Application of Surface-Modified Natural Magnetite as a Magnetic Carrier for Microplastic Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.1.1. Microplastic Samples
2.1.2. Magnetic Carrier
2.2. Surface Modification of Natural Magnetite
2.3. Floatability Experiment
2.4. Microplastic Removal Experiment
3. Results and Discussion
3.1. Surface Modification of Natural, Micro-Scale Magnetite
3.1.1. Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy
3.1.2. Fourier Transform Infrared Spectroscopy Analysis
3.1.3. Floatability Experiments
3.2. Microplastic Removal Using the Modified Micro-Scale Magnetic Carrier
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juntarasakul, O.; Julapong, P.; Srichonphaisarn, P.; Meekoch, T.; Janjaroen, D.; Tabelin, C.B.; Phengsaart, T. Weave structures of polyester fabric affect the tensile strength and microplastic fiber emission during the laundry process. Sci. Rep. 2025, 15, 2272. [Google Scholar] [CrossRef]
- Julapong, P.; Srichonphaisarn, P.; Meekoch, T.; Tabelin, C.B.; Juntarasakul, O.; Phengsaart, T. The Influence of Textile Type, Textile Weight, and Detergent Dosage on Microfiber Emissions from Top-Loading Washing Machines. Toxics 2024, 12, 210. [Google Scholar] [CrossRef]
- Sutkar, P.R.; Gadewar, R.D.; Dhulap, V.P. Recent trends in degradation of microplastics in the environment: A state-of-the-art review. J. Hazard. Mater. Adv. 2023, 11, 100343. [Google Scholar] [CrossRef]
- Rochman, C.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.R.A.; Luza, K.M.B.; Subebe, M.J.B.; Tabelin, C.B.; Phengsaart, T.; Arima, T.; Seno, R.; Butalid, R.; Escabarte, A.B.; Mazahery, A.R.F.; et al. Polytetrafluoroethylene (PTFE) microplastics affect angiogenesis and central nervous system (CNS) development of duck embryo. Emerg. Contam. 2025, 11, 100433. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Donner, E.; McGrath, S.P.; Tscharke, B.J.; O’Brien, J.W.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; et al. Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. Water Res. 2021, 201, 117367. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Rani, A.; Chiang, C.Y.; Kim, H.; Pan, S.Y. Monitoring, control and assessment of microplastics in bioenvironmental systems. Environ. Technol. Innov. 2023, 32, 103250. [Google Scholar] [CrossRef]
- Quang, H.H.P.; Dinh, D.A.; Dutta, V.; Chauhan, A.; Lahiri, S.K.; Gopalakrishnan, C.; Radhakrishnan, A.; Batoo, K.M.; Thi, L.A.P. Current approaches, and challenges on identification, remediation and potential risks of emerging plastic contaminants: A review. Environ. Toxicol. Pharmacol. 2023, 101, 104193. [Google Scholar] [CrossRef]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef]
- Bissen, R.; Chawchai, S. Microplastics on beaches along the eastern Gulf of Thailand—A preliminary study. Mar. Pollut. Bull. 2020, 157, 111345. [Google Scholar] [CrossRef]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queirós, A.M.; Galloway, T.S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef]
- Lechthaler, S.; Hildebrandt, L.; Stauch, G.; Schüttrumpf, H. Canola oil extraction in conjunction with a plastic free separation unit optimises microplastics monitoring in water and sediment. Anal. Methods 2020, 12, 5128–5139. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, R.; Tsuchiya, M.; Lindsay, D.J.; Kitahashi, T.; Fujikura, K.; Fukushima, T. A new small device made of glass for separating microplastics from marine and freshwater sediments. PeerJ 2019, 7, e7915. [Google Scholar] [CrossRef]
- Enders, K.; Tagg, A.S.; Labrenz, M. Evaluation of Electrostatic Separation of Microplastics From Mineral-Rich Environmental Samples. Front. Environ. Sci. 2020, 8, 112. [Google Scholar] [CrossRef]
- Felsing, S.; Kochleus, C.; Buchinger, S.; Brennholt, N.; Stock, F.; Reifferscheid, G. A new approach in separating microplastics from environmental samples based on their electrostatic behavior. Environ. Pollut. 2018, 234, 20–28. [Google Scholar] [CrossRef]
