In Situ Geochemical and Sulfur Isotopic Composition of Pyrites from the Jiepailing Tin–Beryllium Polymetallic Deposit, Southern Hunan Province, China: Implications for Ore-Forming Processes
Abstract
:1. Introduction
2. Regional Geological Setting
3. Deposit Geology
3.1. Geology of the Jiepailing Area
3.2. Orefield Characteristics
3.3. Alternation and Mineralization
4. Samples and Analytical Methods
4.1. Samples
4.2. Analytical Methods
5. Results
5.1. Trace Element Compositions of Pyrite
5.1.1. PyI
5.1.2. PyII
5.1.3. PyIII
5.1.4. PyIV
5.1.5. PyV
5.2. Sulfur Isotope Compositions
6. Discussion
6.1. Chemical Characteristics of Pyrite
6.2. Sources of Ore-Forming Fluid
6.3. Fluid Evolution of Multi-Stage Ore-Forming
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.-H.; Chen, Y.-C.; Chen, Z.-H.; Liu, S.-B.; Xu, J.-X.; Zhang, J.-J.; Zeng, Z.-L.; Chen, F.-W.; Li, H.-Q.; Guo, C.-L. Assessment on Mineral Resource in Nanling Region and Suggestion for Further Prospecting. Acta Geol. Sin. 2007, 7, 82–890. [Google Scholar]
- Chen, Y.-C.; Wang, D.-H.; Xu, Z.-G.; Huang, F. Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China. Geotecton. Metallog. 2014, 2, 219–229. [Google Scholar]
- Yuan, S.-D.; Williams-Jones, A.; Romer, R.; Zhao, P.-L.; Mao, J.-W. Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China. Econ. Geol. 2019, 5, 1005–1012. [Google Scholar] [CrossRef]
- Wang, D.-H.; Huang, F.; Wang, Y.; He, H.-H.; Li, X.-M.; Liu, X.-X.; Sheng, J.-F.; Liang, T. Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region, South China. Ore Geol. Rev. 2020, 120, 103305. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Guo, C.-L.; Hu, F.-Y.; Liu, X.-C.; Zhao, J.-X.; Li, X.-F.; Qin, K.-Z. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrol. Sin. 2023, 1, 1–36. [Google Scholar] [CrossRef]
- Hou, Z.-D.; Zhao, Z.; Liu, Z.-J.; Wang, J.-P. Metallogenetic regularity and prospecting direction of granite related Li-Be-Nb-Ta deposits in the Nanling region, South China. Acta Petrol. Sin. 2023, 7, 1950–1972. [Google Scholar] [CrossRef]
- Mao, J.-W.; Li, H.-Y.; Guy, B.; Raimbault, L. Geology and Metallogeny of the Shizhuyuan Skarn-Greisen W-Sn-Mo-Bi Deposit, Hunan Province. Miner. Depos. 1996, 1, 1–15. [Google Scholar]
- Mao, J.-W.; Li, X.-F.; Lehmann, B.; Chen, W.; Lan, X.-M.; Wei, S.-L. 40Ar-39Ar Dating of Tin Ores and Related Granite in Furong Tin Orefield, Hunan Province, and Its Geodynamic Significance. Miner. Depos. 2004, 2, 164–175. [Google Scholar]
- Chen, Y.-X.; Li, H.; Sun, W.-D.; Ireland, T.; Tian, X.-F. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W–Sn mineralization and tectonic evolution. Lithos 2016, 266–267, 435–452. [Google Scholar] [CrossRef]
- Gong, X.; Wei, X.-Y.; Zhao, Y.-Y.; Liu, C.-H.; Shui, X.-F.; Du, L.; Song, X.-J.; Gun, M.-S.; Tan, W. LA-ICP-MS Analysis of Pyrite from Hulalin Gold Deposit in the Upper Heilongjiang Basin and its Implication on Genesis of the Deposit. Geotecton. Metallog. 2021, 4, 745–760. [Google Scholar]
- Yuan, S.-D.; Mao, J.-W.; Cook, N.-J.; Wang, X.-D.; Liu, X.-F.; Yuan, Y.-B. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geol. Rev. 2015, 65, 283–293. [Google Scholar] [CrossRef]
- Xie, L.; Wang, R.-C.; Chen, X.-D.; Huang, F.-F.; Erdmann, S.; Zhang, W.-L. Tracking magmatic and hydrothermal Nb-Ta-W-Sn fractionation using mineral textures and composition: A case study from the late Cretaceous Jiepailing ore district in the Nanling Range in South China. Ore Geol. Rev. 2016, 78, 300–321. [Google Scholar] [CrossRef]
- Lei, Z.-H.; Wang, X.-F.; Qiao, Y.-S.; Xu, Y.-M.; Liu, Y.-X. Geological Characteristic and Metallogeny of Jiepailing Tin Polymetallic Deposit in Yizhang, South Hunan Province. South China Geol. 2009, 3, 43–50. [Google Scholar]
