Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Clastic Materials Statistics Method
3.2. Heavy Mineral Analysis Method
3.3. Whole-Rock Geochemical Analysis
4. Results
4.1. Clastic Composition Result
4.2. Heavy Mineral Analysis Result
4.3. Geochemical Analysis Result
5. Discussion
5.1. Provenance Analysis of the Lower Jurassic in the Dongdaohaizi Depression
5.2. Tectonic Setting of the Provenance
Type/Sample and Strata | La | Ce | ΣREE | La/Yb | LaN/YbN | LREE/HREE | δEu | |
---|---|---|---|---|---|---|---|---|
Tectonic setting | OIA | 8 | 19 | 58 | 4.2 | 2.8 | 3.8 | 1.04 |
CIA | 27 | 59 | 146 | 11 | 7.5 | 7.7 | 0.79 | |
ACM | 37 | 78 | 186 | 12.5 | 8.5 | 9.1 | 0.6 | |
PM | 39 | 85 | 210 | 15.9 | 10.8 | 8.5 | 0.56 | |
Sample and strata | C1-J1b3 | 40.5 | 82.2 | 175.83 | 12.77 | 0.94 | 7.58 | 1.06 |
C1-J1b2 | 34.0 | 69.6 | 148.50 | 10.63 | 0.78 | 8.41 | 2.86 | |
C3-J1b2 | 15.7 | 31.2 | 77.78 | 13.17 | 0.97 | 7.09 | 2.51 | |
C3-J1b1 | 18.6 | 38.8 | 94.88 | 10.22 | 0.75 | 7.25 | 1.23 |
5.3. Evolution and Mechanisms of the Kelameili Ocean
6. Conclusions
- From bottom to top, the Badaowan Formation in the Dongdaohaizi Depression exhibits a decrease in lithic fragment content and an increase in quartz content, indicating an improvement in compositional maturity. The source rocks in the study area primarily include tuff, granite, basalt, and minor metamorphic rocks. The heavy mineral assemblage, dominated by zircon, chrome-spinel, tourmaline, and garnet, suggests that the source rocks are mainly intermediate to acidic magmatic rocks, basic magmatic rocks, and metamorphic rocks. The provenance of the Badaowan Formation in the study area is predominantly controlled by the Kelameili Mountain to the east, which continued to uplift and migrate during the Early Jurassic.
- LA-ICP-MS results show that the rare earth element (REE) content of Lower Jurassic sandstones is slightly lower than the average REE content of the upper continental crust. The REE distribution exhibits weak differentiation between light and heavy rare earth elements. This geochemical signature, coupled with the overall reducing and anoxic depositional environment, reflects the passive continental margin and continental island arc tectonic settings of the source region.
- As part of the Paleo-Asian Ocean system, the Kelameili Ocean underwent a complex evolution involving subduction and closure within a framework of multiple oceanic basins and microcontinents. During the Middle Ordovician to Late Silurian, the Kelameili region developed a passive continental margin under conditions of limited ocean basin expansion. From the Middle Devonian to Early Carboniferous, the onset of subduction of the Kelameili Ocean marked a transition in the eastern Junggar Basin from a passive continental margin to a continental island arc setting. Transition may have been caused by the episodic subduction or bidirectional subduction of the Paleo-Kelameili Ocean.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Strata | Sample | Q (%) | F (%) | R (%) | Igneous Rocks (%) | Metamorphic Rocks (%) | Sedimentary Rocks (%) | Maturity |
---|---|---|---|---|---|---|---|---|
J1b3 | C1-01 | 56.0 | 13.8 | 30.2 | 74.0 | 19.0 | 6.0 | 1.27 |
C1-02 | 56.0 | 13.8 | 30.2 | 74.0 | 20.9 | 5.1 | 1.27 | |
C1-03 | 56.0 | 13.8 | 30.2 | 66.6 | 17.1 | 16.3 | 1.27 | |
C1-04 | 56.0 | 13.8 | 30.2 | 66.6 | 17.1 | 16.3 | 1.27 | |
C1-05 | 61.6 | 15.2 | 23.2 | 74.0 | 19.0 | 7.0 | 1.60 | |
C1-06 | 50.4 | 15.2 | 34.4 | 74.0 | 17.1 | 8.9 | 1.02 | |
C1-07 | 50.4 | 15.2 | 34.4 | 74.0 | 20.9 | 5.1 | 1.02 | |
C1-08 | 61.6 | 13.8 | 24.6 | 66.6 | 20.9 | 12.5 | 1.60 | |
C1-09 | 61.6 | 13.8 | 24.6 | 66.6 | 19.0 | 14.4 | 1.60 | |
C1-10 | 50.4 | 13.8 | 35.8 | 66.6 | 20.9 | 12.5 | 1.02 | |
J1b2 | C3-01 | 45.5 | 17.7 | 36.9 | 68.0 | 14.0 | 18.0 | 0.83 |
C3-02 | 50.0 | 19.4 | 30.6 | 61.2 | 12.6 | 26.2 | 1.00 | |
C3-03 | 40.9 | 17.7 | 41.4 | 61.2 | 14.0 | 24.8 | 0.69 | |
C3-04 | 40.9 | 15.9 | 43.2 | 68.0 | 12.6 | 19.4 | 0.69 | |
C3-05 | 40.9 | 19.4 | 39.6 | 61.2 | 14.0 | 24.8 | 0.69 | |
C3-06 | 50.0 | 17.7 | 32.3 | 68.0 | 12.6 | 19.4 | 1.00 | |
C3-07 | 50.0 | 19.4 | 30.6 | 61.2 | 14.0 | 24.8 | 1.00 | |
C3-08 | 40.9 | 17.7 | 41.4 | 61.2 | 15.4 | 23.4 | 0.69 | |
C3-09 | 40.9 | 17.7 | 41.4 | 74.8 | 12.6 | 12.6 | 0.69 | |
C3-10 | 45.5 | 17.7 | 36.9 | 68.0 | 14.0 | 18.0 | 0.83 | |
J1b1 | C3-01 | 46.8 | 12.7 | 40.5 | 71.0 | 19.0 | 10.0 | 0.88 |
C3-02 | 51.5 | 12.7 | 35.8 | 71.0 | 20.9 | 8.1 | 1.06 | |
C3-03 | 46.8 | 14.0 | 39.2 | 71.0 | 20.9 | 8.1 | 0.88 | |
C3-04 | 42.1 | 11.5 | 46.4 | 78.1 | 17.1 | 4.8 | 0.73 | |
C3-05 | 42.1 | 14.0 | 43.9 | 78.1 | 20.9 | 1.0 | 0.73 | |
C3-06 | 51.5 | 12.7 | 35.8 | 71.0 | 17.1 | 11.9 | 1.06 | |
C3-07 | 42.1 | 14.0 | 43.9 | 78.1 | 17.1 | 4.8 | 0.73 | |
C3-08 | 51.5 | 12.7 | 35.8 | 63.9 | 17.1 | 19.0 | 1.06 | |
C3-09 | 46.8 | 12.7 | 40.5 | 71.0 | 17.1 | 11.9 | 0.88 | |
C3-10 | 46.8 | 14.0 | 39.2 | 63.9 | 20.9 | 15.2 | 0.88 |
