0.940 | 46.30 | 3 |
510-4-2_U_8.1 | 0.00720 | 7.00 | 0.0490 | 7.20 | 0.980 | 46.20 | 3 |
510-4-2_U_7.1 | 0.00700 | 7.10 | 0.0490 | 7.20 | 0.980 | 45.10 | 3 |
510-7-2_U_12.1 | 0.01140 | 7.10 | 0.0740 | 8.10 | 0.870 | 72.90 | 5 |
510-4-2_U_9.1 | 0.00720 | 7.00 | 0.0490 | 7.20 | 0.970 | 46.00 | 3 |
510-7-2_U_18.1 | 0.01220 | 7.10 | 0.0850 | 7.90 | 0.900 | 78.40 | 6 |
510-4-2_U_10.1 | 0.00720 | 7.00 | 0.0500 | 7.30 | 0.970 | 46.00 | 3 |
510-7-2_U_15.1 | 0.01040 | 7.10 | 0.0760 | 7.90 | 0.890 | 66.90 | 5 |
510-7-2_U_11.1 | 0.01040 | 7.10 | 0.0740 | 7.90 | 0.890 | 66.60 | 5 |
510-7-2_U_14.1 | 0.01160 | 7.10 | 0.0790 | 8.50 | 0.830 | 74.60 | 5 |
510-7-2_U_16.1 | 0.01180 | 7.00 | 0.0780 | 8.10 | 0.870 | 75.60 | 5 |
510-7-2_U_19.1 | 0.01210 | 7.10 | 0.0820 | 8.00 | 0.890 | 77.70 | 5 |
510-7-2_U_20.1 | 0.01070 | 7.10 | 0.0790 | 8.70 | 0.810 | 68.70 | 5 |
510-7-2_U_21.1 | 0.01270 | 7.10 | 0.0920 | 7.70 | 0.920 | 81.10 | 6 |
510-7-2_U_22.1 | 0.01230 | 7.10 | 0.0840 | 7.60 | 0.930 | 79.00 | 6 |
510-7-2_U_25.1 | 0.01130 | 7.10 | 0.0820 | 7.80 | 0.910 | 72.70 | 5 |
510-7-2_U_23.1 | 0.01220 | 7.10 | 0.0820 | 7.70 | 0.910 | 78.10 | 5 |
510-7-2_U_24.1 | 0.01130 | 7.10 | 0.0760 | 7.90 | 0.900 | 72.20 | 5 |
Sample_ Grain.Spot | 206Pb*/238U (204Pb Corrected) | ±% | 207Pb*/235U (204Pb Corrected) | ±% | Error Correlation | 206Pb*/238U Age (Ma) (207Pb Corrected) | ±1 s |
---|---|---|---|---|---|---|---|
ZX-13-54_U_1.1 | 0.0116 | 7.10 | 0.0850 | 9.20 | 0.770 | 74.50 | 5 |
ZX-13-54_U_2.1 | 0.0113 | 7.10 | 0.0840 | 10.00 | 0.700 | 72.50 | 5 |
ZX-13-54_U_5.1 | 0.0111 | 7.10 | 0.0860 | 8.00 | 0.880 | 71.30 | 5 |
ZX-13-54_U_3.1 | 0.0111 | 7.10 | 0.0900 | 9.20 | 0.760 | 71.20 | 5 |
ZX-13-54_U_13.1 | 0.0110 | 7.10 | 0.0770 | 11.10 | 0.640 | 70.80 | 5 |
ZX-13-54_U_4.1 | 0.0121 | 7.10 | 0.0860 | 9.70 | 0.730 | 77.60 | 5 |
ZX-13-54_U_10.1 | 0.0121 | 7.10 | 0.0870 | 8.40 | 0.840 | 77.80 | 5 |
ZX-13-54_U_6.1 | 0.0122 | 7.10 | 0.0890 | 8.80 | 0.800 | 78.10 | 5 |
ZX-13-54_U_9.1 | 0.0113 | 7.10 | 0.0870 | 8.10 | 0.870 | 72.50 | 5 |
ZX-13-54_U_15.1 | 0.0113 | 7.10 | 0.0810 | 9.30 | 0.760 | 72.60 | 5 |
ZX-13-54_U_11.1 | 0.0118 | 7.10 | 0.0880 | 8.50 | 0.830 | 75.40 | 5 |
ZX-13-54_U_12.1 | 0.0115 | 7.10 | 0.0820 | 8.00 | 0.880 | 73.80 | 5 |
