Identifying the Key Control Factors of Deep Marine Shale Gas Reservoirs: A Case Study on Lower Cambrian Fine-Grained Sedimentary Rocks in Cen Gong, Guizhou, China
Abstract
1. Introduction
2. Geological Setting
2.1. Tectonic Sedimentary Background of the Research Area
2.2. Lithological Characteristics of Shale in the Niuhuitang Formation
2.2.1. Inorganic Mineral Components of Shale in the Niutitang Formation
2.2.2. Organic Matter Components in the Shale of the Niutitang Formation
3. Samples and Methods
3.1. Sample Collection and Preparation
3.2. Geological Experimental Method
3.3. Laboratory and Quality Control
4. Results and Discussion
4.1. Sediments—The Foundation of the Reservoir
4.1.1. Mineral Composition and the Storage Space of the Organic Matter Control Reservoir
4.1.2. Mineral Components and Organic Matter Controlling the Gas Content of the Reservoir
4.2. Transformation of the Reservoir by Diagenesis
4.2.1. Diagenestic Types
4.2.2. Diagenesis and Reservoir Evolution
4.3. Structural Preservation Conditions Controlling Reservoirs
4.3.1. Influence of Fracture Development on Reservoirs
4.3.2. Influence of Roof, Floor, and Formation Pressure
5. Conclusions
- (1)
- Sedimentary material formed the foundation for controlling reservoirs and gas content. The organic carbon content was a primary factor governing the adsorption capacity of shale as the higher the TOC of shale, the greater its adsorption capability. The adsorption capacity of shale for methane was also influenced by its mineral composition. A small amount of clay minerals enhanced adsorption capacity, but an excessive content (clay content > 35%) led to a decline.
- (2)
- Diagenesis profoundly altered shale reservoirs. Organic-rich shale in the area has reached the late diagenetic stage. The diagenetic processes included compaction, cementation, replacement, clay mineral transformation, organic matter thermal evolution, and fracturing. Compaction had the most significant impact on the evolution of reservoir porosity.
- (3)
- Structural preservation conditions governed the final occurrence of shale gas. Intense tectonic modifications were unfavorable for the preservation conditions of shale gas reservoirs, whereas milder tectonic activity was conducive. Therefore, favorable preservation conditions typically existed in areas located in the core of structures, farther from formation exposure, and with relatively weaker tectonic intensity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TOC | total organic carbon |
FE-SEM | field emission scanning electron microscopy |
References
- Zhao, W.; Li, J.; Yang, T.; Wang, S.; Huang, J. Comparison and significance of Marine shale gas accumulation differences in southern China. Pet. Explor. Dev. 2016, 43, 12. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, Y.; Li, X.J.; Huang, J.L.; Wang, S.F.; Guan, Q.Z.; Zhang, C.C.; Wang, H.Y. Characteristics, challenges and prospects of shale gas in China (1). Pet. Explor. Dev. 2015, 42, 13. [Google Scholar] [CrossRef]
- Guo, X.S. The law of “dual enrichment” of Marine shale gas in Southern China: A practical understanding of shale gas exploration in the Longmaxi Formation of Sichuan Basin and its periphery. Acta Geol. Sin. 2014, 88, 10. [Google Scholar]