Strata | Sample | Heavy Mineral (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Zircon | Garnet | Chrome-spinel | Tourmaline | Apatite | Rutile | Anatase | Leucoxene | Other | ||
J1b3 | C1-01 | 37.73 | 11.02 | 21.61 | 20.10 | 0.50 | 0.48 | 2.31 | 0.49 | 5.75 |
C1-02 | 39.09 | 11.75 | 21.52 | 19.72 | 0.47 | 0.49 | 2.34 | 0.49 | 4.13 | |
C1-03 | 38.79 | 11.19 | 21.35 | 18.75 | 0.47 | 0.48 | 2.50 | 0.49 | 5.99 | |
C1-04 | 39.34 | 11.59 | 20.48 | 20.68 | 0.48 | 0.46 | 2.44 | 0.45 | 4.05 | |
C1-05 | 40.42 | 11.82 | 21.70 | 19.79 | 0.50 | 0.49 | 2.37 | 0.53 | 2.39 | |
C1-06 | 36.14 | 11.70 | 20.87 | 19.90 | 0.50 | 0.48 | 2.45 | 0.49 | 7.49 | |
C1-07 | 36.92 | 12.08 | 22.93 | 19.32 | 0.49 | 0.46 | 2.25 | 0.48 | 5.07 | |
C1-08 | 38.14 | 12.32 | 20.98 | 19.00 | 0.47 | 0.48 | 2.47 | 0.49 | 5.66 | |
C1-09 | 40.06 | 10.94 | 21.26 | 19.90 | 0.50 | 0.47 | 2.39 | 0.47 | 4.01 | |
C1-10 | 37.56 | 11.94 | 21.58 | 19.53 | 0.49 | 0.49 | 2.34 | 0.48 | 5.58 | |
Average | 38.42 | 11.64 | 21.43 | 19.67 | 0.48 | 0.48 | 2.39 | 0.49 | 5.01 | |
C3-01 | 60.07 | 0.04 | 27.04 | 4.82 | 0.37 | 0.87 | 3.42 | 0.35 | 3.03 | |
C3-02 | 57.96 | 0.04 | 27.55 | 4.64 | 0.35 | 0.83 | 3.33 | 0.36 | 4.94 | |
C3-03 | 62.97 | 0.04 | 26.38 | 5.05 | 0.35 | 0.83 | 3.27 | 0.36 | 0.75 | |
C3-04 | 58.38 | 0.04 | 26.66 | 4.74 | 0.36 | 0.81 | 3.54 | 0.37 | 5.10 | |
C3-05 | 61.67 | 0.04 | 28.53 | 4.71 | 0.38 | 0.87 | 3.43 | 0.37 | 2.25 | |
C3-06 | 61.13 | 0.04 | 26.78 | 4.72 | 0.36 | 0.84 | 3.19 | 0.35 | 2.58 | |
C3-07 | 59.36 | 0.04 | 27.39 | 4.70 | 0.38 | 0.83 | 3.25 | 0.35 | 3.69 | |
C3-08 | 60.20 | 0.04 | 27.51 | 4.83 | 0.36 | 0.81 | 3.21 | 0.37 | 2.67 | |
C3-09 | 61.22 | 0.04 | 24.65 | 4.73 | 0.36 | 0.80 | 3.51 | 0.35 | 4.34 | |
C3-10 | 63.42 | 0.04 | 26.69 | 4.67 | 0.34 | 0.88 | 3.16 | 0.36 | 0.56 | |
Average | 60.64 | 0.04 | 26.92 | 4.76 | 0.36 | 0.84 | 3.33 | 0.36 | 2.43 | |
Zh1-01 | 36.85 | 41.38 | 6.51 | 8.06 | 0.54 | 1.53 | 3.12 | 0.46 | 1.53 | |
Zh1-02 | 37.80 | 40.94 | 6.38 | 7.59 | 0.55 | 1.60 | 3.30 | 0.47 | 1.37 | |
Zh1-03 | 36.02 | 38.95 | 6.50 | 7.39 | 0.58 | 1.53 | 3.08 | 0.49 | 5.47 | |
Zh1-04 | 38.83 | 41.12 | 6.38 | 7.63 | 0.54 | 1.67 | 3.18 | 0.48 | 0.18 | |
Zh1-05 | 38.36 | 39.76 | 6.54 | 7.48 | 0.58 | 1.73 | 3.40 | 0.47 | 1.67 | |
Zh1-06 | 38.24 | 42.44 | 6.45 | 6.94 | 0.55 | 1.59 | 3.07 | 0.46 | 0.26 | |
Zh1-07 | 36.32 | 39.86 | 6.21 | 7.44 | 0.56 | 1.52 | 3.29 | 0.49 | 4.32 | |
Zh1-08 | 38.44 | 42.74 | 6.36 | 7.42 | 0.57 | 1.59 | 3.20 | 0.48 | 0.80 | |
Zh1-09 | 37.59 | 42.09 | 6.62 | 7.42 | 0.59 | 1.66 | 3.31 | 0.49 | 0.23 | |
Zh1-10 | 36.54 | 42.61 | 6.39 | 7.69 | 0.54 | 1.63 | 3.40 | 0.47 | 0.72 | |
Average | 37.50 | 41.19 | 6.43 | 7.51 | 0.56 | 1.60 | 3.23 | 0.48 | 1.50 |
Strata | Sample | Element (ppm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
J1b3 | C1-01 | 40.46 | 82.68 | 10.38 | 39.42 | 7.58 | 1.61 | 6.59 | 0.93 | 5.69 | 1.04 | 3.29 | 0.48 | 3.23 | 0.50 |
C1-02 | 40.73 | 84.76 | 9.91 | 36.11 | 7.70 | 1.68 | 6.02 | 0.91 | 5.29 | 1.02 | 3.10 | 0.47 | 3.09 | 0.49 | |
C1-03 | 40.96 | 83.16 | 10.71 | 37.07 | 8.09 | 1.60 | 6.31 | 0.92 | 5.38 | 1.01 | 3.25 | 0.43 | 3.42 | 0.49 | |
C1-04 | 39.63 | 82.70 | 10.65 | 37.76 | 7.72 | 1.64 | 5.93 | 0.91 | 5.66 | 1.03 | 3.15 | 0.45 | 3.28 | 0.50 | |
C1-05 | 40.02 | 74.67 | 10.38 | 38.21 | 8.17 | 1.65 | 6.60 | 0.88 | 5.42 | 1.07 | 3.32 | 0.46 | 3.05 | 0.50 | |
C1-06 | 39.16 | 79.70 | 10.15 | 38.47 | 7.68 | 1.58 | 6.35 | 0.98 | 5.86 | 1.00 | 3.25 | 0.50 | 3.23 | 0.48 | |
C1-07 | 41.12 | 83.44 | 9.86 | 38.83 | 8.32 | 1.53 | 6.25 | 0.86 | 5.37 | 1.06 | 3.21 | 0.47 | 3.17 | 0.51 | |
C1-08 | 41.18 | 79.02 | 10.55 | 37.39 | 7.67 | 1.49 | 6.77 | 0.95 | 5.57 | 1.02 | 3.15 | 0.46 | 3.33 | 0.48 | |
C1-09 | 39.68 | 85.49 | 10.35 | 39.52 | 7.48 | 1.49 | 6.19 | 0.87 | 5.50 | 1.02 | 3.13 | 0.46 | 3.32 | 0.49 | |
C1-10 | 39.51 | 84.45 | 10.18 | 36.83 | 7.54 | 1.50 | 6.41 | 0.90 | 5.50 | 1.00 | 3.16 | 0.47 | 3.23 | 0.46 | |
Average | 40.25 | 82.01 | 10.31 | 37.96 | 7.79 | 1.58 | 6.34 | 0.91 | 5.52 | 1.03 | 3.20 | 0.46 | 3.24 | 0.49 | |
J1b2 | C1-11 | 34.36 | 68.72 | 8.41 | 30.80 | 7.30 | 3.95 | 6.22 | 0.89 | 5.31 | 1.03 | 3.17 | 0.48 | 3.05 | 0.44 |
C1-12 | 34.15 | 66.34 | 8.31 | 31.86 | 7.53 | 3.69 | 6.16 | 0.86 | 5.26 | 1.06 | 3.29 | 0.45 | 3.13 | 0.52 | |
C1-13 | 35.52 | 69.19 | 8.38 | 31.37 | 7.09 | 3.96 | 6.10 | 0.86 | 5.41 | 1.02 | 3.16 | 0.43 | 3.12 | 0.48 | |
C1-14 | 33.51 | 73.41 | 7.70 | 33.91 | 7.53 | 4.37 | 6.08 | 0.88 | 5.14 | 1.01 | 3.30 | 0.49 | 2.99 | 0.50 | |
C1-15 | 33.95 | 72.05 | 8.39 | 34.01 | 7.34 | 3.69 | 5.42 | 0.92 | 5.20 | 1.05 | 3.22 | 0.48 | 3.23 | 0.48 | |
C1-16 | 34.01 | 69.40 | 8.38 | 33.74 | 7.24 | 4.04 | 5.95 | 0.90 | 5.40 | 1.06 | 3.08 | 0.51 | 3.28 | 0.45 | |
C1-17 | 35.15 | 73.62 | 8.23 | 32.25 | 7.10 | 3.92 | 6.07 | 0.89 | 5.08 | 1.00 | 2.97 | 0.45 | 3.21 | 0.47 | |
C1-18 | 35.17 | 68.51 | 8.42 | 32.64 | 7.36 | 3.82 | 5.60 | 0.93 | 5.34 | 1.03 | 3.17 | 0.47 | 3.25 | 0.48 | |
C1-19 | 33.72 | 67.56 | 8.46 | 31.50 | 7.27 | 4.22 | 5.71 | 0.90 | 5.39 | 1.09 | 3.11 | 0.44 | 3.13 | 0.48 | |
C1-20 | 31.54 | 70.14 | 8.05 | 33.16 | 7.43 | 4.13 | 5.93 | 0.92 | 5.71 | 1.14 | 3.22 | 0.49 | 3.12 | 0.48 | |
