Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Lithofacies A
4.2. Lithofacies B
4.3. Lithofacies C
4.4. Lithofacies D
4.5. Lithofacies E
5. Discussion
5.1. Protoliths of the Gimigliano Metabasites and Their Emplacement Mechanisms
5.2. Reassessing Volcano–Sedimentary Processes in the Calabrian Tethys
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Pointbriand, C.W.; Soule, S.A.; Sohn, R.A.; Humphris, S.E.; Kunz, C.; Singh, H.; Nakamura, H.-I.; Jakobsson, M.; Shank, T. Effusive and explosive volcanism on the ultraslow-spreading Gakkel Ridge, 85°E. Geochem. Geophys. Geosyst. 2012, 13, 10005. [Google Scholar] [CrossRef]
- Rubin, K.H.; Soule, S.A.; Chadwick, W.W., Jr.; Fornari, D.J.; Clague, D.A.; Embley, R.W.; Baker, E.T.; Perfit, M.R.; Caress, D.W.; Dziak, R.P. Volcanic eruptions in the deep sea. Oceanography 2012, 25, 142–157. [Google Scholar] [CrossRef]
- White, J.D.L.; Houghton, B.F. Primary volcaniclastic rocks. Geology 2006, 34, 677–680. [Google Scholar] [CrossRef]
- Hekinian, R.; Pineau, F.; Shilobreeva, S.; Bideau, D.; Gracia, E.; Javoy, M. Deep sea explosive activity on the Mid-Atlantic Ridge near 34°50′N: Magma composition, vesicularity and volatile content. J. Volcanol. Geotherm. Res. 2000, 98, 49–77. [Google Scholar] [CrossRef]
- Clague, D.A.; Davis, A.; Dixon, J. Submarine strombolian eruptions on the Gorda Mid-Ocean Ridge. In Explosive Subaqueous Volcanism; White, J.D.L., Smellie, J., Clague, D., Eds.; AGU Geophysical Monograph: Washington, DC, USA, 2003; Volume 140, pp. 111–128. [Google Scholar]
- Clague, D.A.; Paduan, J.B.; Davis, A.S. Widespread strombolian eruptions of mid-ocean ridge basalt. J. Volcanol. Geotherm. Res. 2009, 180, 171–188. [Google Scholar] [CrossRef]
- Eissen, J.P.; Fouquet, Y.; Hardy, D.; Ondréas, H. Recent MORB volcaniclastic explosive deposits formed between 500 and 1750 m.b.s.l. on the axis of the Mid-Atlantic Ridge, south of the Azores. In Explosive Subaqueous Volcanism, Geophysical Monograph Series; White, J.D.L., Smellie, J.L., Clague, D.A., Eds.; AGU: Washington, DC, USA, 2003; Volume 140, pp. 143–166. [Google Scholar] [CrossRef]
- Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. 1996, 101, 2847–2857. [Google Scholar] [CrossRef]
- Soule, S.A. Mid-Ocean Ridge Volcanism. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; p. 1393. [Google Scholar]
- Bortolotti, V.; Principi, G. Tethyan ophiolites and Pangea break-up. Island Arc 2004, 14, 442–470. [Google Scholar] [CrossRef]
- Kumar, A.; Sheth, H.; Barman, P.; Ibrahim, M. Volcanic facies as a guide to the palaeodepth and palaeotectonic setting of ancient oceanic crust: The case of the Nidar ophiolite, Ladakh, Indian Trans-Himalaya. Bull. Volcanol. 2021, 83, 1–14. [Google Scholar] [CrossRef]
- Bortolotti, V.; Marroni, M.; Pandolfi, L.; Principi, G.; Saccani, E. Interaction between Mid-Ocean Ridge and Subduction Magmatism in Albanian Ophiolites. J. Geol. 2002, 110, 561–576. [Google Scholar] [CrossRef]
- Tartarotti, P.; Martin, S.; Festa, A.; Balestro, G. Metasediments Covering Ophiolites in the HP Internal Belt of the Western Alps: Review of Tectono-Stratigraphic Successions and Constraints for the Alpine Evolution. Minerals 2021, 11, 411. [Google Scholar] [CrossRef]
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, S.; Paglionico, A.; Perrone, V.; et al. L’arco calabro-peloritano nell’orogene appennino-maghrebide. Mem. Soc. Geol. It. 1976, 17, 1–60. [Google Scholar]