- Cao, T.; Xue, H.; Pan, A.; Xiao, J.; Ning, G. Shale gas-bearing capacity and its controlling factors of Wufeng–Longmaxi formations in northern Guizhou, China. Geol. J. 2024, 59, 2772–2788. [Google Scholar] [CrossRef]
- Fan, C.; Nie, S.; Li, H.; Radwan, A.E.; Pan, Q.; Shi, X.; Li, J.; Liu, Y.; Guo, Y. Quantitative prediction and spatial analysis of structural fractures in deep shale gas reservoirs within complex structural zones: A case study of the Longmaxi Formation in the Luzhou area, southern Sichuan Basin, China. J. Asian Earth Sci. 2024, 263, 106025. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, Y.; Yang, Q.; Chen, Q.; Zhang, Y.; Xu, Z.; Feng, X.; Tian, B.; Wang, L.; Liu, Y. Gas sorption in shale media by molecular simulation: Advances, challenges and perspectives. Chem. Eng. J. 2024, 487, 150742. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, Z.; Wang, D.; Wang, G.; Lai, F.; Li, Z.; He, J. Microscopic pore structure characteristics and controlling factors of marine shale: A case study of Lower Cambrian shales in the Southeastern Guizhou, Upper Yangtze Platform, South China. Front. Earth Sci. 2024, 12, 1368326. [Google Scholar] [CrossRef]
- Wang, S.; Man, L.; Wang, S.; Wu, L.; Zhu, Y.; Li, Y.; He, Y. Lithofacies types, reservoir characteristics and silica origin of marine shales: A case study of the Wufeng formation–Longmaxi Formation in the Luzhou area, southern Sichuan Basin. Nat. Gas Ind. B 2022, 9, 394–410. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Hu, Q.; Yi, T.; Ke, J.; Zhao, A.; Lei, Z.; Yu, Y. Quartz types, silica sources and their implications for porosity evolution and rock mechanics in the Paleozoic Longmaxi Formation shale, Sichuan Basin. Mar. Pet. Geol. 2021, 128, 105036. [Google Scholar] [CrossRef]
- Zheng, Y.; Liao, Y.; Wang, Y.; Xiong, Y.; Peng, P.A. The main geological factors controlling the Wufeng-Longmaxi shale gas content. AAPG Bull. 2022, 106, 2073–2102. [Google Scholar] [CrossRef]
- Chen, K.; Yang, R.; Bao, H.; Dong, T.; Jia, A.; Hu, Q.; Guo, X.; He, S. Depositional-diagenetic process and their implications for pore development of Wufeng-Longmaxi shales in the Jiangdong block, Fuling shale gas field, SW China. Mar. Pet. Geol. 2023, 151, 106177. [Google Scholar] [CrossRef]
- Jiao, W.; Huang, Y.; Zhang, H.; Zhang, Y.; Zhao, D.; Wen, L.; Guo, P.; Zhang, J. Characteristics of Typical Shale Reservoir Development and Its Gas-Bearing Influencing Factors. Chem. Technol. Fuels Oils 2024, 60, 132–141. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Yang, C.; Wu, Y.; Gao, Z.; Jiang, S. Geological characteristics and controlling factors of deep shale gas enrichment of the Wufeng-Longmaxi Formation in the southern Sichuan Basin, China. Lithosphere 2022, 2022, 4737801. [Google Scholar] [CrossRef]
- Li, M.; Pang, X.; Xiong, L.; Hu, T.; Chen, D.; Zhao, Z.; Hui, S. Application of mathematical statistics to shale gas-bearing property evaluation and main controlling factor analysis. Sci. Rep. 2022, 12, 9859. [Google Scholar] [CrossRef]