- Wang, Y.-L.; Peng, Q.-M.; Zhu, X.-Y.; Cheng, X.-Y.; Li, S.-T. Geochemical and Chronological Characteristics of the Granite Porphyry in the Jiepailing Tin-Polymetallic Deposit, Hunan Province and Mineralization Belt Division. Geol. Explor. 2014, 3, 475–485. [Google Scholar]
- Lin, X.-Q.; Rao, C.; Qin, L.-Q.; Wu, R.-Q.; Wang, Q. Alteration processes and rare(earth) metal mineralization of jiepailing porphyry deposit, Hunan Province. J. Nanjing Univ. (Nat. Sci.) 2020, 6, 830–846. [Google Scholar]
- Zhou, X.-T.; Qin, Y.-J. Geological characteristics and genesis of Jiepailing fluorite deposit in Yizhang County of Hunnan. Miner. Resour. Geol. 2020, 1, 33–40. [Google Scholar]
- Tian, Y.; Zhu, X.-Y.; Zhang, Y.-J.; Jiao, S.-T.; Sun, Y.-L.; Liu, X.; Jiang, B.-B. Emplacement and metallogenic model of the Jiepailing tin polymetallic metals depsoit in Hunan. Miner. Explor. 2016, 1, 126–135. [Google Scholar]
- Xu, R.-C.; Long, X.-R.; Liu, B.; Liu, Y.-G.; Wu, Q.-H.; Luo, X.-Y.; Jiang, H. LA-lCP-MS trace element analysis of fluorite and implications in Jiepailing tinpolymetallic deposit from South of Hunan Province. Miner. Depos. 2022, 1, 158–173. [Google Scholar]
- Lu, Y.-Y.; Fu, J.-M.; Cheng, S.-B.; Ma, L.-Y.; Zhang, K. SHRlMP zircon U-Pb geochronology of the ore-bearing granite porphyry in the Jiepailing Tin polymetallic deposit, Southern Hunan province. South China Geol. 2013, 3, 199–206. [Google Scholar]
- Mao, J.-W.; Xie, G.-Q.; Guo, C.-L.; Chen, Y.-C. Large-scale tungsten-tin mineralization in the Nanling region, South China:Metallogenic ages and corresponding geodynamic processes. Acta Petrol. Sin. 2007, 10, 2329–2338. [Google Scholar]
- Yu, A.-N. Study on coal prospecting and remote sensing geologic interpretation in the periphery of Meitanba, Ningxiang. Hunan Geol. 1992, 11, 7–10. [Google Scholar]
- Zhou, T.-F.; Zhang, L.-J.; Yuan, F.; Fan, Y.; Cooke, D. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S Deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Sci. Front. 2010, 2, 306–319. [Google Scholar]
- Tsang, H.; Cao, J.Y.; Yang, X.Y. Source of the Chaoyangzhai Gold Deposit, Southeast Guizhou: Constraints from LA-ICP-MS Zircon U–Pb Dating, Whole-rock Geochemistry and In Situ Sulfur Isotopes. Minerals 2019, 9, 235. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Yang, Z.-S.; Zhang, X.; Pei, Y.-R. In Situ Trace Element Analysis of Pyrite from Bangbu Orogenic Gold Deposit and Its Metallogenic Significance. Earth Sci. 2019, 6, 2052–2062. [Google Scholar]
- Cao, J.Y.; Yang, X.Y.; Zhang, D.X.; Yan, F.B. In situ trace elements and Sr isotopes in scheelite and S-Pb isotopes in sulfides from the Shiweidong W–Cu deposit, giant Dahutang ore field: Implications to the fluid evolution and ore genesis. Ore Geol. Rev. 2020, 125, 103696. [Google Scholar] [CrossRef]
- Leng, C.-B. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LAICPMS trace elements of pyrite and pyrrhotite. Earth Sci. Front. 2017, 6, 162–175. [Google Scholar]
- Lin, Z.-W.; Zhao, X.-F.; Xiong, L.; Zhu, Z.-X. In-situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis. Adv. Earth Sci. 2019, 4, 399–413. [Google Scholar]
- Cao, J.Y.; Lu, Y.Y.; Liu, L.; Fu, J.M.; Xu, G.F.; Wu, Q.H.; Yang, S.X.; Qiu, X.F.; Zhang, Z.Z. Insights into the Crustal Evolution and Tungsten Mineralization of the West Cathaysia Block: Constraints from the Inherited Zircons from the Mesozoic Dengfuxian and Paleozoic Tanghu Plutons, South China. Minerals 2023, 13, 550. [Google Scholar] [CrossRef]