Average | 34.11 | 69.90 | 8.27 | 32.53 | 7.32 | 3.98 | 5.92 | 0.90 | 5.32 | 1.05 | 3.17 | 0.47 | 3.15 | 0.48 | |
J1b2 | C3-01 | 15.69 | 31.32 | 3.66 | 12.67 | 2.93 | 1.71 | 3.14 | 0.46 | 2.57 | 0.48 | 1.36 | 0.17 | 1.23 | 0.18 |
C3-02 | 16.18 | 30.27 | 3.57 | 13.41 | 3.02 | 1.59 | 2.92 | 0.47 | 2.57 | 0.48 | 1.37 | 0.18 | 1.20 | 0.17 | |
C3-03 | 15.19 | 30.90 | 3.59 | 13.77 | 2.94 | 1.58 | 3.05 | 0.46 | 2.66 | 0.52 | 1.31 | 0.18 | 1.19 | 0.17 | |
C3-04 | 15.64 | 32.14 | 3.57 | 13.62 | 2.82 | 1.58 | 3.22 | 0.44 | 2.53 | 0.49 | 1.37 | 0.18 | 1.21 | 0.16 | |
C3-05 | 14.90 | 31.77 | 3.32 | 13.17 | 3.03 | 1.65 | 2.88 | 0.43 | 2.56 | 0.48 | 1.46 | 0.18 | 1.18 | 0.17 | |
C3-06 | 15.27 | 29.82 | 3.33 | 13.75 | 2.60 | 1.58 | 2.99 | 0.48 | 2.64 | 0.51 | 1.51 | 0.18 | 1.18 | 0.17 | |
C3-07 | 15.23 | 30.83 | 3.79 | 13.00 | 2.86 | 1.59 | 3.12 | 0.43 | 2.55 | 0.48 | 1.36 | 0.18 | 1.12 | 0.16 | |
C3-08 | 15.95 | 30.64 | 3.49 | 14.17 | 2.95 | 1.50 | 3.10 | 0.44 | 2.70 | 0.51 | 1.31 | 0.18 | 1.17 | 0.18 | |
C3-09 | 16.02 | 31.25 | 3.41 | 13.44 | 3.04 | 1.53 | 3.31 | 0.46 | 2.57 | 0.50 | 1.44 | 0.18 | 1.21 | 0.17 | |
C3-10 | 16.43 | 30.60 | 3.67 | 13.12 | 2.86 | 1.56 | 3.21 | 0.43 | 2.72 | 0.51 | 1.38 | 0.17 | 1.21 | 0.17 | |
Average | 15.65 | 30.96 | 3.54 | 13.41 | 2.91 | 1.59 | 3.09 | 0.45 | 2.61 | 0.49 | 1.39 | 0.18 | 1.19 | 0.17 | |
J1b1 | C3-11 | 19.18 | 39.72 | 4.65 | 17.30 | 3.34 | 0.82 | 3.40 | 0.49 | 2.95 | 0.67 | 1.72 | 0.28 | 1.71 | 0.27 |
C3-12 | 17.44 | 39.02 | 4.56 | 18.00 | 3.16 | 0.85 | 3.10 | 0.49 | 3.14 | 0.69 | 1.81 | 0.28 | 1.80 | 0.26 | |
C3-13 | 18.65 | 38.38 | 4.60 | 16.83 | 3.26 | 0.81 | 3.23 | 0.49 | 2.99 | 0.68 | 1.76 | 0.27 | 1.82 | 0.26 | |
C3-14 | 18.84 | 37.19 | 4.79 | 16.57 | 3.33 | 0.87 | 3.31 | 0.53 | 2.99 | 0.64 | 1.71 | 0.28 | 1.83 | 0.27 | |
C3-15 | 18.77 | 37.72 | 4.77 | 16.65 | 3.34 | 0.84 | 3.20 | 0.50 | 2.91 | 0.72 | 1.76 | 0.28 | 1.85 | 0.26 | |
C3-16 | 18.71 | 37.99 | 4.73 | 18.36 | 3.32 | 0.82 | 2.94 | 0.50 | 3.14 | 0.69 | 1.74 | 0.29 | 1.79 | 0.25 | |
C3-17 | 18.08 | 39.38 | 4.37 | 16.80 | 3.37 | 0.76 | 3.22 | 0.52 | 2.94 | 0.71 | 1.82 | 0.27 | 1.89 | 0.27 | |
C3-18 | 18.91 | 38.74 | 4.73 | 17.37 | 3.13 | 0.82 | 3.17 | 0.51 | 2.92 | 0.68 | 1.74 | 0.28 | 1.86 | 0.27 | |
C3-19 | 19.45 | 38.46 | 4.54 | 17.96 | 3.26 | 0.83 | 3.14 | 0.48 | 3.14 | 0.67 | 1.82 | 0.28 | 1.77 | 0.28 | |
C3-20 | 18.46 | 39.17 | 4.70 | 17.38 | 3.19 | 0.83 | 3.30 | 0.47 | 2.93 | 0.68 | 1.76 | 0.29 | 1.92 | 0.28 | |
Average | 18.65 | 38.58 | 4.64 | 17.32 | 3.27 | 0.82 | 3.20 | 0.50 | 3.00 | 0.68 | 1.76 | 0.28 | 1.82 | 0.27 | |
J1b3 | Zh1-01 | 21.82 | 45.16 | 5.77 | 21.67 | 4.00 | 0.95 | 3.88 | 0.59 | 3.50 | 0.75 | 2.07 | 0.33 | 2.04 | 0.32 |
Zh1-02 | 22.51 | 45.53 | 5.26 | 20.77 | 4.16 | 0.95 | 3.75 | 0.58 | 3.57 | 0.77 | 2.11 | 0.31 | 2.12 | 0.33 | |
Zh1-03 | 21.89 | 45.48 | 5.57 | 20.94 | 3.90 | 0.92 | 3.75 | 0.63 | 3.57 | 0.72 | 2.25 | 0.32 | 2.07 | 0.34 | |
Zh1-04 | 23.52 | 44.79 | 5.67 | 21.69 | 4.02 | 0.95 | 3.68 | 0.59 | 3.72 | 0.74 | 2.18 | 0.35 | 2.18 | 0.31 | |
Zh1-05 | 21.53 | 46.91 | 5.49 | 20.37 | 4.14 | 0.95 | 3.73 | 0.61 | 3.73 | 0.72 | 2.19 | 0.32 | 2.12 | 0.34 | |
Zh1-06 | 21.15 | 45.07 | 5.56 | 21.02 | 3.94 | 0.97 | 3.84 | 0.60 | 3.75 | 0.70 | 2.07 | 0.32 | 2.05 | 0.33 | |
Zh1-07 | 24.31 | 45.34 | 5.63 | 21.17 | 4.37 | 1.00 | 3.77 | 0.59 | 3.51 | 0.75 | 2.14 | 0.32 | 2.09 | 0.34 | |
Zh1-08 | 23.66 | 46.94 | 5.50 | 21.11 | 4.16 | 0.96 | 3.63 | 0.62 | 3.47 | 0.77 | 2.03 | 0.33 | 2.25 | 0.33 | |
Zh1-09 | 23.14 | 47.18 | 5.75 | 21.64 | 4.20 | 0.96 | 3.60 | 0.59 | 3.69 | 0.75 | 2.10 | 0.31 | 2.12 | 0.34 | |
Zh1-10 | 22.22 | 47.19 | 5.65 | 21.92 | 3.94 | 0.92 | 3.64 | 0.61 | 3.72 | 0.78 | 2.18 | 0.32 | 2.00 | 0.32 | |
Average | 22.57 | 45.96 | 5.59 | 21.23 | 4.08 | 0.95 | 3.73 | 0.60 | 3.62 | 0.75 | 2.13 | 0.32 | 2.10 | 0.33 |
Strata | Sample | Element (ppm) | ||||||
---|---|---|---|---|---|---|---|---|
La | Th | Sc | Co | Zr/10 | Sc/Cr | La/Y | ||
J1b3 | 0.52 | 0.17 | 0.27 | 0.24 | 0.52 | 0.13 | 1.23 | |
C1-02 | 0.59 | 0.17 | 0.28 | 0.33 | 0.51 | 0.17 | 1.21 | |
C1-03 | 0.59 | 0.17 | 0.24 | 0.22 | 0.50 | 0.17 | 1.17 | |
C1-04 | 0.59 | 0.18 | 0.23 | 0.23 | 0.51 | 0.16 | 1.19 | |
C1-05 | 0.60 | 0.18 | 0.28 | 0.25 | 0.51 | 0.17 | 1.23 | |
C1-06 | 0.59 | 0.18 | 0.24 | 0.28 | 0.49 | 0.15 | 1.24 | |
C1-07 | 0.56 | 0.18 | 0.28 | 0.31 | 0.51 | 0.20 | 1.14 | |
C1-08 | 0.55 | 0.18 | 0.24 | 0.27 | 0.51 | 0.15 | 1.29 | |
C1-09 | 0.62 | 0.17 | 0.30 | 0.26 | 0.52 | 0.18 | 1.12 | |
C1-10 | 0.58 | 0.17 | 0.27 | 0.28 | 0.49 | 0.15 | 1.31 | |
J1b2 | C1-11 | 0.56 | 0.19 | 0.30 | 0.27 | 0.51 | 0.14 | 1.23 |
C1-12 | 0.57 | 0.18 | 0.26 | 0.21 | 0.50 | 0.17 | 1.31 | |
C1-13 | 0.55 | 0.18 | 0.27 | 0.29 | 0.47 | 0.18 | 1.28 | |
C1-14 | 0.54 | 0.16 | 0.30 | 0.32 | 0.53 | 0.14 | 1.13 | |
C1-15 | 0.63 | 0.16 | 0.26 | 0.28 | 0.51 | 0.20 | 1.18 | |
C1-16 | 0.55 | 0.16 | 0.27 | 0.31 | 0.48 | 0.17 | 1.37 | |
C1-17 | 0.56 | 0.18 | 0.23 | 0.27 | 0.51 | 0.18 | 1.14 | |
C1-18 | 0.60 | 0.19 | 0.29 | 0.31 | 0.46 | 0.17 | 1.30 | |