ZX-13-9-3_U_11.1 | 0.0115 | 7.10 | 0.0850 | 8.30 | 0.850 | 73.80 | 5 |
ZX-13-9-3_U_2.1 | 0.0109 | 7.10 | 0.0780 | 8.10 | 0.870 | 70.00 | 5 |
ZX-13-9-3_U_1.1 | 0.0115 | 7.10 | 0.0850 | 7.80 | 0.910 | 73.60 | 5 |
ZX-13-9-3_U_6.1 | 0.0123 | 7.10 | 0.0950 | 8.40 | 0.860 | 78.80 | 6 |
ZX-13-9-3_U_3.1 | 0.0113 | 7.10 | 0.0880 | 11.40 | 0.620 | 72.30 | 5 |
ZX-13-9-3_U_4.1 | 0.0102 | 7.10 | 0.0690 | 9.00 | 0.780 | 65.60 | 5 |
ZX-13-9-3_U_5.1 | 0.0100 | 7.10 | 0.0740 | 8.50 | 0.830 | 64.30 | 5 |
ZX-13-9-3_U_10.1 | 0.0098 | 7.10 | 0.0710 | 8.50 | 0.830 | 62.90 | 4 |
ZX-13-9-3_U_8.1 | 0.0097 | 7.10 | 0.0680 | 8.80 | 0.800 | 62.20 | 4 |
ZX-13-9-3_U_13.1 | 0.0099 | 7.10 | 0.0690 | 8.60 | 0.820 | 63.80 | 4 |
ZX-13-9-3_U_7.1 | 0.0110 | 7.10 | 0.0770 | 7.90 | 0.890 | 70.80 | 5 |
ZX-13-9-3_U_15.1 | 0.0105 | 7.10 | 0.0690 | 8.70 | 0.810 | 67.50 | 5 |
ZX-13-9-3_U_12.1 | 0.0108 | 7.10 | 0.0740 | 8.10 | 0.870 | 68.90 | 5 |
Sample_ Grain.Spot | 206Pb*/238U (204Pb Corrected) | ±% | 207Pb*/235U (204Pb Corrected) | ±% | Error Correlation | 206Pb*/238U Age (Ma) (207Pb Corrected) | ±1 s |
---|---|---|---|---|---|---|---|
XW-1-1_U_5.1 | 0.00420 | 7.10 | 0.028 | 7.20 | 0.980 | 27.200 | 2 |
XW-1-1_U_16B.1 | 0.00540 | 7.20 | 0.037 | 7.30 | 0.980 | 34.400 | 2 |
XW-1-1_U_16B.2 | 0.00510 | 7.60 | 0.034 | 7.80 | 0.970 | 32.700 | 2 |
XW-1-1_U_9.2 | 0.00500 | 8.00 | 0.034 | 8.10 | 0.980 | 32.200 | 3 |
XW-1-3_U_21.1 | 0.00430 | 7.00 | 0.032 | 7.10 | 0.990 | 27.500 | 2 |
XW-1-1_U_7.2 | 0.00530 | 7.00 | 0.036 | 7.20 | 0.980 | 34.000 | 2 |
XW-1-3_U_23.2 | 0.00530 | 7.10 | 0.037 | 7.30 | 0.980 | 34.200 | 2 |
XW-1-3_U_25.2 | 0.00530 | 7.10 | 0.038 | 7.30 | 0.980 | 34.400 | 2 |
XW-1-1_U_8.2 | 0.00650 | 7.20 | 0.044 | 7.30 | 0.990 | 41.500 | 3 |
XW-1-3_U_26.2 | 0.00480 | 7.00 | 0.034 | 7.10 | 0.990 | 31.100 | 2 |
XW-1-3_U_30B.1 | 0.00440 | 7.00 | 0.032 | 7.10 | 0.990 | 28.200 | 2 |
XW-1-1_U_1.1 | 0.00580 | 7.40 | 0.041 | 7.60 | 0.970 | 37.100 | 3 |
XW-1-1_U_1.2 | 0.00710 | 7.10 | 0.049 | 7.20 | 0.990 | 45.800 | 3 |
XW-1-1_U_2.1 | 0.00630 | 7.50 | 0.043 | 7.60 | 0.990 | 40.300 | 3 |
XW-1-1_U_2.2 | 0.00590 | 7.10 | 0.042 | 7.10 | 1.000 | 37.800 | 3 |
XW-1-1_U_3.1 | 0.00690 | 7.00 | 0.047 | 7.10 | 1.000 | 44.400 | 3 |