- Mao, J.-W.; Chen, M.-H.; Yuan, S.-D.; Guo, C.-L. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geol. Sin. 2011, 5, 636–658. [Google Scholar]
- Liu, Y.-S.; Hu, Z.-C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.-G.; Chen, H.-H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 1–2, 34–43. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.-C.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 2011, 4, 397–429. [Google Scholar] [CrossRef]
- Wu, S.-T.; Wörner, G.; Jochum, K.P.; Stoll, B.; Simon, K.; Kronz, A. The Preparation and Preliminary Characterisation of Three Synthetic Andesite Reference Glass Materials (ARM-1, ARM-2, ARM-3) for In Situ Microanalysis. Geostand. Geoanal. Res. 2019, 4, 567–584. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 12, 2508–2518. [Google Scholar] [CrossRef]
- Chu, G.-B.; Chen, H.-Y.; Zhang, S.-T.; Zhang, Y.-C.; Jia, M. Geochemistry and geochronology of multi-generation garnet: Newinsights on the genesis and fluid evolution of prograde skarn formation. Geosci. Front. 2023, 1, 101495. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 3, 42–62. [Google Scholar] [CrossRef]
- Hu, X.-K.; Tang, L.; Zhang, S.-T.; Santosh, M.; Spencer, C.J.; Zhao, Y.; Cao, H.-W.; Pei, Q.-M. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geol. Rev. 2019, 2, 123–136. [Google Scholar] [CrossRef]
- Bi, S.-J.; Li, Z.-K.; Tang, K.-F.; Gao, K. LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District. Earth Sci. 2016, 7, 1121–1140. [Google Scholar]
- Ma, J.; Lv, X.-B.; Dan, R.-F.; Zhu, D.-Y.; Lu, F.; Yuan, B.; Yin, X. Ore genesis of the Zuojiazhuang gold deposit in the West Qinling Orogen:constraints from pyrite trace elements and multi-isotope analyses. Earth Sci. Front. 2019, 5, 146–162. [Google Scholar]
- Large, R.R.; Danyushevsky, L.; Hollit, C. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Econ. Geol. 2009, 5, 635–668. [Google Scholar] [CrossRef]
- Belousov, I.; Large, R.R.; Meffre, S.; Danyushevsky, L.V.; Steadman, J.; Beardsmore, T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geol. Rev. 2016, 79, 474–499. [Google Scholar] [CrossRef]
- Fan, H.-R.; Li, X.-H.; Zuo, Y.-B.; Chen, L.; Liu, S.; Hu, F.-F.; Feng, K. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrol. Sin. 2018, 12, 3479–3496. [Google Scholar]
- Wang, M.-Y.; Li, J.; Song, M.-C.; Zhang, L.-P.; Tang, Z.-Y.; Ding, Z.-J. The metallogenic mechanism of the Dadengge gold polymetallic deposit in the Jiaodong Peninsula: Constraints from pyrite Rb-Sr dating, in situ S isotope and trace elements. Acta Petrol. Sin. 2023, 5, 1501–1515. [Google Scholar] [CrossRef]
- Wu, T.; Huang, Z.-L.; Xiang, Z.-Z.; Ye, L.; Sui, Z.-H.; Hu, Y.-S.; Yan, Z.-F. In situ trace element study of pyrites from the Danaopo super-large Pb-Zn deposit in the western Hunan, China. Acta Mineral. Sin. 2020, 4, 430–440. [Google Scholar]
- Luan, Y.; Wang, R.-T.; Qian, Z.-Z.; Sun, X.-H.; Zheng, C.-Y.; Zhang, T.-Y.; Ding, K. Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyriteand In-Situ Sulfur Isotope Compositions of Sulfides. Earth Sci. 2022, 1, 259–276. [Google Scholar]
- Zhang, J.; Ding, Z.; Bo, J.; Ji, P.; Li, T.; Xin, W. In Situ Trace Element and S-Pb Isotope Study of Pyrite from the Denggezhuang Gold Deposit in the Jiaodong Peninsula—Insights into the Occurrence of Gold and the Source of Ore-Forming Materials. Minerals 2024, 14, 158. [Google Scholar] [CrossRef]
- Suo, Q.-Y.; Li, C.-H.; Shen, P.; Zhao, J.-K.; Chu, X.-K. Superimposed minerlization of the Duobaoshan Cu (Mo) deposit in Heilongjiang Province: Indicated by the molybdenite Re-Os isotopic dating and sulfur isotope composition. Acta Petrol. Sin. 2023, 11, 3479–3490. [Google Scholar] [CrossRef]