C1-19 | 0.58 | 0.18 | 0.29 | 0.32 | 0.50 | 0.14 | 1.09 | |
C1-20 | 0.56 | 0.18 | 0.27 | 0.33 | 0.51 | 0.14 | 1.15 | |
J1b1 | C3-01 | 0.59 | 0.16 | 0.27 | 0.32 | 0.50 | 0.16 | 1.18 |
C3-02 | 0.61 | 0.18 | 0.31 | 0.26 | 0.52 | 0.16 | 1.17 | |
C3-03 | 0.57 | 0.17 | 0.31 | 0.26 | 0.51 | 0.17 | 1.23 | |
C3-04 | 0.61 | 0.17 | 0.28 | 0.26 | 0.49 | 0.13 | 1.21 | |
C3-05 | 0.59 | 0.17 | 0.30 | 0.26 | 0.50 | 0.15 | 1.12 | |
C3-06 | 0.53 | 0.16 | 0.26 | 0.25 | 0.48 | 0.18 | 1.24 | |
C3-07 | 0.63 | 0.19 | 0.29 | 0.28 | 0.50 | 0.15 | 1.25 | |
C3-08 | 0.59 | 0.17 | 0.28 | 0.24 | 0.49 | 0.16 | 1.11 | |
C3-09 | 0.54 | 0.17 | 0.27 | 0.25 | 0.50 | 0.16 | 1.20 | |
C3-10 | 0.57 | 0.17 | 0.33 | 0.27 | 0.48 | 0.17 | 1.24 |
References
- Ashraf, A.R.; Sun, Y.; Sun, G.; Uhl, D.; Mosbrugger, V.; Li, J.; Herrmann, M. Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China—A review and additional lithological data. Palaeobiodiversity Palaeoenvironments 2010, 90, 187–201. [Google Scholar] [CrossRef]
- Fu, H.; Tang, D.; Xu, H.; Xu, T.; Chen, B.; Hu, P.; Yin, Z.; Wu, P.; He, G. Geological characteristics and CBM exploration potential evaluation: A case study in the middle of the southern Junggar Basin, NW China. J. Nat. Gas Sci. Eng. 2016, 30, 557–570. [Google Scholar] [CrossRef]
- Xin, C.; Hua-fu, L.U.; Liang-shu, S.H.U.; Hui-min, W.; Guo-qing, Z. Study on tectonic evolution of Junggar Basin. Geol. J. China Univ. 2002, 8, 257. [Google Scholar]
- Lawrence, S.R. Aspects of the petroleum geology of the Junggar basin, Northwest China. Geol. Soc. Lond. Spec. Publ. 1990, 50, 545–557. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, D.; Pan, J.; Wei, D.; Tang, Y.; Wang, G.; Wei, C.; Ma, D. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—Implications for deep-seated petroleum exploration. AAPG Bull. 2018, 102, 1489–1521. [Google Scholar] [CrossRef]
- Weifeng, W.; Yequan, C. Tectonic evolution and petroleum systems in the Junggar Basin. Acta Geol. Sin.-Engl. Ed. 2004, 78, 667–675. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Wilde, S.A.; Zhao, G.-C.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 76–93. [Google Scholar] [CrossRef]
- Wan, B.; Li, S.; Xiao, W.; Windley, B.F. Where and when did the Paleo-Asian ocean form? Precambrian Res. 2018, 317, 241–252. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 37, 335–360. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, G.; Li, S.; Guo, R.; Zeng, Z.; Cheng, S.; Xue, Z.; Li, L.; Zhou, H.; Liu, S. Provenance of the Lower Jurassic Badaowan and Sangonghe Formations in Dongdaohaizi Depression, Junggar Basin, and Its Constraint on the Karamaili Ocean. J. Mar. Sci. Eng. 2023, 11, 1375. [Google Scholar] [CrossRef]
- Yanping, L.I.; Hongliang, Z.O.U.; Lei, L.I.; Jiyou, F.U.; Yu, X.I.A.; Junyang, X.I.E. Petroleum exploration ideas and discoveries in upper Wuerhe Formation, Dongdaohaizi sag, Junggar Basin. Xinjiang Pet. Geol. 2022, 43, 127. [Google Scholar]
- Shengyu, Y.I.N.; Deyu, G.; Jing, S.U.; Zhengzhou, H.U.; Wei’an, W.U.; Ruiju, W. Genetic Types and Origins of Upper Paleozoic-reservoiered Oil in Dongdaohaizi Sag and Its Surrounding Areas in the Junggar Basin. Geol. J. China Univ. 2024, 30, 218. [Google Scholar]
- Lichun, K.; Yong, T.; Dewen, L.; Tao, W.; Jianhua, Q. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin. China Pet. Explor. 2014, 19, 14. [Google Scholar]
- Chen, J.; Pang, X.; Wang, X.; Wang, Y. A new method for assessing tight oil, with application to the Lucaogou Formation in the Jimusaer depression, Junggar Basin, China. AAPG Bull. 2020, 104, 1199–1229. [Google Scholar] [CrossRef]
- Bian, W.; Hornung, J.; Liu, Z.; Wang, P.; Hinderer, M. Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, northwest China. Palaeobiodiversity Palaeoenvironments 2010, 90, 175–186. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Wu, D.; Zhu, S.; Dong, Y.; Zhao, D.; Wang, X.; Zhang, Q. Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar basin, Western China. J. Pet. Sci. Eng. 2017, 149, 591–602. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, C.; Wang, Y.; Wang, L.; Guo, Z.; Hu, H. Stratigraphic and sedimentary characteristics of the Upper Jurassic-Lower Cretaceous strata in the Junggar Basin, Central Asia: Tectonic and climate implications. J. Asian Earth Sci. 2016, 129, 294–308. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, S.; Wang, C. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. J. Asian Earth Sci. 2015, 105, 85–103. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, C.; Guo, Z.; Hou, K.; Dong, L.; Wang, L.; Li, L. Provenance of the southern Junggar Basin in the Jurassic: Evidence from detrital zircon geochronology and depositional environments. Sediment. Geol. 2015, 315, 47–63. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Jiao, Y.; Yuan, B. Middle–Late Triassic sedimentary provenance of the southern Junggar Basin and its link with the post-orogenic tectonic evolution of Central Asia. Sci. Rep. 2021, 11, 17041. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, H.; Yang, F.; Jianatayi, D.; Zhang, B.; Li, T.; Jia, C.; Pan, T.; Zhang, Z.; Aibibuli, N. Provenance, Depositional Environment, and Paleoclimatic Conditions of a Near-Source Fan Delta: A Case Study of the Permian Jiamuhe Formation in the Shawan Sag, Junggar Basin. Minerals 2023, 13, 1251. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Wu, C.; Li, J.; Haproff, P.J.; Geng, M.; Wu, S.; Xu, S.; Li, Z.; Yang, D. Tectono-stratigraphic framework and evolution of East Junggar Basin, Central Asia. Tectonophysics 2023, 851, 229758. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Xie, J.; Cao, H.; Zheng, X.; Zhao, Z.; Cao, J.; Pu, Q.; Li, Z.; Zhou, L. Sedimentary Characteristics and Hydrocarbon-Generation Potential of the Permian Pingdiquan Formation in Dongdaohaizi Sag, Junggar Basin, Northwest China. ACS Omega 2023, 8, 35653–35669. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Windley, B.F.; Sun, S.; Li, J.; Huang, B.; Han, C.; Yuan, C.; Sun, M.; Chen, H. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Zhao, H.; Ren, Q.; Yang, T.; Wu, H.; Li, H. North China block underwent simultaneous true polar wander and tectonic convergence in late Jurassic: New paleomagnetic constraints. Earth Planet. Sci. Lett. 2021, 567, 117012. [Google Scholar] [CrossRef]
- Chew, D.M.; Spikings, R.A. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements 2015, 11, 189–194. [Google Scholar] [CrossRef]
- Mao, J.; Pirajno, F.; Lehmann, B.; Luo, M.; Berzina, A. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. J. Asian Earth Sci. 2014, 79, 576–584. [Google Scholar] [CrossRef]
- Buckman, S.; Aitchison, J.C. Tectonic evolution of Palaeozoic terranes in west Junggar, Xinjiang, NW China. Geol. Soc. Lond. Spec. Publ. 2004, 226, 101–129. [Google Scholar] [CrossRef]
- Gao, R.; Xiao, L.; Pirajno, F.; Wang, G.-C.; He, X.-X.; Yang, G.; Yan, S.-W. Carboniferous–Permian extensive magmatism in the West Junggar, Xinjiang, northwestern China: Its geochemistry, geochronology, and petrogenesis. Lithos 2014, 204, 125–143. [Google Scholar] [CrossRef]
- Zhu, H.; Wicander, R.; Marshall, J.E.A. Biostratigraphic and paleogeographic significance of a palynological assemblage from the Middle Devonian Ulusubasite Formation, eastern Junggar Basin, Xinjiang, China. Rev. Palaeobot. Palynol. 2008, 152, 141–157. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cao, F.; Zhang, S.; Huang, N. The study of Yanshanian unconformity tectonic events in Northern Junggar Basin. IOP Conf. Ser. Earth Environ. Sci. 2019, 349, 012045. [Google Scholar] [CrossRef]
- Li, Y.-n.; Shao, L.; Hou, H.; Tang, Y.; Yuan, Y.; Zhang, J.; Shang, X.; Lu, J. Sequence stratigraphy, palaeogeography, and coal accumulation of the fluvio-lacustrine Middle Jurassic Xishanyao Formation in central segment of southern Junggar Basin, NW China. Int. J. Coal Geol. 2018, 192, 14–38. [Google Scholar] [CrossRef]
- Chen, J.; He, N.; Wang, Y.; Fu, L.; Yu, C.; Liu, Y. The sedimentary characteristics and depositional evolution in the Middle Jurassic Xishanyao Formation, Southeastern Xiayan Rise, Junggar Basin, NW China. Geol. J. 2022, 57, 2221–2234. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Xue, C.-J.; Liu, J.-J.; Wang, J.-P.; Yang, J.-T.; Zhang, F.-F.; Zhao, Z.-N.; Zhao, Y.-J.; Liu, B. Early Carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: Slab melting and implications for porphyry copper mineralization. J. Asian Earth Sci. 2015, 103, 332–349. [Google Scholar] [CrossRef]
- Pan, Y.; Sha, J.; Wang, Y.; Zhang, X.; Yao, X.; Peng, B.; Rao, X. The brackish-water bivalve Waagenoperna from the Lower jurassic Badaowan Formation of the Junggar Basin and its palaeoenvironmental and palaeogeographic significance. Geosci. Front. 2013, 4, 95–103. [Google Scholar] [CrossRef]
- Wu, K.; Paton, D.; Zha, M. Unconformity structures controlling stratigraphic reservoirs in the north-west margin of Junggar basin, North-west China. Front. Earth Sci. 2013, 7, 55–64. [Google Scholar] [CrossRef]
- Yang, Y.T.; Song, C.C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [Google Scholar] [CrossRef]
- Haughton, P.D.; Todd, S.P.; Morton, A.C. Sedimentary provenance studies. Geol. Soc. Lond. Spec. Publ. 1991, 57, 1–11. [Google Scholar] [CrossRef]
- Caracciolo, L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Sci. Rev. 2020, 209, 103226. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. Aapg Bull. 1979, 63, 2164–2182. [Google Scholar]
- Jian, X.; Guan, P.; Zhang, D.W.; Zhang, W.; Feng, F.; Liu, R.J.; Lin, S.D. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 2013, 290, 109–125. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Wang, T.; Yan, Q.; Xiao, W.; Li, J. Provenance and Tectonic Setting of Clastic Deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China. J. Sediment. Res. 2006, 76, 557–574. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Yan, Q.; Wang, T.; Guo, X. Geochemical Constraints On the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt. J. Sediment. Res. 2012, 82, 9–24. [Google Scholar] [CrossRef]