- Liu, Y.; Xian, C.; Huang, X. Characteristics of Micro–Nano-Pores in Shallow Shale Gas Reservoirs and Their Controlling Factors on Gas Content. Energies 2024, 17, 1682. [Google Scholar] [CrossRef]
- Memon, A.; Li, A.; Memon, B.S.; Muther, T.; Han, W.; Kashif, M.; Tahir, M.U.; Akbar, I. Gas adsorption and controlling factors of shale: Review, application, comparison and challenges. Nat. Resour. Res. 2021, 30, 827–848. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Hu, Q.; Li, L.; Gao, Z.; Tian, T.; Chao, J. The effect of clay-swelling induced cracks on imbibition behavior of marine shale reservoirs. J. Nat. Gas Sci. Eng. 2020, 83, 103525. [Google Scholar] [CrossRef]
- Shi, X.; Wu, W.; Zhou, S.; Tian, C.; Li, D.; Li, D.; Li, Y.; Cai, C.; Chen, Y. Adsorption characteristics and controlling factors of marine deep shale gas in southern Sichuan Basin, China. J. Nat. Gas Geosci. 2022, 7, 61–72. [Google Scholar] [CrossRef]
- Su, H.; Zhang, K.; Nie, H.; Guo, S.; Li, P.; Sun, C. High-quality reservoir space types and controlling factors of deep shale gas reservoirs in the Wufeng–Longmaxi Formation, Sichuan Basin. Energy Fuels 2025, 39, 1106–1125. [Google Scholar] [CrossRef]
- Xiao, X.-M.; Wei, Q.; Gai, H.-F.; Li, T.-F.; Wang, M.-L.; Pan, L.; Chen, J.; Tian, H. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China. Pet. Sci. 2015, 12, 573–586. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, J.; Liu, W.; Li, B.; Xia, Q.; Cheng, S.; Yang, Y.; Zeng, Y.; Wen, M.; Liu, D. The role of deep geofluids in the enrichment of sedimentary organic matter: A case study of the Late Ordovician-Early Silurian in the upper Yangtze region and early Cambrian in the lower Yangtze region, south China. Geofluids 2020, 2020, 8868638. [Google Scholar] [CrossRef]
- Hu, Z.Q. The Coupling Mechanism of Shale Gas Source and Reservoir and Its Application; Geological Publishing House: Beijing, China, 2018. [Google Scholar]
- Zhang, H. Scanning Electron Microscopy Study of Unconventional Oil and Gas Reservoirs; Geological Publishing House: Beijing, China, 2016. [Google Scholar]
- Zhao, J.H.; Jin, Z.J.; Lin, C.S.; Liu, G.X.; Liu, K.Y.; Liu, Z.B.; Zhang, Y.Y. Shale sedimentary environment of Lower Cambrian Qiongzhusi Formation in Upper Yangtze region. Oil Gas Geol. 2019, 40, 15. [Google Scholar]
- Li, G.; Xiao, X.; Gai, H.; Lu, C.; Feng, Y. Nanopore structures and controlling factors of the Early Cambrian shale reservoir in the Middle Yangtze Platform, South China. J. Asian Earth Sci. 2023, 254, 105738. [Google Scholar] [CrossRef]
- Liu, Z.B.; Gao, B.; Zhang, Y.Y.; Du, W.; Feng, Y.J.; Nie, H.K. Sedimentary facies types and distribution characteristics of Lower Cambrian shale in Upper Yangtze region. Pet. Explor. Dev. 2017, 44, 11. [Google Scholar] [CrossRef]
- Gi, L.M.; Qiu, J.J.; Zhang, T.W.; Xia, Y.Q. Methane adsorption experiment of main clay mineral components of mud shale. Earth Sci. J. China Univ. Geosci. 2012, 37, 8. [Google Scholar]
- Zhao, Y.; Gao, P.; Zhou, Q.; Xiao, X.; Xing, Y.; Liu, W. A review of the heterogeneity of organic-matter-hosted pores in shale reservoirs. Energies 2022, 15, 8805. [Google Scholar] [CrossRef]