- Liberi, F.; Morten, L.; Piluso, E. Geodynamic significance of ophiolites within the Calabrian Arc. Island Arc 2006, 15, 26–43. [Google Scholar] [CrossRef]
- Visalli, R.; Punturo, R.; Cirrincione, R. Petrophysical properties of serpentinite from Calabria. Minerals 2023, 13, 1132. [Google Scholar]
- Apollaro, C.; Marini, L.; Critelli, T.; Barca, D.; Bloise, A.; De Rosa, R.; Liberi, F.; Miriello, D. Investigation of rock-to-water release and fate of major, minor, and trace elements in the metabasalt–serpentinite shallow aquifer of Mt. Reventino (CZ, Italy) by reaction path modelling. Appl. Geochem. 2011, 26, 1722–1740. [Google Scholar] [CrossRef]
- Bonardi, G.; Cavazza, W.; Perrone, V.; Rossi, S. Calabria–Peloritani terrane and northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Dordrecht, The Netherlands, 2001; pp. 287–306. [Google Scholar]
- Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A.; Punturo, R. The Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; its overall architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan basin. Period. di Mineral. 2015, 84, 701–749. [Google Scholar] [CrossRef]
- Cirrincione, R.; Fazio, E.; Fiannacca, P.; Ortolano, G.; Pezzino, A.; Punturo, R.; Romano, V.; Sacco, V. The Alpine evolution of the Aspromonte Massif: Constraints for geodynamic reconstruction of the Calabria-Peloritani Orogen. Geol. Field Trips 2013, 5, 73. [Google Scholar] [CrossRef]
- Festa, V.; Cicala, M.; Tursi, F. The Curinga–Girifalco Line in the Framework of the Tectonic Evolution of the Remnant Alpine Chain in Calabria (Southern Italy). Int. J. Earth Sci. 2020, 109, 2583–2598. [Google Scholar] [CrossRef]
- Tursi, F.; Spiess, R.; Festa, V.; Fregola, R.A. Hercynian Subduction-Related Processes within the Metamorphic Continental Crust in Calabria (Southern Italy). J. Metamorph. Geol. 2020, 38, 771–793. [Google Scholar] [CrossRef]
- Tursi, F.; Acquafredda, P.; Festa, V.; Fornelli, A.; Langone, A.; Micheletti, F.; Spiess, R. What Can High-P Sheared Orthogneisses Tell Us? An Example from the Curinga–Girifalco Line (Calabria, Southern Italy). J. Metamorph. Geol. 2021, 39, 919–944. [Google Scholar] [CrossRef]
- De Roever, E.W.F. Lawsonite-albite facies metamorphism near Fuscaldo, Calabria (southern Italy), its geological significance and petrological aspects. GUA Pap. Geol. 1972, 1, 1–171. [Google Scholar]
- Dietrich, D.; Scandone, P. The position of the basic and ultrabasic rocks in the tectonic units of the Southern Apennines. Atti Accad. Pontaniana 1972, 21, 61–75. [Google Scholar]
- Ogniben, L. Schema Geologico della Calabria in base ai dati odierni. Geol. Romana 1973, 12, 243–585. [Google Scholar]
- Beccaluva, L.; Macciotta, G.; Spadea, P. Petrology and geodynamic significance of the Calabria-Lucania ophiolites. Rend. Soc. Ital. Mineral. Petrol. 1982, 38, 973–987. [Google Scholar]
- Guerrera, F.; Martín-Algarra, A.; Perrone, V. Late Oligocene-Miocene syn-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 1993, 5, 525–544. [Google Scholar] [CrossRef]
- Cello, G.; Invernizzi, C.; Mazzoli, S. Structural signature of tectonic processes in the Calabrian Arc, southern Italy: Evidence from the oceanic-derived Diamante-Terranova Unit. Tectonics 1996, 15, 187–200. [Google Scholar] [CrossRef]
- Liberi, F.; Piluso, E. Tectonometamorphic evolution of the ophiolitic sequences from Northern Calabrian Arc. Ital. J. Geosci. 2009, 128, 483–493. [Google Scholar]