- Le Pera, E.; Tangari, A.C.; Marinangeli, L.; Morrone, C.; Riber, L.; Andò, S. Provenance of modern sands from Baja California rivers (Mexico): Petrographic constraints from light and heavy minerals. J. Sediment. Res. 2023, 93, 617–641. [Google Scholar] [CrossRef]
- Pasqualone, L.; Brozzetti, F.; Mirabella, F.; Luchetti, L.; Tangari, A.C.; Barchi, M.R. Tectono-stratigraphic evolution of a deep-water foreland basin: A case study from the Marnoso-arenacea basin, central Italy. Ital. J. Geosci. 2024, 143, 105–129. [Google Scholar] [CrossRef]
- Garzanti, E. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 2019, 192, 545–563. [Google Scholar] [CrossRef]
- Dickinson, W. Interpreting Provenance Relations from Detrital Modes of Sandstones. In Provenance of Arenites; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Dickinson, W.R. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar]
- Morton, A.; Hurst, A. Correlation of sandstones using heavy minerals: An example from the Statfjord Formation of the Snorre Field, northern North Sea. Geol. Soc. Lond. Spec. Publ. 1995, 89, 3–22. [Google Scholar] [CrossRef]
- Hallsworth, M.C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar]
- Hubert, J.F. A Zircon-Tourmaline-Rutile Maturity Index and the Interdependence of the Composition of Heavy Mineral Assemblages with the Gross Composition and Texture of Sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar]
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Tangari, A.C.; Cirillo, D.; De Luca, R.; Miriello, D.; Pugliese, E.; Le Pera, E. Heavy Minerals Distribution and Provenance in Modern Beach and Fluvial Sands of the Betic Cordillera, Southern Spain. Geosciences 2024, 14, 208. [Google Scholar] [CrossRef]
- Hounslow, M.W.; Morton, A.C. Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: Comparison with heavy mineral analysis. Sediment. Geol. 2004, 171, 13–36. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of heavy minerals. Dev. Sedimentol. 2007, 58, 345–391. [Google Scholar]
- Garzanti, E.; Andò, S. Plate tectonics and heavy mineral suites of modern sands. Dev. Sedimentol. 2007, 58, 741–763. [Google Scholar]
- Morton, A.C. Geochemical studies of detrital heavy minerals and their application to provenance research. Geol. Soc. Lond. Spec. Publ. 1991, 57, 31–45. [Google Scholar] [CrossRef]
- McCarty, R.; Congleton, J. Heavy liquids: Their use and methods in paleontology. In Vertebrate Paleontological Techniques: Volume 1; Cambridge University Press: Cambridge, UK, 2005; Volume 1, p. 187. [Google Scholar]
- Visser, M.P.E. Detection of Middle to Late Holocene Icelandic Cryptotephras in the Netherlands: Tephra Versus Biogenic Silica. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2012. [Google Scholar]
- González-Yajimovich, O.; Perez-Soto, J.L.; Avila-Serrano, G.E.; Meldahl, K. Sediment transport trends in Bahí a Concepció n, Baja California Sur, Mexico, based on textural parameters and heavy mineral concentrations. Boletín De La Soc. Geológica Mex. 2010, 62, 281. [Google Scholar] [CrossRef]
- Afzal, Z. The Use of a Magnetic Separator (‘FRANTZ’) and Energy Dispersive Spectroscopy (EDS) for Separation of Heavy Minerals: A Case Study from South Africa and Namibia. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2021. [Google Scholar]
- Nasir, S. Effectiveness of Frantz Machine for Separation of Heavy Minerals. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2021. [Google Scholar]
- Gao, Y.; Li, F.; Shi, S.; Chen, Y. Determination of paleocurrent directions based on well logging technology aiming at the lower third member of the Shahejie Formation in the Chezhen Depression and its implications. Water 2021, 13, 408. [Google Scholar] [CrossRef]
- Banerji, U.S.; Dubey, C.P.; Goswami, V.; Joshi, K.B. Geochemical indicators in provenance estimation. In Geochemical Treasures and Petrogenetic Processes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 95–121. [Google Scholar]
- Mondillo, N.; Chelle-Michou, C.; Putzolu, F.; Balassone, G.; Mormone, A.; Santoro, L.; Cretella, S.; Scognamiglio, G.; Tarallo, M.; Tavani, S. The mid-Cretaceous bauxites of SE France: Geochemistry, U-Pb zircon dating and their implications for the paleogeography at the junction between Alpine Tethys and Pyrenean Rift. Gondwana Res. 2025, 137, 145–170. [Google Scholar] [CrossRef]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geol. 1983, 91, 611–626. [Google Scholar] [CrossRef]
- Bhatia, M.R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol. 1985, 45, 97–113. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Borrego, J.; López-González, N.; Carro, B.; Lozano-Soria, O. Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain). Mar. Pollut. Bull. 2004, 49, 1045–1053. [Google Scholar] [CrossRef]
- Leybourne, M.I.; Johannesson, K.H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE+ Y patterns in the surface environment. Geochim. Cosmochim. Acta 2008, 72, 5962–5983. [Google Scholar] [CrossRef]