- Wang, Z.; Sedighi, M.; Lea-Langton, A. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms. Water Res. 2020, 184, 116165. [Google Scholar] [CrossRef] [PubMed]
- Cuartucci, M. Ultrafiltration, a cost-effective solution for treating surface water to potable standard. Water Pract. Technol. 2020, 15, 426–436. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Song, K.; Zhou, Y. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water. Mar. Pollut. Bull. 2020, 150, 110724. [Google Scholar] [CrossRef]
- Lapointe, M.; Farner, J.M.; Hernandez, L.M.; Tufenkji, N. Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environ. Sci. Technol. 2020, 54, 8719–8727. [Google Scholar] [CrossRef]
- Rajala, K.; Grönfors, O.; Hesampour, M.; Mikola, A. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res. 2020, 183, 116045. [Google Scholar] [CrossRef]
- Shahi, N.K.; Maeng, M.; Kim, D.; Dockko, S. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand. Process Saf. Environ. Prot. 2020, 141, 9–17. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic extraction of microplastics from environmental samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Misra, A.; Zambrzycki, C.; Kloker, G.; Kotyrba, A.; Anjass, M.H.; Franco Castillo, I.; Mitchell, S.G.; Güttel, R.; Streb, C. Water purification and microplastics removal using magnetic polyoxometalate-supported ionic liquid phases (magPOM-SILPs). Angew. Chem. Int. Ed. 2020, 59, 1601–1605. [Google Scholar] [CrossRef]
- Falconer, A. Gravity separation: Old technique/new methods. Phys. Sep. Sci. Eng. 2003, 12, 31–48. [Google Scholar] [CrossRef]
- Das, A.; Sarkar, B. Advanced gravity concentration of fine particles: A review. Miner. Process. Extr. Metall. Rev. 2018, 39, 359–394. [Google Scholar] [CrossRef]
- Huang, J.; Wu, P.; Dong, S.; Gao, B. Occurrences and Impacts of Microplastics in Soils and Groundwater. In Emerging Contaminants in Soil and Groundwater Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–299. [Google Scholar] [CrossRef]
- Mulindwa, P.; Kasule, J.S.; Nantaba, F.; Wasswa, J.; Expósito, A.J. Bioadsorbents for removal of microplastics from water ecosystems: A review. Int. J. Sustain. Eng. 2024, 17, 582–599. [Google Scholar] [CrossRef]
- Anuwa-Amarh, N.A.; Dizbay-Onat, M.; Venkiteshwaran, K.; Wu, S. Carbon-Based Adsorbents for Microplastic Removal from Wastewater. Materials 2024, 17, 5428. [Google Scholar] [CrossRef]
- Yoo, S.S.; Chu, K.H.; Choi, I.H.; Mang, J.S.; Ko, K.B. Operating cost reduction of UF membrane filtration process for drinking water treatment attributed to chemical cleaning optimization. J. Environ. Manag. 2018, 206, 1126–1134. [Google Scholar] [CrossRef]
- Prakash, R.; Majumder, S.K.; Singh, A. Flotation technique: Its mechanisms and design parameters. Chem. Eng. Process.-Process. Intensif. 2018, 127, 249–270. [Google Scholar] [CrossRef]
- Bilal, M.; Park, I.; Hornn, V.; Ito, M.; Hassan, F.U.; Jeon, S.; Hiroyoshi, N. The challenges and prospects of recovering fine copper sulfides from tailings using different flotation techniques: A review. Minerals 2022, 12, 586. [Google Scholar] [CrossRef]
- Julapong, P.; Ekasin, J.; Katethol, P.; Srichonphaisarn, P.; Juntarasakul, O.; Numprasanthai, A.; Tabelin, C.B.; Phengsaart, T. Agglomeration–flotation of microplastics using kerosene as bridging liquid for particle size enlargement. Sustainability 2022, 14, 15584. [Google Scholar] [CrossRef]
- Cao, Y.; Sathish, C.I.; Guan, X.; Wang, S.; Palanisami, T.; Vinu, A.; Yi, J. Advances in magnetic materials for microplastic separation and degradation. J. Hazard. Mater. 2024, 461, 132537. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, S.; Zhao, J.; Ma, J.; Wu, H.; Sun, H.; Cheng, S. Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite. Sep. Purif. Technol. 2022, 288, 120564. [Google Scholar] [CrossRef]