- Liu, J.; Ding, W.; Wang, R.; Yin, S.; Yang, H.; Gu, Y. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: A case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong block, South China. Mar. Pet. Geol. 2017, 84, 289–310. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Y.; Jiang, Z.; Xu, D.; Li, L.; Yuan, X.; Liu, P.; Han, F.; Tang, L.; Wang, X. Quantitative Comparison of Genesis and Pore Structure Characteristics of Siliceous Minerals in Marine Shale With Different TOC Contents–A Case Study on the Shale of Lower Silurian Longmaxi Formation in Sichuan Basin, Southern China. Front. Earth Sci. 2022, 10, 887160. [Google Scholar] [CrossRef]
- Li, G.; Gao, P.; Xiao, X.; Lu, C.; Feng, Y. Lower Cambrian Organic-Rich Shales in Southern China: A Review of Gas-Bearing Property, Pore Structure, and Their Controlling Factors. Geofluids 2022, 2022, 9745313. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Hu, Q.; Liu, K.; Liu, G.; Gao, B.; Liu, Z.; Zhang, Y.; Wang, R. Geological controls on the accumulation of shale gas: A case study of the early Cambrian shale in the Upper Yangtze area. Mar. Pet. Geol. 2019, 107, 423–437. [Google Scholar] [CrossRef]
- Zhang, L.H.; Tang, H.M.; Chen, G.; Li, Q.R.; He, G.Y. Adsorption characteristics and controlling factors of Lower Silurian Longmaxi Formation shale in southern Sichuan. Nat. Gas Ind. 2014, 34, 63–69. [Google Scholar]
- Wang, M.Z.; Liu, S.B.; Ren, J.J.; Tian, H. Pore characteristics and methane adsorption of clay minerals in shale gas reservoir. Geol. Rev. 2015, 61, 207–216. [Google Scholar]
- Gu, Y.; Wan, Q.; Qin, Z.; Luo, T.; Li, S.; Fu, Y.; Yu, Z. Nanoscale pore characteristics and influential factors of Niutitang formation shale reservoir in Guizhou province. J. Nanosci. Nanotechnol. 2017, 17, 6178–6189. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Tang, X.; Ding, J.; Zhao, Q.; Dang, W.; Chen, H.; Su, Y.; Li, B.; Lu, D. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China. Int. J. Coal Geol. 2017, 171, 76–92. [Google Scholar] [CrossRef]
- Wang, R.Y.; Hu, Z.Q.; Yang, T.; Gong, D.J.; Yin, S.; Liu, Z.B.; Gao, B. Pore structure characteristics of Lower Cambrian black shale in Cengong area, southeast Guizhou. Exp. Pet. Geol. 2019, 41, 8. [Google Scholar]
- Gai, H.; Li, T.; Wang, X.; Tian, H.; Xiao, X.; Zhou, Q. Methane adsorption characteristics of overmature Lower Cambrian shales of deepwater shelf facies in Southwest China. Mar. Pet. Geol. 2020, 120, 104565. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.; Liu, Q.; Jiang, S.; Liu, K.; Tan, J.; Gao, F. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, X.-M.; Wang, E.-Z.; Gao, P.; Lu, C.-G.; Li, G. Gas storage in shale pore system: A review of the mechanism, control and assessment. Pet.Sci. 2023, 20, 2605–2636. [Google Scholar] [CrossRef]
- Lu, X.-C.; Li, F.-C.; Watson, A.T. Adsorption measurements in Devonian shales. Fuel 1995, 74, 599–603. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Pevear, D.R.; Hill, R.J. Mineral surface control of organic carbon in black shale. Science 2002, 295, 657–660. [Google Scholar] [CrossRef]