- Arslan, M.; Aslan, Z. Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey. J. Asian Earth Sci. 2006, 27, 177–193. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.-F.; Zhao, Z.-F. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 2016, 258, 77–91. [Google Scholar] [CrossRef]
- Ratcliffe, K.T.; Morton, A.C.; Ritcey, D.H.; Evenchick, C.A. Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools in the Bowser and Sustut basins, British Columbia, Canada. Bull. Can. Pet. Geol. 2007, 55, 320–336. [Google Scholar] [CrossRef]
- Diwu, C.; Sun, Y.; Guo, A.; Wang, H.; Liu, X. Crustal growth in the North China Craton at ~2.5 Ga: Evidence from in situ zircon U–Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Res. 2011, 20, 149–170. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Hemphill, TX, USA, 1980. [Google Scholar]
- Fohey-Breting, N.K.; Barth, A.P.; Wooden, J.L.; Mazdab, F.K.; Carter, C.A.; Schermer, E.R. Relationship of voluminous ignimbrites to continental arc plutons: Petrology of Jurassic ignimbrites and contemporaneous plutons in southern California. J. Volcanol. Geotherm. Res. 2010, 189, 1–11. [Google Scholar] [CrossRef]
- Gualda, G.A.R.; Rivers, M. Quantitative 3D petrography using X-ray tomography: Application to Bishop Tuff pumice clasts. J. Volcanol. Geotherm. Res. 2006, 154, 48–62. [Google Scholar] [CrossRef]
- Kruk, N.N.; Babin, G.A.; Kruk, E.A.; Rudnev, S.N.; Kuibida, M.L. Petrology of volcanic and plutonic rocks from the Uimen-Lebed’terrain, Gorny Altai. Petrology 2008, 16, 512–530. [Google Scholar] [CrossRef]
- Aubrecht, R.; Mikuš, T.; Holický, I. Heavy mineral analysis of the Turonian to Maastrichtian exotics-bearing deposits in the Western Carpathians: What has changed after the Albian and Cenomanian? Geol. Carpathica 2021, 72, 505–528. [Google Scholar] [CrossRef]
- Faupl, P.; Pavlopoulos, A.; Klötzli, U.; Petrakakis, K. On the provenance of mid-Cretaceous turbidites of the Pindos zone (Greece): Implications from heavy mineral distribution, detrital zircon ages and chrome spinel chemistry. Geol. Mag. 2006, 143, 329–342. [Google Scholar] [CrossRef]
- Krippner, A.; Meinhold, G.; Morton, A.C.; Schönig, J.; von Eynatten, H. Heavy minerals and garnet geochemistry of stream sediments and bedrocks from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications for provenance analysis. Sediment. Geol. 2016, 336, 96–105. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2001, 2. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1981, 301, 381–399. [Google Scholar]
- Wright, J. Conodont apatite: Structure and geochemistry. Skelet. Biominer. Patterns Process. Evol. Trends 1990, 1, 445–459. [Google Scholar]
- Wright, J.; Schrader, H.; Holser, W.T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta 1987, 51, 631–644. [Google Scholar] [CrossRef]
- Wright, J.; Seymour, R.S.; Shaw, H.F. REE and Nd Isotopes in Conodont Apatite: Variations with Geological Age and Depositional Environment; Geological Society of America: Boulder, CO, USA, 1984. [Google Scholar]
- Haskin, M.A.; Haskin, L.A. Rare earths in European shales: A redetermination. Science 1966, 154, 507–509. [Google Scholar] [CrossRef]
- Anenburg, M. Rare earth mineral diversity controlled by REE pattern shapes. Mineral. Mag. 2020, 84, 629–639. [Google Scholar] [CrossRef]
- Segard, M.; Bezos, A.; La, C. Petrology and Geochemistry of Crozet Hotspot Alkali Basalts: Evaluation of the Source Mineralogy; American Geophysical Union: Washington, DC, USA, 2011; p. V51E-2559. [Google Scholar]
- Rudnick, R.L. Restites, Eu anomalies and the lower continental crust. Geochim. Cosmochim. Acta 1992, 56, 963–970. [Google Scholar] [CrossRef]
- Kato, Y.; Yamaguchi, K.E.; Ohmoto, H. Rare Earth Elements in Precambrian Banded Iron Formations: Secular Changes of Ce and Eu Anomalies and Evolution of Atmospheric Oxygen; Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar]
- Brunsmann, A.; Franz, G.; Erzinger, J. REE mobilization during small-scale high-pressure fluid–rock interaction and zoisite/fluid partitioning of La to Eu. Geochim. Cosmochim. Acta 2001, 65, 559–570. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Singh, P. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol. 2009, 266, 242–255. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Mondillo, N.; Boni, M.; Balassone, G.; Spoleto, S.; Stellato, F.; Marino, A.; Santoro, L.; Spratt, J. Rare earth elements (REE)—Minerals in the Silius fluorite vein system (Sardinia, Italy). Ore Geol. Rev. 2016, 74, 211–224. [Google Scholar] [CrossRef]
- Zhang, L.; Dengfa, H.E.; Zejun, Y.I.; Di, L.I. Tectonic relationship between the Kelameili range and the Dajing depression: Insights into the Carboniferous tectonic-sedimentary framework. Pet. Explor. Dev. 2020, 47, 30–45. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, J.; Zhou, C.; Zhang, Z.; Chen, S.; Stockli, D.F.; Olariu, C.; Steel, R.; Wang, H. Tectonic evolution of Tianshan-Bogda-Kelameili mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian-Jurassic, southern Junggar Basin. Mar. Pet. Geol. 2020, 114, 104200. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, C.; Chen, L.; Xie, B.; He, L.; Qin, J. New Opinion of Development Potential of Carboniferous Volcanic Gas Reservoir: Taking the Kelameili Gas Filed as an Example. Front. Energy Res. 2022, 10, 861901. [Google Scholar] [CrossRef]