- Liu, B.; Chen, W.-F.; Fang, Q.-C.; Tang, X.-S.; Mao, Y.-F.; Sun, L.-Q.; Gao, S.; Yan, Y.-J.; Wei, X.; Ling, H.-F. Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area. Earth Sci. 2020, 2, 389–399. [Google Scholar]
- Cai, G.-Y.; An, F.; Yuan, Y.; Liu, F.; Liu, W.; Zhang, J.-B. Ore-forming material source and metallogenic mechanism of NE-oriented pyrite-quartz veins in the Baguamiao gold deposit, Shaanxi Province: Evidence from in situ S isotope. Acta Geol. Sin. 2021, 5, 1561–1572. [Google Scholar]
- Li, H.-L.; Li, G.-M.; Ding, J.; Zhang, Z.; Qin, C.-S.; Fu, J.-G.; Ling, C.; Liu, Y.-Q. Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet: Evidence from in Situ S Isotopes of Sulfides. J. Jilin Univ. (Earth Sci. Ed.) 2020, 5, 1289–1303. [Google Scholar]
- Du, Z.-Z.; Yu, X.-F.; Sun, H.-R.; Du, Y.-L.; Kang, K. Genesis of the Huaniushan Pb-Zn-Ag deposit in Gansu: Constraints from in situ S, Pb isotopes and trace elements. Acta Petrol. Sin. 2021, 6, 1813–1842. [Google Scholar]
- Li, H.-K.; Li, G.-M.; Zhang, Z.; Zhang, L.-K.; Dong, S.-L.; Qin, C.-S.; Li, Y.-X. Genesis of Jienagepu Gold Deposit in Zhaxikang Ore Concentration Area, Eastern Tethys Himalayas: Constraints from He-Ar and In-Situ S Isotope of Pyrite. Earth Sci. 2021, 12, 4291–4315. [Google Scholar]
- Shang, Q.; Ren, F.; Yang, Q.; Wang, B. In Situ Compositional and Sulfur Isotopic Analysis of Sphalerite from the Erdaodianzi Gold Deposit in Southern Jilin Province, Northeast China. Minerals 2025, 15, 57. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 1, 491–559. [Google Scholar]
- Chaussidon, M.; Lorand, J.P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 10, 2835–2846. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 5, 551–578. [Google Scholar] [CrossRef]
- Rye, R.O.; Ohmoto, H. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Econ. Geol. 1974, 6, 826–842. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 1, 633–677. [Google Scholar] [CrossRef]
- Bachinski, D.J. Bond Strength and Sulfur Isotopic Fractionation in Coexisting Sulfides: A Reply. Econ. Geol. 1969, 8, 56–65. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Xu, B.-L.; Zhou, G.-T. Geochemical studies of stable isotopes in minerals. Earth Sci. Front. 2000, 2, 299–320. [Google Scholar]
- Zhang, G.-L.; Tian, T.; Wang, R.-T.; Gao, W.-H.; Chang, Z.-D. Pb isotopic composition of the Dongtangzi Pb−Zn deposit in the Fengtai ore concentration area of Shaanxi Province for tracing sources of ore−forming materials. Geol. China 2020, 2, 472–484. [Google Scholar]
- Zhao, W.-C.; Zhu, X.-Y.; Wang, S.-L.; Jiang, B.-B.; Liu, Z.; Guan, Y.-C. Sulfur and lead isotopic compositions of ores from the Dengying Formation and their prospecting implications in the Huize Pb-Zn deposit, Yunnan Province. Sediment. Geol. Tethyan Geol. 2023, 1, 156–167. [Google Scholar]
- Chen, M.-H.; Zhang, Z.-Q.; Santosh, M.; Dang, Y.; Zhang, W. The Carlin-type gold deposits of the “golden triangle’ of SW China: Pb and S isotopic constraints for the ore genesis. J. Asian Earth Sci. 2015, 1, 115–128. [Google Scholar] [CrossRef]
- Bralia, A.; Sabatini, G.; Troja, F. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Miner. Depos. 1979, 3, 353–374. [Google Scholar]
- Deyell, C.L.; Hedenquist, J.W. Trace element geochemistry of enargite in the Mankayan district, Philippines. Econ. Geol. 2011, 8, 1465–1478. [Google Scholar] [CrossRef]
- Chaussidon, M.; Albarède, F. Sheppard SMF. Sulphur isotope variations in the mantle from ion microprobe analyses of microsulphide inclusions. Earth Planet. Sci. Lett. 1989, 2, 144–156. [Google Scholar] [CrossRef]