- Ross, D.J.; Bustin, R.M. Shale gas potential of the lower Jurassic Gordondale member, northeastern British Columbia, Canada. Bull. Can. Pet. Geol. 2007, 55, 51–75. [Google Scholar] [CrossRef]
- Bustin, R.M.; Bustin, A.M.; Cui, X.; Ross, D.; Pathi, V.M. Impact of shale properties on pore structure and storage characteristics. In Proceedings of the SPE Shale Gas Production Conference, Fort Worth, TX, USA, 16–18 November 2008; p. SPE–119892-MS. [Google Scholar]
- Corrado, S.; Schito, A.; Romano, C.; Grigo, D.; Poe, B.T.; Aldega, L.; Caricchi, C.; Di Paolo, L.; Zattin, M. An integrated platform for thermal maturity assessment of polyphase, long-lasting sedimentary basins, from classical to brand-new thermal parameters and models: An example from the on-shore Baltic Basin (Poland). Mar. Pet. Geol. 2020, 122, 104547. [Google Scholar] [CrossRef]
- Schito, A.; Andreucci, B.; Aldega, L.; Corrado, S.; Di Paolo, L.; Zattin, M.; Szaniawski, R.; Jankowski, L.; Mazzoli, S. Burial and exhumation of the western border of the Ukrainian Shield (Podolia): A multi-disciplinary approach. Basin Res. 2018, 30, 532–549. [Google Scholar] [CrossRef]
- Li, P. Analysis of geological conditions and main controlling factors of the constituent reservoir of Niutitang in Cengong shale gas block. In Proceedings of the Excellent Proceedings of the 3rd National Special Gas Reservoir Development Technology Seminar 2014, Chongqing, China, October 2014; pp. 161–169. [Google Scholar]
- Jiang, Z.X. Pore Structure and Gas Bearing Properties of Typical Marine and Continental Shale Reservoirs in China; Science Press: Hong Kong, China, 2018. [Google Scholar]
- Meng, G.; Li, T.; Gai, H.; Xiao, X. Pore characteristics and gas preservation of the Lower Cambrian Shale in a strongly deformed zone, Northern Chongqing, China. Energies 2022, 15, 2956. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Y.; Jia, C.; Jiang, Z.; Han, F.; Wang, P.; Yuan, X.; Yang, Y.; Zeng, Y.; Li, Y. Formation mechanism of the sealing capacity of the roof and floor strata of marine organic-rich shale and shale itself, and its influence on the characteristics of shale gas and organic matter pore development. Mar. Pet. Geol. 2022, 140, 105647. [Google Scholar] [CrossRef]
- Shang, F.H.; Zhu, Y.M.; Hu, Q.H.; Zhu, Y.W.; Wang, Y.; Du, M.Y.; Liu, R.Y.; Han, Y. Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance. J. Nat. Gas Sci. Eng. 2020, 84, 103676. [Google Scholar] [CrossRef]
- Raut, U.; Famá, M.; Teolis, B.; Baragiola, R. Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. J. Chem. Phys. 2007, 127, 204713. [Google Scholar] [CrossRef]
Genetic Type | Essential Mineral | Formation Stage and Presence Mode |
---|---|---|
Terrigenous clasts and minerals | Quartz, feldspar, mica, rock debris, and clay minerals | Formed in the sedimentary stage, granular, long strip-shaped, and flaky minerals are generally arranged anisotropically to form stratification. |
Chemical and biochemical origin | Quartz, silica, calcite, pyrite, illite, and chlorite | Materials gradually form and fill the original pores in the diagenesis stage, while cementing the debris particles. Biogenic minerals still maintain obvious biological characteristics. |