- Storozhuk, L.; Iukhymenko, N. Iron oxide nanoparticles modified with silanes for hyperthermia applications. Appl. Nanosci. 2019, 9, 889–898. [Google Scholar] [CrossRef]
- Pizem, H.; Sukenik, C.N.; Sampathkumaran, U.; McIlwain, A.K.; De Guire, M.R. Effects of substrate surface functionality on solution-deposited titania films. Chem. Mater. 2002, 14, 2476–2485. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Chen, M.; Zhang, W.; Mao, J.; Zhao, Y.; Maitz, M.F.; Hunag, N.; Wan, G. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corros. Sci. 2015, 96, 67–73. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, C.; Nie, Y.; Xing, B.; Wen, X.; Cheng, S. Separation experiment and mechanism study on PVC microplastics removal from aqueous solutions using high-gradient magnetic filter. J. Water Process Eng. 2023, 51, 103495. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Gao, W.; Zhang, Y.; He, D. Removal of microplastics from water by magnetic nano-Fe3O4. Sci. Total Environ. 2022, 802, 149838. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.C.; Alvarez, C.A.; Alves, B.C.; Rodrigues, J.M.; Queiroz, M.J.R.; Almeida, B.G.; Pires, A.; Pereira, A.M.; Araújo, J.P.; Coutinho, P.J.G.; et al. Development of Thermo-and pH-sensitive liposomal magnetic carriers for new potential antitumor thienopyridine derivatives. Materials 2022, 15, 1737. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X. Microalgal harvesting using foam flotation: A critical review. Biomass Bioenergy 2019, 120, 176–188. [Google Scholar] [CrossRef]
- Barquilha, C.E.; Braga, M.C. Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresour. Technol. Rep. 2021, 15, 100728. [Google Scholar] [CrossRef]
- Wang, S.H.; Yu, J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials 2018, 156, 1–15. [Google Scholar] [CrossRef] [PubMed]
Type of Plastics | Abbreviation | SG | Provider |
---|---|---|---|
Polypropylene | PP | 0.92 | Showa Denko Materials Co., Ltd., Tokyo, Japan |
Polyethylene | PE | 0.97 | Showa Denko Materials Co., Ltd., Tokyo, Japan |
Acrylonitrile Butadiene Styrene | ABS | 1.03 | Sumitomo Bakelite Co., Ltd., Shizuoka, Japan |
Polystyrene | PS | 1.06 | Kyoei Sangyo Co., Ltd., Tokyo, Japan |
Polyethylene terephthalate | PET | 1.31 | Sanplatec Corp., Osaka, Japan |
Polyvinyl chloride | PVC | 1.38 | Sanplatec Corp., Osaka, Japan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srichonphaisarn, P.; Soonthornwiphat, N.; Julapong, P.; Limlertchareonwanit, T.; Meekoch, T.; Park, I.; Villacorte-Tabelin, M.; Juntarasakul, O.; Saisinchai, S.; Tabelin, C.B.; et al. Application of Surface-Modified Natural Magnetite as a Magnetic Carrier for Microplastic Removal from Water. Minerals 2025, 15, 425. https://doi.org/10.3390/min15040425
Srichonphaisarn P, Soonthornwiphat N, Julapong P, Limlertchareonwanit T, Meekoch T, Park I, Villacorte-Tabelin M, Juntarasakul O, Saisinchai S, Tabelin CB, et al. Application of Surface-Modified Natural Magnetite as a Magnetic Carrier for Microplastic Removal from Water. Minerals. 2025; 15(4):425. https://doi.org/10.3390/min15040425
Chicago/Turabian StyleSrichonphaisarn, Palot, Natatsawas Soonthornwiphat, Pongsiri Julapong, Thanakornkan Limlertchareonwanit, Thidarat Meekoch, Ilhwan Park, Mylah Villacorte-Tabelin, Onchanok Juntarasakul, Somsak Saisinchai, Carlito Baltazar Tabelin, and et al. 2025. "Application of Surface-Modified Natural Magnetite as a Magnetic Carrier for Microplastic Removal from Water" Minerals 15, no. 4: 425. https://doi.org/10.3390/min15040425
APA StyleSrichonphaisarn, P., Soonthornwiphat, N., Julapong, P., Limlertchareonwanit, T., Meekoch, T., Park, I., Villacorte-Tabelin, M., Juntarasakul, O., Saisinchai, S., Tabelin, C. B., & Phengsaart, T. (2025). Application of Surface-Modified Natural Magnetite as a Magnetic Carrier for Microplastic Removal from Water. Minerals, 15(4), 425. https://doi.org/10.3390/min15040425