- Dai, J.-Z.; Gao, J.-S.; Qian, Z.-Z.; Zhang, L.-B.; Zhou, J.-L.; Li, P.; Gao, Y. Geological Characteristics and S lsotopic Compositions of Pyrite from Lianzigou Gold Deposit in Xiaoqinling Area, and It’s Genetic Significance. J. Jilin Univ. (Earth Sci. Ed.) 2018, 6, 1669–1682. [Google Scholar]
- Tao, L.-X.; Zhen, S.-M.; Bai, H.-J.; Wang, J.; Wang, D.-Z.; Zha, Z.-J. Pyrite Trace Element Composition and S-Pb Isotope Characters of the Dabaiyang Gold Deposit, Hebei Province. J. Jilin Univ. (Earth Sci. Ed.) 2020, 5, 1582–1598. [Google Scholar]
- Liu, W.-H.; Li, H.-L.; Li, Y.; Dai, T.-G. Geological, geochemical characteristics of the Jiepailing tin deposit and lts genetic type. Miner. Resour. Geol. 2006, 20, 327–333. [Google Scholar]
- Xu, Y.-F.; He, W.-B.; An, F.; Cai, G.-Y. In situ S-Pb isotopes study of Baguamiao gold deposit, western Qinling: Constraints on its ore-forming material sources and metallogenic process. Miner. Depos. 2023, 4, 773–790. [Google Scholar]
- Ye, L.; Gao, W.; Yang, Y.-L.; Liu, T.-G.; Peng, S.-S. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province. Acta Petrol. Sin. 2012, 5, 1362–1372. [Google Scholar]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Econ. Geol. 2009, 8, 1111–1141. [Google Scholar] [CrossRef]
- Sheng, J.-F.; Li, Y.; Fan, S.-Y. A Study of minor elements in minerals from polymetallic deposits in the central part of the Da Hinggan mountains. Miner. Depos. 1999, 2, 57–64. [Google Scholar]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trance element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Miner. Depos. 1987, 22, 292–303. [Google Scholar] [CrossRef]
- Chen, W.-D. Geologic features of Jiepailing tin-polymetallic deposit, Yizhang county. Hunan Geol. 1989, 2, 35–40. [Google Scholar]
- Tan, Y.-J. The ore-forming mechanism of Lianhuashan porphyry tungsten deposit. Sci. Sin. (Chim.) 1985, 6, 563–570. [Google Scholar]
- Xie, Y.-H.; Zhao, R.; Li, R.-M.; Wang, Y.-L. Physical-chemical conditions and material sources for mineralization of the Yinyan porphyry tin deposit. Miner. Depos. 1988, 3, 42–49. [Google Scholar]
- Liu, S.-X. Geological characteristics and mineralization mechanism of the Tashan porphyry tin deposit. Geochimica 1992, 2, 149–159. [Google Scholar]
- Chen, Z.-L.; Zhou, X.-Q.; Yang, N.; Chen, X.-H. Modeling the migration and accumulation of ore-forming elements under high temperatures and pressures. J. Geomech. 1996, 2, 90–93. [Google Scholar]
- Yang, Z.-M.; Hou, Z.-Q.; Song, Y.-C.; Li, Z.-Q.; Xia, D.-X.; Pan, F.Z. Qulong superlarge porphyry Cu deposit in Tibet: Geology, alteration and mineralization. Miner. Depos. 2008, 3, 279–318. [Google Scholar]
- Li, D.-F.; Zhang, L.; Zheng, Y. Fluid inclusion study and ore genesis of the Talate Fe-Pb-Zn deposit in Altay, Xinjiang. Acta Petrol. Sin. 2013, 1, 178–190. [Google Scholar]
- Zhang, D.; Fan, J.-J.; Liu, P.; Pan, A.-J.; Wang, Z.-H.; Zhang, F.; Jin, B.-Y.; Wang, B.; Chao, Y.-Y.; Zhao, J.; et al. Genetic study of porphyry-type deposit in Songkaersu Cu-Au ore district in eastern Junggar, Xinjiang. Miner. Depos. 2014, 2, 286–306. [Google Scholar]
- Liu, S.-Y.; Liu, Y.-P.; Ye, L.; Su, G.-L. A Study on Metallogenic Temperature Field of The Dulong Sn-Zn Polymetallic Deposit. Acta Mineral. Sin. 2018, 3, 280–289. [Google Scholar]
Point | Co | Ni | Zn | As | Sn | Pb | Bi | TI | Mn | Cu | Mo | Ag | Cd | Sb | Co/Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PyI@1 | 16.6 | - | - | 285 | 5.9 | - | - | - | - | 74.6 | 0.46 | - | - | - | - |
PyI@2 | 4.62 | - | - | 1038 | - | 3.48 | 0.42 | - | - | - | 0.32 | 0.05 | - | - | - |