Hydrothermal origin | Barite, quartz, witherite, and sphalerite | Materials formed by hydrothermal activity fill pores and cracks, exhibiting a vein-like and thin-film-like structure. |
Sample Number | Depth/m | TOC/% | Quartz/% | Calcite/% | Dolomite/% | Potassium Feldspar/% | Plagioclase/% | Clay Minerals/% | Pyrite/% | Langmuir Volume VL/(cm3·g−1) | Shale Gas Content/(cm3/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
TXA-N1-J3 | 1775.56~1775.78 | 4.14 | 49.7 | / | 6.3 | 1.1 | 7.2 | 26.6 | 9.1 | 7.01 | 1.32 |
TXA-N1-J2 | 1779.08~1779.35 | 5.11 | 42.5 | 0.9 | 8.2 | 2.1 | 8 | 24.9 | 13.4 | 4.52 | 1.55 |
TXA-N1-J1 | 1783.18~1783.46 | 5.8 | 52.7 | 1.6 | 6.2 | 1.9 | 7.6 | 17.9 | 12.1 | 8.78 | 1.86 |
TXA-N1-J5 | 1788.57~1788.85 | 5.1 | 67 | 2.1 | 4.2 | 2.1 | 5.3 | 12.6 | 6.7 | 6.81 | 2.12 |
TXA-N1-J4 | 1791.08~1791.36 | 6.77 | 64 | 3.9 | 4.6 | 1.6 | 6.5 | 8.7 | 10.7 | 6.6 | 2.45 |
TXA-N1-J7 | 1797.33~1797.63 | 6.02 | 71.2 | 2.1 | 3.7 | 2.2 | 6.4 | 7.3 | 7.1 | 5.79 | 2.77 |
TXA-N1-J6 | 1800.12~1801.38 | 6.04 | 35.9 | / | 13.8 | 5.6 | 21.6 | 10.2 | 12.9 | 6.74 | 1.44 |
TMA-N-J1 | 1405.73–1406.01 | 0.9 | 31.3 | 10.7 | 11.4 | 1.1 | 4.9 | 32.9 | 7.7 | 1.87 | 0.09 |
TMA-N-J4 | 1413.28–1313.58 | 0.9 | 27.6 | 11.1 | 10.5 | 1.6 | 5.8 | 31.6 | 11.8 | 1.91 | 0.08 |
TMA-N-J8 | 1419.60–1419.81 | 1.95 | 40.4 | 1.8 | 5.6 | 1.9 | 10.7 | 30.8 | 8.8 | 2.37 | 0.12 |
TMA-N-J10 | 1423.46–1423.74 | 2.43 | 40.6 | / | 3.5 | 2.2 | 10.6 | 33.1 | 9.9 | 3.02 | 0.08 |
TMA-N-J12 | 1428.25–1428.51 | 3.47 | 38.4 | 2.5 | 5.3 | 2.9 | 10.1 | 27.7 | 13.2 | 4.15 | 0.11 |
TMA-N-J15 | 1434.91–1435.19 | 3.58 | 43.7 | 3.5 | 4.1 | 4 | 7 | 20.7 | 17.1 | 4.98 | 0.21 |
TMA-N-J18 | 1439.13–1439.38 | 4.61 | 61.8 | 3.7 | 4.3 | 2.4 | 4.8 | 16.4 | 6.6 | 5.79 | 0.25 |
TMA-N-J21 | 1445.18–1445.47 | 5 | 63.3 | 2 | 3.4 | 2.3 | 5.1 | 15.9 | 8 | 2.81 | / |
TMA-N-J24 | 1450.37–1450.62 | 9.07 | 65.7 | 5.8 | 3.2 | 2.9 | 5.9 | 10.1 | 6.5 | 7.75 | / |
TMA-N-J26 | 1456.32–1456.58 | 5.54 | 53.4 | 4.5 | 5.4 | 3.5 | 7.3 | 15.5 | 10.3 | 7.58 | 0.22 |
TMA-N-J30 | 1463.20–1463.50 | 5.4 | 52.6 | 3.2 | 3.4 | 4.4 | 10.1 | 15.8 | 10.6 | 5.47 | 0.25 |
TMA-N-J31 | 1464.29–1464.57 | 4.92 | 48.6 | 3.1 | 6 | 4.4 | 9.7 | 17 | 11.2 | 4.53 | 0.2 |
TMA-N-D98 | 1467.42–1467.52 | 4.36 | 46.4 | 3.8 | 5.4 | 5.2 | 10.3 | 16.3 | 12.5 | 4.48 | / |
TMA-N-D106 | 1471.46–1471.51 | 5.18 | 46.4 | 11.3 | / | 6 | 7.9 | 13.9 | 10.5 | 3.85 | / |
TMA-N-D114 | 1475.50–1475.55 | 2.33 | 55 | 3.5 | / | 5.1 | 8.2 | 16.8 | 9.1 | 2.12 | / |
TMA-N-J32 | 1481.80–1482.10 | 4.53 | 49.1 | 4.4 | 3.8 | 4.9 | 11 | 17.2 | 9.7 | 7.18 | / |
TMA-N-D135 | 1486.37–1486.42 | 4.42 | 84.6 | 3 | / | / | / | 10.3 | 2.1 | 3.52 | / |
Diagenetic Type | Main Diagenetic Characteristics | Changes in Porosity |
---|---|---|
Compaction | Minerals in close contact, with clay minerals and micas oriented parallel to the bedding planes | Decrease |
Ementation | Silica: Euhedral quartz crystals and crystallite aggregates. | Decrease |
arbonates: Microcrystalline calcite-filling intergranular pores, with dolomite/ferroan dolomite cementation | Decrease | |