XW-1-1_U_4.1 | 0.00650 | 7.00 | 0.043 | 7.10 | 0.990 | 41.800 | 3 |
XW-1-3_U_24B.1 | 0.00760 | 7.00 | 0.055 | 7.10 | 0.990 | 49.000 | 3 |
XW-1-3_U_1.3 | 0.00660 | 7.10 | 0.045 | 7.20 | 0.990 | 42.700 | 3 |
XW-1-3_U_4.2 | 0.00660 | 7.00 | 0.044 | 7.10 | 0.990 | 42.500 | 3 |
XW-1-3_U_17.2 | 0.00750 | 7.00 | 0.050 | 7.10 | 1.000 | 48.000 | 3 |
XW-1-3_U_18.2 | 0.00650 | 7.00 | 0.044 | 7.10 | 0.990 | 42.000 | 3 |
XW-1-3_U_3B.1 | 0.00640 | 9.00 | 0.044 | 9.10 | 0.990 | 41.000 | 4 |
XW-1-3_U_29B.1 | 0.00690 | 8.40 | 0.049 | 9.50 | 0.890 | 44.600 | 4 |
Sample | ppm | ΣREE | LREE | HREE | LaN/YbN | δEu | δCe | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | |||||||
510-1-2-3-1 | 1262 | 4606 | 695 | 3011 | 742 | 289 | 497 | 143 | 821 | 146 | 341 | 44 | 243 | 30 | 229 | 12,870 | 10,605 | 2265 | 3.5 | 1.38 | 1.17 |
510-1-2-3-2 | 1221 | 5140 | 886 | 3584 | 924 | 346 | 564 | 155 | 897 | 164 | 359 | 50 | 264 | 33 | 216 | 14,587 | 12,100 | 2487 | 3.11 | 1.36 | 1.14 |
510-4-2-1-1 | 1162 | 4626 | 838 | 3647 | 999 | 385 | 701 | 181 | 1046 | 177 | 445 | 60 | 334 | 40 | 327 | 14,640 | 11,656 | 2984 | 2.34 | 1.34 | 1.08 |
510-4-2-2-3 | 1056 | 3682 | 681 | 3261 | 1014 | 364 | 880 | 182 | 1078 | 193 | 460 | 61 | 370 | 42 | 324 | 13,324 | 10,058 | 3266 | 1.92 | 1.15 | 1.01 |
510-7-2-2-1 | 2253 | 6091 | 861 | 4642 | 1266 | 575 | 1886 | 307 | 1862 | 395 | 913 | 112 | 659 | 81 | 2061 | 21,903 | 15,688 | 6215 | 2.31 | 1.14 | 1.05 |
510-7-2-2-1 | 2366 | 6929 | 997 | 5192 | 1492 | 661 | 2098 | 343 | 2033 | 415 | 1006 | 123 | 707 | 82 | 2982 | 24,443 | 17,636 | 6807 | 2.25 | 1.14 | 1.09 |
510-7-2-2-2 | 2752 | 5811 | 776 | 3862 | 998 | 469 | 1607 | 237 | 1361 | 295 | 701 | 84 | 429 | 57 | 1086 | 19,438 | 14,668 | 4770 | 4.33 | 1.13 | 0.94 |
510-7-2-2-3 | 2755 | 5402 | 718 | 3753 | 1080 | 510 | 1664 | 267 | 1673 | 325 | 822 | 103 | 578 | 73 | 1316 | 19,725 | 14,218 | 5507 | 3.21 | 1.16 | 0.91 |
Sample | ppm | ΣREE | LREE | HREE | LaN/ YbN | δEu | δCe | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y | |||||||
ZX-13-5-3-1-5 | 1262 | 4606 | 695 | 3011 | 742 | 289 | 497 | 143 | 821 | 146 | 341 | 44 | 243 | 30 | 2836 | 12,870 | 10,605 | 2265 | 3.5 | 1.38 | 1.17 |
ZX-13-5-3-1-6 | 1221 | 5140 | 886 | 3584 | 924 | 346 | 564 | 155 | 897 | 164 | 359 | 50 | 264 | 33 | 2741 | 14,587 | 12,100 | 2487 | 3.11 | 1.36 | 1.14 |