PyI@3 | 8.68 | 0.9 | - | 1261 | 0.56 | 0.03 | - | - | - | 389 | 0.38 | - | - | - | 9.64 |
PyI@4 | 0.89 | - | - | 36.6 | - | 1.80 | 0.17 | - | - | - | 0.33 | - | - | - | - |
PyI@5 | 2.46 | - | 3.14 | 97.9 | 0.30 | 1.01 | 0.05 | 0.04 | 3.21 | 4.81 | 0.49 | 0.03 | - | - | - |
PyI@6 | 1.28 | 0.67 | - | 7.19 | - | 0.51 | 0.03 | - | - | - | 0.36 | - | - | - | 1.91 |
PyI@7 | - | - | - | 277 | - | 0.06 | 0.06 | - | - | 0.40 | 0.38 | - | - | - | - |
PyI@8 | 0.17 | - | - | 58.2 | - | 0.11 | 0.20 | - | - | - | 0.24 | - | - | - | - |
PyI@9 | 5.60 | - | - | 7.21 | 56.2 | 79.1 | 3.49 | - | - | - | 0.47 | - | - | - | - |
PyI@10 | - | - | - | 104 | 11.0 | 10.5 | 1.16 | - | - | 83.6 | 0.31 | - | - | - | - |
PyI@11 | 0.14 | - | - | 114 | 4.54 | - | - | - | - | 5937 | - | - | - | - | - |
PyI@12 | 19.4 | - | 6.34 | 79.3 | 1.86 | 31.2 | 3.73 | 0.01 | - | 889 | 0.56 | 0.68 | - | 0.17 | - |
PyI@13 | 2.05 | - | - | 4.50 | - | 0.89 | 0.01 | - | - | 3.88 | 0.36 | - | - | - | - |
PyI@14 | 1.01 | 0.76 | - | 25.9 | - | 0.03 | - | - | - | 3.86 | - | - | - | - | 1.33 |
PyI@15 | 1.20 | - | - | 1.13 | - | 0.26 | 0.02 | - | - | 23.5 | 0.31 | - | - | - | - |
PyI@16 | 7.80 | 5.47 | - | 12.0 | - | 0.68 | - | 0.004 | - | 2.99 | - | - | - | - | 1.43 |
PyI@17 | 20.6 | 2.29 | - | 505 | - | 2.27 | 0.42 | 0.008 | - | - | 0.42 | - | - | - | 9.00 |
PyI@18 | 8.35 | 1.88 | - | 268 | - | - | - | - | - | - | 0.17 | - | - | - | 4.44 |
Average | 6.30 | 2.00 | 4.74 | 232 | 11.5 | 8.80 | 0.81 | 0.02 | 3.21 | 674 | 0.37 | 0.25 | - | 0.17 | 3.15 |
PyII@1 | 1.96 | 1.29 | - | 72.5 | 16.6 | 4.60 | 0.26 | 0.15 | 19.1 | 1.24 | 0.26 | - | - | - | 1.52 |
PyII@2 | 10.8 | 98.0 | 45.6 | 1509 | - | 39.4 | 4.21 | 0.01 | - | 4.92 | 0.41 | - | - | 0.08 | 0.11 |
PyII@3 | 8.70 | 35.0 | 6765 | 44.5 | 21.7 | 678 | 31.5 | 2.16 | 976 | 4.92 | 1.02 | - | - | - | 0.25 |
PyII@4 | 10.6 | 25.5 | - | 57.1 | - | 0.08 | - | - | - | - | 0.40 | - | - | - | 0.42 |
PyII@5 | 5.94 | 20.4 | 795 | 13.7 | - | 45.1 | 0.35 | - | - | 14.7 | - | - | - | - | 0.29 |
PyII@6 | 15.5 | 109 | 37.2 | 7.96 | - | 27.6 | 1.23 | - | - | 2.02 | 0.37 | - | - | - | 0.14 |
PyII@7 | 17.7 | 13.4 | 7.11 | 12.6 | 5.16 | 21.3 | 0.02 | 0.17 | 33.2 | 2.84 | 0.33 | - | - | - | 1.32 |
PyII@8 | 12.7 | 84.7 | - | 55.5 | 0.13 | 3.31 | 0.24 | 0.05 | 1.22 | 0.80 | 0.88 | - | - | - | 0.15 |
PyII@9 | 2.25 | 13.4 | - | 14.0 | 0.31 | 6.01 | 0.25 | 0.04 | 35.9 | 1.37 | 0.46 | - | - | 0.14 | 0.17 |
PyII@10 | 17.6 | 176 | 9798 | 79.0 | 16.4 | 2925 | 14.0 | 11.9 | 1.82 | 165 | 0.44 | - | - | 0.17 | 0.10 |
PyII@11 | 102 | 527 | - | 68.3 | - | 3.54 | - | 0.007 | - | 0.69 | 0.35 | - | - | - | 0.19 |
PyII@12 | 13.0 | 41.4 | - | 6146 | - | - | - | - | - | 0.49 | 0.25 | 1.00 | - | 0.96 | 0.31 |
PyII@13 | 11.1 | 139 | 3.54 | 7.20 | 0.23 | 18.5 | - | 0.07 | - | 7.65 | 0.90 | - | - | 0.08 | 0.08 |
Average | 17.7 | 98.8 | 2493 | 622 | 8.65 | 314 | 5.78 | 1.62 | 178 | 17.2 | 0.51 | 1.00 | - | 0.29 | 0.18 |
PyIII@1 | - | 9.06 | - | 60 | - | 159 | 0.18 | 0.04 | 19.0 | 0.37 | 0.74 | - | 44 | - | - |
PyIII@2 | 0.71 | 30.8 | - | 2069 | 2.52 | - | 0.01 | - | - | 1.39 | 0.47 | 0.30 | - | - | 0.02 |
PyIII@3 | 1.08 | 214 | - | 287 | 0.15 | 19.1 | 0.20 | 0.20 | 41.4 | 2.79 | 0.55 | 0.91 | 0.35 | - | 0.01 |
PyIII@4 | 2.40 | 29.1 | - | - | - | 0.18 | 0.01 | - | - | 1.79 | 0.39 | 0.10 | - | 0.23 | 0.08 |
PyIII@5 | 2.00 | 69.6 | - | 1497 | 5.51 | 18.1 | 0.02 | 0.10 | 594 | 2.27 | 0.30 | 0.25 | - | 0.22 | 0.03 |
PyIII@6 | 1.33 | 48.2 | - | 3376 | 0.30 | 0.34 | 0.06 | - | - | 119 | - | 7.78 | - | 2.43 | 0.03 |
PyIII@7 | 0.85 | 23.6 | - | 52.1 | - | 0.54 | 0.06 | - | - | 8.13 | 0.32 | 0.37 | - | 0.15 | 0.04 |
PyIII@8 | 2.93 | 132 | - | 4.55 | - | 0.11 | - | - | - | - | 0.33 | - | - | - | 0.02 |