- Tortorici, L. Lineamenti geologico-strutturali dell’Arco Calabro Peloritano. Rend. Soc. Ital. Mineral. Petrol. 1982, 4, 927–940. [Google Scholar]
- Ogniben, L. Schema introduttivo alla geologia del confine calabro-lucano. Mem. Soc. Geol. It. 1969, 8, 453–763. [Google Scholar]
- Scandone, P. Structure and evolution of the Calabrian Arc. Earth Evol. Sci. 1982, 3, 172–180. [Google Scholar]
- Morten, L.; Tortorici, L. Geological framework of the ophiolite-bearing allochtonous terranes of the Calabrian Arc and Lucanian Apennine. In Italian Eclogites and Related Rocks; Morten, L., Ed.; Accademia Nazionale delle Scienze detta dei XL: Roma, Italy, 1993; Volume 13, pp. 145–150. [Google Scholar]
- Piluso, E.; Cirrincione, R.; Morten, L. Ophiolites of the Calabrian Peloritani Arc and their relationships with the Crystalline Basement (Catena Costiera and Sila Piccola, Calabria, Southern Italy). Ofioliti 2000, 25, 117–140. [Google Scholar]
- Messina, A.; Russo, S.; Borghi, A.; Colonna, V.; Compagnoni, R.; Caggianelli, A.; Fornelli, A.; Piccarreta, G. Il Massiccio della Sila Settore settentrionale dell’Arco Calabro-Peloritano. Boll. Soc. Geol. It. 1994, 113, 359–586. [Google Scholar]
- Piccarreta, G.; Zirpoli, G. Le Rocce Verdi del Monte Reventino. Boll. Soc. Geol. It. 1969, 88, 469–488. [Google Scholar]
- Punturo, R.; Fiannacca, P.; Lo Giudice, A.; Pezzino, A.; Cirrincione, R.; Liberi, F.; Piluso, E. Le cave storiche della “pietra verde” di Gimigliano e Monte Reventino (Calabria): Studio petrografico e geochimico. Boll. Soc. Gioenia Sci. Nat. 2004, 37, 37–59. [Google Scholar]
- Punturo, R.; Visalli, R.; Cirrincione, R. A Review of the Mineralogy, Petrography, and Geochemistry of Serpentinite from Calabria Regions (Southern Italy): Problem or Georesource? Minerals 2023, 13, 1132. [Google Scholar] [CrossRef]
- Lanzafame, G.; Zuffa, G.G. Geologia e Petrografia del Foglio Bisignano (Bacino del Crati, Calabria). Geol. Romana 1976, 15, 223–270. [Google Scholar]
- Spadea, P.; Tortorici, L.; Lanzafame, G. Serie ofiolitifere fra Tarsia e Spezzano Albanese (Calabria): Stratigrafia, petrografia, rapporti strutturali. Mem. Soc. Geol. It. 1976, 17, 135–174. [Google Scholar]
- Punturo, R.; Mine, S.; Motra, H.B.; Lanzafame, G.; Indelicato, V.; Pappalardo, G.; Cirrincione, R. Greenstone of Calabria: A multi-analytical characterization of heritage metabasite from Southern Italy. Case Stud. Constr. Mater. 2024, 20, e03269. [Google Scholar] [CrossRef]
- Lanzafame, G.; Spadea, P.; Tortorici, L. Mesozoic ophiolites of northern Calabria and Lucanian Apennines (Southern Italy). Ofioliti 1979, 4, 173–182. [Google Scholar]
- Colonna, V.; Piccarreta, G. Schema strutturale della Sila Piccola Meridionale. Boll. Soc. Geol. It. 1975, 94, 1975. [Google Scholar]
- Rossetti, F.; Faccenna, C.; Goffé, B.; Funiciello, R.; Monié, P. Tectono-metamorphic evolution of the ophiolite-bearing HP/LT Gimigliano-Monte Reventino Unit (Gimigliano, Sila Piccola); insights for the tectonic evolution of the Calabrian Arc. Ital. J. Geosci. 2002, 121, 51–67. [Google Scholar]
- Colonna, V.; Zanettin Lorenzoni, E. Gli scisti cristallini della Sila Piccola. 2°: Rapporti tra la formazione delle filladi e la formazione delle pietre verdi nella zona di Gimigliano. Mem. Soc. Geol. It. 1972, 11, 261–292. [Google Scholar]