ZX-13-9-1-2 | 1234 | 4021 | 598 | 2692 | 750 | 306 | 540 | 137 | 832 | 155 | 383 | 50 | 297 | 34 | 2493 | 12,030 | 9602 | 2428 | 2.8 | 1.4 | 1.12 |
ZX-13-5-1-2-1 | 1611 | 5524 | 928 | 3865 | 1279 | 385 | 1008 | 216 | 1349 | 223 | 592 | 88 | 594 | 63 | 3633 | 17,724 | 13,592 | 4133 | 1.83 | 1 | 1.07 |
ZX-13-5-1-2-2 | 1514 | 4987 | 833 | 3626 | 1175 | 349 | 933 | 204 | 1199 | 219 | 540 | 82 | 552 | 61 | 3522 | 16,275 | 12,484 | 3791 | 1.85 | 0.99 | 1.05 |
ZX-13-5-1-2-3 | 1484 | 4342 | 705 | 3079 | 997 | 308 | 864 | 181 | 1123 | 205 | 524 | 74 | 507 | 56 | 3410 | 14,449 | 10,915 | 3534 | 1.97 | 0.99 | 1.02 |
ZX-13-5-1-2-4 | 1300 | 3966 | 640 | 2809 | 865 | 274 | 776 | 163 | 1035 | 182 | 476 | 67 | 453 | 54 | 3144 | 13,061 | 9855 | 3207 | 1.93 | 1 | 1.04 |
ZX-13-5-1-2-5 | 1443 | 4516 | 713 | 3306 | 1035 | 309 | 854 | 179 | 1123 | 191 | 509 | 73 | 474 | 57 | 3305 | 14,782 | 11,322 | 3459 | 2.05 | 0.98 | 1.06 |
ZX-13-5-1-2-6 | 1463 | 4545 | 738 | 3271 | 1057 | 328 | 863 | 187 | 1226 | 210 | 510 | 77 | 513 | 61 | 3305 | 15,048 | 11,401 | 3647 | 1.92 | 1.02 | 1.05 |
ZX-13-5-1-2-9 | 1549 | 5202 | 860 | 3912 | 1198 | 374 | 947 | 205 | 1268 | 226 | 554 | 85 | 567 | 59 | 3488 | 17,006 | 13,095 | 3911 | 1.84 | 1.04 | 1.07 |
Number | Sample | Lithology | ppm | ΣREE | HREE | LREE | LREE/ HREE | LaN/ YbN | δEu | δCe | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ce | Sm | Er | Dy | Lu | Tm | La | Pr | Nd | Eu | Gd | Tb | Ho | Yb | Y | ||||||||||
1 | xw-1-5-1-1 | Volcanic rock | 6490 | 448 | 261 | 484 | 35 | 33 | 2537 | 669 | 2394 | 30 | 169 | 81 | 96 | 197 | 2348 | 13,926 | 1358 | 12,568 | 9.25 | 8.67 | 0.28 | 1.18 |
2 | xw-1-5-1-2 | 5990 | 341 | 205 | 384 | 30 | 30 | 2279 | 592 | 2011 | 22 | 133 | 70 | 77 | 168 | 1970 | 12,331 | 1097 | 11,234 | 10.24 | 9.13 | 0.27 | 1.22 | |
3 | xw-1-5-2-1 | 2912 | 103 | 60 | 109 | 9 | 8 | 1471 | 233 | 704 | 7 | 45 | 21 | 23 | 44 | 694 | 5748 | 317 | 5431 | 17.12 | 22.72 | 0.28 | 1.08 | |
4 | xw-1-5-2-2 | 3905 | 170 | 98 | 179 | 13 | 13 | 1638 | 333 | 1030 | 11 | 66 | 32 | 35 | 79 | 1014 | 7602 | 516 | 7086 | 13.73 | 13.95 | 0.27 | 1.21 | |