PyIII@9 | 1.29 | 171 | - | 11.3 | 0.14 | 2.86 | - | 0.02 | 3.59 | 7.75 | 0.30 | 1.64 | - | 0.84 | 0.01 |
PyIII@10 | 0.71 | 10.7 | 5.89 | 1045 | - | 214 | 0.33 | 0.2 | 31.3 | 2.39 | 0.30 | - | 0.47 | - | 0.07 |
PyIII@11 | 1.65 | 434 | 5.46 | 14,238 | - | 188 | 1.58 | 0.11 | 1.82 | 6.83 | 0.32 | 0.07 | 5.44 | 0.10 | 0.00 |
PyIII@12 | 10.2 | 396 | 216 | 1.10 | - | 1771 | 0.24 | 1.64 | 19.7 | 24.2 | 0.31 | 1.97 | 63.6 | 0.10 | 0.03 |
PyIII@13 | 1.57 | 72.0 | - | 15.8 | - | 13.6 | 0.03 | 0.13 | 2.99 | 7.38 | 0.77 | 0.14 | - | 0.12 | 0.02 |
PyIII@14 | 5.94 | 46.1 | - | 12.2 | - | 9.30 | 0.02 | 0.05 | 1.60 | 3.81 | 1.06 | 0.53 | - | 0.19 | 0.13 |
PyIII@15 | 4.52 | 31.9 | - | 12.8 | - | 31.4 | 0.03 | 0.19 | 27.8 | - | 2.25 | - | - | - | 0.14 |
PyIII@16 | 0.55 | 162 | - | 2.26 | - | 6.72 | - | 0.03 | - | - | 0.28 | - | - | - | 0.00 |
Average | 2.52 | 118 | 75.8 | 1512 | 1.72 | 162 | 0.21 | 0.25 | 74.3 | 14.5 | 0.58 | 1.28 | 22.8 | 0.49 | 0.02 |
PyIV@1 | 2.00 | 5.36 | - | 645 | - | 0.81 | 0.03 | 0.01 | 0.50 | 0.58 | 0.32 | 20.8 | - | 0.20 | 0.37 |
PyIV@2 | 0.21 | 0.94 | 48.7 | 1.56 | - | 2.52 | 1.79 | 1.22 | 714 | 0.47 | 0.37 | - | - | 2.40 | 0.22 |
PyIV@3 | 0.19 | 6.79 | 121 | - | - | 3.00 | 3.77 | - | - | 0.67 | - | 6.52 | 0.67 | - | 0.03 |
PyIV@4 | 0.25 | 0.80 | - | 778 | - | 20.7 | 2.80 | - | - | 1.41 | 0.45 | 0.02 | - | - | 0.31 |
PyIV@5 | 0.32 | 10.9 | - | 5.80 | - | 9.63 | 0.22 | 0.16 | 18.3 | 6.88 | 0.41 | 0.61 | - | 0.18 | 0.03 |
PyIV@6 | 2.22 | 2.58 | 130 | 16,618 | - | 976 | 0.31 | 0.20 | 21.0 | 0.68 | 0.32 | - | 1.18 | 1.32 | 0.86 |
PyIV@7 | 1.44 | - | - | 5849 | - | 3.32 | - | 0.03 | - | - | 0.62 | 0.04 | - | 0.34 | - |
PyIV@8 | 0.52 | - | - | 1019 | - | 0.08 | - | - | - | 3.55 | 0.54 | 0.04 | - | 0.07 | - |
PyIV@9 | 0.34 | 16.0 | - | 13.1 | - | 22.7 | 0.03 | 0.29 | 2.91 | - | 0.79 | 5.02 | - | 0.12 | 0.02 |
PyIV@10 | - | 3.97 | - | 5.97 | - | 10.4 | - | 0.01 | - | - | 0.53 | 28.0 | - | 65.7 | - |
PyIV@11 | - | 4.28 | - | 13.6 | - | 13.7 | - | 0.04 | 0.67 | 0.69 | 0.51 | 57.1 | 0.25 | 0.18 | - |
PyIV@12 | 1.57 | 16.6 | - | 4.24 | - | 26.5 | - | 0.32 | - | 3.54 | 0.37 | 0.82 | 0.45 | - | 0.09 |
PyIV@13 | 2.32 | 15.5 | - | 14.6 | 0.26 | 19.8 | 0.01 | 0.07 | 1.25 | 1.15 | 0.69 | 0.05 | - | 0.15 | 0.15 |
PyIV@14 | 0.36 | 1.42 | - | 7.70 | - | 12.9 | 0.01 | 0.06 | 5.04 | - | 0.30 | 0.86 | - | - | 0.25 |
Average | 0.98 | 7.10 | 99.9 | 1921 | 0.26 | 80.2 | 1.00 | 0.22 | 95.5 | 1.96 | 0.48 | 9.99 | 0.64 | 7.07 | 0.14 |
PyV@1 | 1.04 | 1.07 | - | 886 | - | 0.11 | 0.01 | 0.001 | - | - | 0.29 | 0.07 | - | 1.89 | 0.97 |
PyV@2 | - | - | - | 865 | - | 0.24 | 0.06 | - | - | 0.68 | 0.47 | 3.37 | - | - | - |
PyV@3 | - | - | - | 5020 | - | 0.10 | 0.05 | - | - | - | 0.47 | 4.92 | - | 0.41 | - |
PyV@4 | 0.26 | 2.63 | - | 5.45 | - | 0.07 | - | - | - | - | 0.45 | 0.01 | - | - | 0.10 |
PyV@5 | 0.64 | 4.20 | - | 22.9 | - | 0.18 | - | - | - | - | 0.4 | 1.33 | - | 0.31 | 0.15 |
PyV@6 | 1.16 | 3.63 | - | 4571 | - | 0.05 | - | - | - | - | 0.38 | 0.08 | - | - | 0.32 |
PyV@7 | - | - | - | 2515 | - | - | - | - | - | - | 0.29 | 0.59 | - | - | - |
PyV@8 | - | - | - | 3379 | - | 0.03 | 0.03 | - | - | 0.46 | - | 0.05 | - | - | - |
PyV@9 | - | - | - | 11.5 | - | 1.18 | 0.04 | 0.00 | - | 0.52 | 0.42 | 0.12 | - | 0.08 | - |
PyV@10 | - | - | - | 1926 | - | 0.16 | 0.03 | - | - | - | 0.31 | 35.4 | - | 0.62 | - |
PyV@11 | 0.13 | - | - | 120 | - | 0.02 | 0.01 | - | - | 0.42 | 0.27 | 0.13 | - | 1.13 | - |
PyV@12 | 0.11 | 0.85 | 3.69 | 3558 | - | 12.5 | 1.37 | 0.08 | - | 4.7 | 0.44 | - | - | 15.9 | 0.13 |
PyV@13 | 2.67 | - | 9.61 | 137 | - | 0.25 | 0.23 | - | - | 1.93 | 0.58 | - | - | 0.50 | - |