- Vai, G.B. Il segmento Calabro-Peloritano dell’orogene Ercinicio Disaggregazione palinspastica. Boll. Soc. Geol. It. 1992, 111, 109–129. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Di Capua, A.; De Rosa, R.; Kereszturi, G.; Le Pera, E.; Rosi, M.; Watt, S.F. Volcanically-derived deposits and sequences: A unified terminological scheme for application in modern and ancient environments. In Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment; Geological Society: London, UK, 2023; Volume 520, pp. 11–27. [Google Scholar]
- Kennish, M.J.; Lutz, R.A. Morphology and distribution of lava flows on mid-ocean ridges: A review. Earth-Sci. Rev. 1998, 43, 63–90. [Google Scholar] [CrossRef]
- White, J.D.L.; McPhie, J.; Soule, S.A. Submarine Lavas and Hyaloclastite. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; p. 1393. [Google Scholar]
- Maicher, D.; White, J.D.L.; Batiza, R. Sheet hyaloclastite: Density-current deposits of quench and bubble-burst fragments from thin, glassy sheet lava flows, Seamount Six, Eastern Pacific Ocean. Mar. Geol. 2000, 171, 75–94. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Simmons, J.M. Why deep-water eruptions are so different from subaerial eruptions. Front. Earth Sci. 2018, 6, 00198. [Google Scholar] [CrossRef]
- Spadea, P. Contributo alla conoscenza dei metabasalti ofiolitici della Calabria settentrionale e centrale e dell’Appennino Lucano. Rend. Soc. Ital. Mineral. Petrol. 1979, 35, 251–276. [Google Scholar]
- Furnes, H. Meta-hyaloclastite breccias associated with Ordovician pillow javas in the Solund area, west Norway. Norsk Geol. Tidsskr. 1972, 52, 385–407. [Google Scholar]
- Furnes, H.; McLoughlin, N.; Muehlenbachs, K.; Banerjee, N.; Staudigel, H.; Dilek, Y.; de Wit, M.; Van Kranendonk, M.J.; Schiffman, P. Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time–a review. In Links Between Geological Processes, Microbial Activities and Evolution of Life: Microbes and Geology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–68. [Google Scholar]
- Maicher, D.; White, J.D.L. The formation of deep-sea Limu o’Pelé. Bull. Volcanol. 2001, 63, 482–496. [Google Scholar] [CrossRef]
- Carey, S.N.; Schneider, J.-L. Volcaniclastic processes and deposits in the deep-sea. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 63, pp. 457–515. [Google Scholar]
- Ghose, N.C.; Chatterjee, N.; Fareeduddin. Ophiolite around the Indian plate margin. In A Petrographic Atlas of Ophiolite; Springer: New Delhi, India, 2014; pp. 9–24. [Google Scholar] [CrossRef]
- Corsaro, R.A.; Mazzoleni, P. Textural evidence of peperites inside pillow lavas at Acicastello Castle Rock (Mt. Etna, Sicily). J. Volcanol. Geotherm. Res. 2002, 114, 219–229. [Google Scholar] [CrossRef]
- Di Capua, A.; Groppelli, G. Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d’Aveto Formation case (Northern Apennines, Italy). J. Volcanol. Geotherm. Res. 2016, 328, 1–8. [Google Scholar] [CrossRef]
- Di Capua, A.; Barilaro, F.; Szepesi, J.; Lukács, R.; Gál, P.; Norini, G.; Sulpizio, R.; Soós, I.; Harangi, S.; Groppelli, G. Correlating volcanic dynamics and the construction of a submarine volcanogenic apron: An example from the Badenian (Middle Miocene) of North-Eastern Hungary. Mar. Pet. Geol. 2021, 126, 104944. [Google Scholar] [CrossRef]
- Gregg, T.K.P.; Fink, J.H. Quantification of submarine lava-flow morphology through analog experiments. Geology 1995, 23, 73–76. [Google Scholar] [CrossRef]