11 | XW-1-4-3-3 | 3176 | 350 | 193 | 342 | 26 | 27 | 1669 | 367 | 1522 | 23 | 388 | 71 | 70 | 189 | 2358 | 8413 | 1306 | 7107 | 5.44 | 5.96 | 0.19 | 0.94 | |
12 | XW-1-4-3-4 | 3277 | 443 | 254 | 465 | 38 | 34 | 1598 | 438 | 1859 | 35 | 473 | 77 | 90 | 232 | 2946 | 9315 | 1664 | 7651 | 4.60 | 4.65 | 0.23 | 0.93 | |
7 | XW-1-3-2-6 | 2012 | 80 | 35 | 64 | 6 | 6 | 1160 | 191 | 577 | 5 | 50 | 13 | 13 | 35 | 397 | 4247 | 223 | 4025 | 18.08 | 22.11 | 0.24 | 0.94 | |
8 | XW-1-3-2-7 | 2156 | 73 | 27 | 57 | 4 | 4 | 1268 | 190 | 508 | 4 | 41 | 11 | 12 | 28 | 412 | 4385 | 184 | 4200 | 22.77 | 30.72 | 0.22 | 0.94 | |
5 | xw-1-5-3-1 | 2499 | 64 | 37 | 65 | 5 | 4 | 1378 | 170 | 475 | 4 | 24 | 11 | 13 | 26 | 433 | 4774 | 185 | 4589 | 24.81 | 36.35 | 0.25 | 1.06 | |
6 | xw-1-5-3-2 | 2508 | 55 | 31 | 54 | 4 | 4 | 1309 | 170 | 452 | 4 | 21 | 11 | 12 | 24 | 388 | 4657 | 160 | 4498 | 28.17 | 36.35 | 0.28 | 1.11 | |
9 | XW-1-3-2-8 | 2547 | 80 | 34 | 67 | 5 | 5 | 1456 | 211 | 597 | 5 | 42 | 13 | 13 | 28 | 537 | 5101 | 205 | 4896 | 23.88 | 35.68 | 0.24 | 0.98 | |
10 | XW-1-3-2-9 | 3082 | 95 | 48 | 93 | 7 | 7 | 1545 | 269 | 735 | 6 | 36 | 17 | 19 | 36 | 623 | 5997 | 265 | 5732 | 21.66 | 29.30 | 0.27 | 1.06 |
Ore Field | Metallogenic Age (Ma) | Data Sources | Test Method |
---|---|---|---|
Xianshi | Late Cretaceous (K2): 73.1 ± 2.9 Eocene (E2): 46.1 ± 1.9 | This study | SIMS (SHRIMP RG) |
Early Cretaceous (K1): 113 ± 2; 104 ± 2 | Luo Jincheng, HOu Ruizhong, 2015 [49] | SIMS (CAMECA ims) | |
Late Cretaceous (K2): 96.4 ± 1.4 | He Debao, 2016 [50] | LA-ICP-MS | |
Latest Late Cretaceous (K3): 79 ± 11 | Zheng Xin, 2019 [34] | SIMS (CAMECA ims) | |
Zhaixia | Late Cretaceous (K2): 70.7 ± 2 | This study | SIMS (SHRIMP RG) |
Late Cretaceous (K2): 92 | He Debao, 2016 [50] | LA-ICP-MS | |
Late Cretaceous (K2): 93.5 ± 1.2; 73.1 ± 1.4 | Zou Dongfeng, 2011 [22] | LA-ICP-MS | |
Xiwang | Eocene (E2): 42.3 ± 2.0; Oligocene (E3): 31.0 ± 2.2 | This study | SIMS (SHRIMP RG) |
Late Cretaceous (K2): 81.8 ± 1.1 | He Debao, 2016 [50] | LA-ICP-MS | |
Early Cretaceous (K1): 107 ± 16 | Zheng Xin, 2019 [34] | SIMS (CAMECA ims) |
Age | Tectonic Stage | Tectonic Activity | Geological Event | Magmation | Basic Dike Emplacement | This Age (Ma) | ||
---|---|---|---|---|---|---|---|---|
Kz | Q | 60 Ma~Now, Himalayan Stage | ||||||