PyV@14 | - | - | - | 714 | - | - | - | 0.00 | - | 0.56 | 0.34 | 0.01 | - | 0.08 | - |
PyV@15 | 0.19 | - | - | 122 | - | - | 0.01 | - | - | - | 0.29 | 0.17 | - | 0.26 | - |
PyV@16 | 0.21 | - | - | 9592 | - | - | - | - | - | 1.42 | 0.24 | 0.11 | - | - | - |
PyV@17 | - | - | - | 5.15 | - | - | - | - | - | 1.17 | 0.25 | 0.34 | - | - | - |
PyV@18 | - | - | - | 17.0 | - | 0.02 | - | - | - | - | 0.27 | 0.12 | - | - | - |
PyV@19 | - | - | - | 128 | - | - | - | - | - | 0.33 | 0.23 | - | - | - | - |
PyV@20 | 0.64 | - | - | 8.14 | - | 0.02 | - | - | - | 0.88 | 0.38 | - | - | - | - |
PyV@21 | 0.23 | - | - | 3.22 | - | - | - | - | - | - | 0.32 | - | - | - | - |
Average | 0.66 | 2.48 | 6.65 | 1600 | - | 1.07 | 0.18 | 0.02 | - | 1.19 | 0.35 | 2.93 | - | 2.12 | 0.27 |
Point | Mineral | δ34SV-CDT/‰ | 2SE |
---|---|---|---|
PyI@01 | Pyrite | 3.3 | 0.2 |
PyI@02 | 5.4 | 0.2 | |
PyI@03 | 4.7 | 0.2 | |
PyI@04 | 2.8 | 0.2 | |
PyI@05 | 3.7 | 0.2 | |
PyI@06 | Sphalerite | 2.5 | 0.2 |
PyI@07 | 5.3 | 0.2 | |
PyI@08 | Chalcopyrite | 5.5 | 0.3 |
PyI@09 | 5.8 | 0.3 | |
PyII@01 | Pyrite | 6.9 | 0.2 |
PyII@02 | −5.1 | 0.2 | |
PyII@03 | 4.3 | 0.2 | |
PyII@04 | 3.9 | 0.2 | |
PyII@05 | −1.9 | 0.2 | |
PyII@06 | Sphalerite | 7.9 | 0.1 |
PyII@07 | 7.2 | 0.1 | |
PyII@08 | Galena | −3.8 | 0.2 |
PyII@09 | −7.6 | 0.2 | |
PyIII@01 | Pyrite | 6.2 | 0.2 |
PyIII@02 | 5.1 | 0.2 | |
PyIII@03 | 5.8 | 0.2 | |
PyIII@04 | 5.1 | 0.2 | |
PyIII@05 | Sphalerite | 9.5 | 0.2 |
PyIII@06 | 7.3 | 0.1 | |
PyIII@07 | 7 | 0.2 | |
PyIII@08 | 8.8 | 0.2 | |
PyIII@09 | Galena | 1.6 | 0.3 |
PyIII@10 | 8 | 0.2 | |
PyIII@11 | 1.6 | 0.2 | |
PyIV@01 | Pyrite | 9 | 0.2 |
PyIV@02 | −2.1 | 0.2 | |
PyIV@03 | 6.8 | 0.2 | |
PyIV@04 | 3 | 0.2 | |
PyIV@05 | 0.9 | 0.2 | |
PyIV@06 | 4.4 | 0.2 | |
PyIV@07 | Sphalerite | 10.6 | 0.1 |
PyIV@08 | 7.6 | 0.1 | |
PyIV@09 | 8.1 | 0.2 | |
PyIV@10 | 8.3 | 0.1 | |
PyIV@11 | Chalcopyrite | 9.2 | 0.3 |
PyIV@12 | −0.1 | 0.4 | |
PyIV@13 | −2.8 | 0.3 | |
PyIV@14 | 1.6 | 0.3 | |
PyIV@15 | Galena | −3.7 | 0.2 |
PyIV@16 | −3.5 | 0.2 | |
PyV@01 | Pyrite | 6.8 | 0.2 |
PyV@02 | 7.2 | 0.2 | |
PyV@03 | 7.2 | 0.2 | |
PyV@04 | 14.1 | 0.2 | |
PyV@05 | 10.2 | 0.2 | |
PyV@06 | 10 | 0.2 | |
PyV@07 | 9.3 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, G.-F.; Ling, X.-Y.; Wang, D.; Zhou, W.-J.; Yang, L.; Lu, Y.-Y.; Zhang, Z.-Z. In Situ Geochemical and Sulfur Isotopic Composition of Pyrites from the Jiepailing Tin–Beryllium Polymetallic Deposit, Southern Hunan Province, China: Implications for Ore-Forming Processes. Minerals 2025, 15, 312. https://doi.org/10.3390/min15030312
Du G-F, Ling X-Y, Wang D, Zhou W-J, Yang L, Lu Y-Y, Zhang Z-Z. In Situ Geochemical and Sulfur Isotopic Composition of Pyrites from the Jiepailing Tin–Beryllium Polymetallic Deposit, Southern Hunan Province, China: Implications for Ore-Forming Processes. Minerals. 2025; 15(3):312. https://doi.org/10.3390/min15030312
Chicago/Turabian StyleDu, Gao-Feng, Xiang-Ying Ling, Dan Wang, Wei-Jian Zhou, Liu Yang, You-Yue Lu, and Zun-Zun Zhang. 2025. "In Situ Geochemical and Sulfur Isotopic Composition of Pyrites from the Jiepailing Tin–Beryllium Polymetallic Deposit, Southern Hunan Province, China: Implications for Ore-Forming Processes" Minerals 15, no. 3: 312. https://doi.org/10.3390/min15030312
APA StyleDu, G.-F., Ling, X.-Y., Wang, D., Zhou, W.-J., Yang, L., Lu, Y.-Y., & Zhang, Z.-Z. (2025). In Situ Geochemical and Sulfur Isotopic Composition of Pyrites from the Jiepailing Tin–Beryllium Polymetallic Deposit, Southern Hunan Province, China: Implications for Ore-Forming Processes. Minerals, 15(3), 312. https://doi.org/10.3390/min15030312