- Colman, A.; Sinton, J.M.; White, S.M.; McClinton, J.T.; Bowles, J.A.; Rubin, K.H.; Behn, M.D.; Cushman, B.; Eason, D.E.; Gregg, T.K.P.; et al. Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galápagos Spreading Center. Geochem. Geophys.Geosyst. 2012, 13, 1–28. [Google Scholar] [CrossRef]
- De Togni, M.; Gattiglio, M.; Ghignone, S.; Festa, A. Pre-Alpine Tectono-Stratigraphic Reconstruction of the Jurassic Tethys in the High-Pressure Internal Piedmont Zone (Stura di Viù Valley, Western Alps). Minerals 2021, 11, 361. [Google Scholar] [CrossRef]
- Piccardo, G.B.; Padovano, M.; Guarnieri, L. The Ligurian Tethys: Mantle processes and geodynamics. Earth-Sci. Rev. 2014, 138, 409–434. [Google Scholar] [CrossRef]
Lithofacies | Macroscopic Features | Microscopic Features | Main Minerals | Interpretation (Putative Eruptive Process) |
---|---|---|---|---|
A | Fine-grained, laminated, greenish with yellowish-green and darker green bands, minor reddish-brown bands | Well-developed foliation, quartz–albite–epidote porphyroblasts, micropores elongated along foliation | Cristobalite, clinozoisite, albite, chlorite | Fallout deposits through water column |
B | Fine- to medium-grained, massive to weakly foliated, green (dark to light) with bluish tints and whitish speckles | Lepido-nematoblastic texture, epidote and hornblende crystals wrapped by foliation | Clinozoisite, albite, clinochlore, lawsonite | Sheet basalts |
C | Well-foliated, greenish with brownish-violet and whitish domains, alternating fine- and coarse-grained layers | Grano-lepido-nematoblastic texture, epidote and chlorite aggregates, quartz–albite–epidote layers | Clinochlore, epidote, albite, quartz, muscovite | Sheet hyaloclastites |
D | Fine- to medium-grained, compact, intense green with silvery sheen, soapy feel | Alternating mafic and felsic layers, pseudofelty muscovite structures, epidote trains | Muscovite, quartz, albite, ferronian clinochlore, epidote | Alternation of flow and fall deposits, hyaloclastic in composition |
E | Fine- to medium-grained, compact, dark green with bluish-black tones and silvery reflection | Alternating chlorite- and quartz–calcite-dominated bands, epidote and rare amphibole porphyroblasts | Chlorite, quartz, calcite, epidote, muscovite, albite | Hybrid facies with larger amounts of sedimentary particles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barilaro, F.; Di Capua, A.; Cianflone, G.; Turano, G.; Robertelli, G.; Brutto, F.; Ciccone, G.; Foti, A.; Festa, V.; Dominici, R. Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy). Minerals 2025, 15, 552. https://doi.org/10.3390/min15060552
Barilaro F, Di Capua A, Cianflone G, Turano G, Robertelli G, Brutto F, Ciccone G, Foti A, Festa V, Dominici R. Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy). Minerals. 2025; 15(6):552. https://doi.org/10.3390/min15060552
Chicago/Turabian StyleBarilaro, Federica, Andrea Di Capua, Giuseppe Cianflone, Giovanni Turano, Gianluca Robertelli, Fabrizio Brutto, Giuseppe Ciccone, Alessandro Foti, Vincenzo Festa, and Rocco Dominici. 2025. "Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy)" Minerals 15, no. 6: 552. https://doi.org/10.3390/min15060552
APA StyleBarilaro, F., Di Capua, A., Cianflone, G., Turano, G., Robertelli, G., Brutto, F., Ciccone, G., Foti, A., Festa, V., & Dominici, R. (2025). Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy). Minerals, 15(6), 552. https://doi.org/10.3390/min15060552