N | N2 | Fault block differential rise and fall | Frequent hydrothermal activity, small fracture activity | |||||
N1 | ||||||||
E | E3 | Intermittent lifting motion | 31.0 ± 2.28, E3 | |||||
E2 | Strong differential ascending and descending motion, NW–SE stretching | (55~45) Ma | 46.1 ± 1.9, 42.3 ± 2.0, E2 | |||||
E1 | ||||||||
Mz | K | (205~60) Ma, Yanshanian Stage | NW–SE spreading, late Yanshan stage | Elongation rift period, U-rich mantle fluid rising; Intermediate-base magma emplacement along faults; Lots of high angle normal faults and formation of slip fault | multi-stage secondary basic dike emplacement, deep silicon-rich uranium-rich fluid rising | (75~70) Ma, (95~85) Ma, (110~100) Ma, (125~115) Ma | 73.1 ± 2.9, 70.7 ± 2, K2 | |
J | Early Yanshan stage, spreading from south to north | Post-orogeny, Formation of near E–W extension basin and NW–W diabase dikes | Yanshanian Stage granite | (140~135) Ma | ||||
T | (257~205) Ma, Indochinese stage | Lithospheric compression-collision | Intracontinental orogeny, Intracontinental subduction and orogeny; Deep lithosphere extension | Indosinian granite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wu, B.; Zheng, X.; Zhang, W.; Sun, G.; Zhang, X.; Yang, M.; Ma, Y.; Hou, Y. SIMS Dating of Granite-Hosted Uranium Deposits in the Xiazhuang Ore Field and Its Geological Significance. Minerals 2025, 15, 622. https://doi.org/10.3390/min15060622
Liu M, Wu B, Zheng X, Zhang W, Sun G, Zhang X, Yang M, Ma Y, Hou Y. SIMS Dating of Granite-Hosted Uranium Deposits in the Xiazhuang Ore Field and Its Geological Significance. Minerals. 2025; 15(6):622. https://doi.org/10.3390/min15060622
Chicago/Turabian StyleLiu, Mingyi, Bailin Wu, Xin Zheng, Wanying Zhang, Guoquan Sun, Xiaorui Zhang, Mengdi Yang, Yaxin Ma, and Yu Hou. 2025. "SIMS Dating of Granite-Hosted Uranium Deposits in the Xiazhuang Ore Field and Its Geological Significance" Minerals 15, no. 6: 622. https://doi.org/10.3390/min15060622
APA StyleLiu, M., Wu, B., Zheng, X., Zhang, W., Sun, G., Zhang, X., Yang, M., Ma, Y., & Hou, Y. (2025). SIMS Dating of Granite-Hosted Uranium Deposits in the Xiazhuang Ore Field and Its Geological Significance. Minerals, 15(6), 622. https://doi.org/10.3390/min15060622