Pyrite: Microscopically present as framboidal aggregates and euhedral crystals | Decrease | |
Clay transformation | Transformation of smectite to illite | Minor impact |
Replacement | Replacement of other minerals by carbonate minerals | Minor impact |
Dissolution | Dissolution of carbonate minerals and feldspar | Increase |
Thermal evolution | Thermal evolution causing organic matter to infiltrate the intergranular pores of inorganic minerals | Decrease |
Shale gas and organic pores generated by the thermal cracking of organic matter | Increase | |
Solid bitumen formed by the thermal cracking of organic matter | Increase | |
Fracture | Tectonic activity inducing tectonic fractures | Increase |
Sedimentary processes resulting in bedding fractures and lamina fractures | Increase | |
Diagenetic processes leading to grain-boundary and intercrystalline fractures | Increase |
Sample Number | Depth (m) | Tmax (°C) | Ro (%) | Maturity | |||
---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | Average | Range | |||
TX1-N1-J3 | 1775.56~1775.78 | 485.7 | 422.8 | 447.5 | 2.47 | 2.12~3.06 | Mature |
TX1-N1-J1 | 1783.18~1783.46 | 580.1 | 431.1 | 529.2 | 2.84 | 2.05~4.31 | Mature, Over mature |
TX1-N1-J6 | 1800.12~1801.38 | 583.8 | 431.1 | 542.2 | 2.5 | 2.13~3.08 | Mature, Over mature |
TX1-L1-D4 | 1813.70~1813.72 | 583.8 | 524.5 | 562.1 | 2.17 | 2.03~2.3 | Over mature |
Geographical Location | Hydrothermal Deposit | Formation | Lithology |
---|---|---|---|
Tongren Yangzhai | Lead–zinc ore | Middle and Upper Cambrian | Dolomite |
Tongren Guanglongpo | Lead–zinc ore | Lower Cambrian | Limestone and dolomite |
Tongren Tangbianpo | Lead–zinc ore | Lower Cambrian | Limestone and dolomite |
Songtao Panxin | Lead–zinc ore | Lower Cambrian | |
Wuchuan Muyouchang | Mercury ore | Lower Cambrian | Limestone and dolomite |
Fenggang Chahuaping | Uranium ore | Middle and Upper Cambrian | Dolomite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Ma, L.; Yu, Q.; Zhang, T.; Bai, J.; An, C.; Li, C.; Peng, J. Identifying the Key Control Factors of Deep Marine Shale Gas Reservoirs: A Case Study on Lower Cambrian Fine-Grained Sedimentary Rocks in Cen Gong, Guizhou, China. Minerals 2025, 15, 505. https://doi.org/10.3390/min15050505
Wang D, Ma L, Yu Q, Zhang T, Bai J, An C, Li C, Peng J. Identifying the Key Control Factors of Deep Marine Shale Gas Reservoirs: A Case Study on Lower Cambrian Fine-Grained Sedimentary Rocks in Cen Gong, Guizhou, China. Minerals. 2025; 15(5):505. https://doi.org/10.3390/min15050505
Chicago/Turabian StyleWang, Dahai, Lichi Ma, Qian Yu, Tao Zhang, Jian Bai, Chuan An, Chuntang Li, and Jun Peng. 2025. "Identifying the Key Control Factors of Deep Marine Shale Gas Reservoirs: A Case Study on Lower Cambrian Fine-Grained Sedimentary Rocks in Cen Gong, Guizhou, China" Minerals 15, no. 5: 505. https://doi.org/10.3390/min15050505
APA StyleWang, D., Ma, L., Yu, Q., Zhang, T., Bai, J., An, C., Li, C., & Peng, J. (2025). Identifying the Key Control Factors of Deep Marine Shale Gas Reservoirs: A Case Study on Lower Cambrian Fine-Grained Sedimentary Rocks in Cen Gong, Guizhou, China. Minerals, 15(5), 505. https://doi.org/10.3390/min15050505