- Yang, M.; Hongen, W.; Gaoxue, Y. Geochemical characteristics and tectonic significance of Kalamaili SSZ ophiolite from Eastern Junggar. Acta Petrol. Mineral. 2009, 28, 13. [Google Scholar]
- Liu, J.; Xu, X.; Wang, L.; Li, Y. Geochemistry and geochronology of the S hihuiyao ophiolite from the K elameili suture in E ast J unggar: Constraint on the tectonic evolution of the K elameili O cean. Geol. J. 2018, 53, 8–15. [Google Scholar] [CrossRef]
- Li, L.; Xiao, W.; Windley, B.F.; Mao, Q.; Gan, J.; Jia, X.; Yang, H.; Sang, M. Defining the Huangcaopo complex and gabbroic magmatism in the northern Harlik Mountains (NW China): Late Cambrian to latest Permian accretionary growth of the East Junggar Arc? Geol. J. 2022, 57, 1022–1045. [Google Scholar] [CrossRef]
- Li, L.; Xiao, W.; Zhao, G.; Yang, H.; Han, Y.; Wang, K.; Gan, J. Tearing on the southward subducting Kelameili oceanic lithosphere in the early Devonian: Evidence from the magmatism in the Harlik arc, southern Altaids. Lithos 2023, 454, 107279. [Google Scholar] [CrossRef]
- Tianqi, Z.; Chaodong, W.U.; Bo, Y.; Zhongkui, S.H.I.; Jialin, W.; Wen, Z.H.U.; Yanxi, Z.; Jiang, X.; Jinyong, Z.; Jun, W. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China. Pet. Explor. Dev. 2019, 46, 67–81. [Google Scholar]
- Pirajno, F.; Seltmann, R.; Yang, Y. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci. Front. 2011, 2, 157–185. [Google Scholar] [CrossRef]
- Tang, H.F.; Su, Y.P.; Liu, C.Q.; Hou, G.S.; Wang, Y.B. ircon u-pb age of the plagiogranite in kalamaili belt, northern xinjiang and its tectonic implications. Geotecton. Metallog. 2007, 31, 8. [Google Scholar]
- Wang, B.; Jiang, C.Y.; Li, Y.J.; Wu, H.E.; Xia, Z.D.; Lu, R.H. Geochemistry and tectonic implications of Karamaili ophiolite in East Junggar of Xinjiang. J. Mineral. Petrol. 2009, 9, 74–82. [Google Scholar]
- Zhao, H.; Xu, F.; Zhang, J. The kalamaili ophiolites: Age, geological characteristics and tectonic significance. Xinjiang Geol. 2012, 30, 4. [Google Scholar]
- Zhang, Y.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z. Early Carboniferous collision of the Kalamaili orogenic belt, North Xinjiang, and its implications: Evidence from molasse deposits. Bulletin 2013, 125, 932–944. [Google Scholar] [CrossRef]
- Long, X.; Yuan, C.; Sun, M.; Safonova, I.; Xiao, W.; Wang, Y. Geochemistry and U–Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction–accretion processes in the southern Central Asian Orogenic Belt. Gondwana Res. 2012, 21, 637–653. [Google Scholar] [CrossRef]
- Wu, Z.; Han, X.; Ji, H.; Cai, Y.; Xue, L.; Sun, S. Mesozoic-Cenozoic tectonic events of eastern Junggar Basin, NW China and their significance for uranium mineralization: Insights from seismic profiling and AFT dating analysis. Ore Geol. Rev. 2021, 139, 104488. [Google Scholar] [CrossRef]
- Tan, Y.; Xiao, W.; Song, D.; Mao, Q.; Gao, M.; Ao, S. Late Paleozoic intra-oceanic arc and its accretionary complex in East Junggar (NW China): Implications for multiple arc amalgamation in the southern Altaids. J. Geol. Soc. 2024, 181, jgs2023-200. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.J.; Xu, X.Y.; Yang, G.X.; Wang, Z.P.; Xu, Q.; Wang, L.J. Petrogenesis and tectonic implications of alkali basalts in Kalamaili area, east Junggar, Xinjiang (NW China): Constraints from petrology, geochronology and geochemistry. Acta Geol. Sin. 2021, 95, 19. [Google Scholar]
- Ji, H.; Tao, H.; Wang, Q.; Qiu, Z.; Ma, D.; Qiu, J.; Liao, P. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology. J. Asian Earth Sci. 2018, 153, 57–74. [Google Scholar] [CrossRef]
- Zhang, P.; Lee, Y.I. Facies-related diagenesis of Jurassic sandstones, central Junggar Basin, NW China: Implications for reservoir quality evolution. Geol. Soc. Lond. Spec. Publ. 2024, 538, 261–281. [Google Scholar] [CrossRef]
- Sha, J.; Olsen, P.E.; Pan, Y.; Xu, D.; Wang, Y.; Zhang, X.; Yao, X.; Vajda, V. Triassic–Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China). Proc. Natl. Acad. Sci. USA 2015, 112, 3624–3629. [Google Scholar] [CrossRef]
- Ding, A.N.; Hui, R.Y.; Zhang, Z.N. Hydrocarbon potential of Jurassic source rocks in the Junggar Basin, NW China. J. Pet. Geol. 2003, 26, 307–324. [Google Scholar] [CrossRef]
- Zhang, K.-J.; Ji, C.; Zhou, Y.-Z.; Zhang, Y.-J. Tracing oceanic plateau relics in the basement of mainland China: A synthesis of aeromagnetic and seismic refraction data. Earth-Sci. Rev. 2024, 225, 104849. [Google Scholar] [CrossRef]
- Rahman, M.A.; Pownceby, M.I.; Haque, N.; Bruckard, W.J.; Zaman, M.N. Characterisation of titanium-rich heavy mineral concentrates from the Brahmaputra River basin, Bangladesh. Appl. Earth Sci. 2014, 123, 222–233. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, J.; Hu, W.; Zhi, D.; Guo, X.; Bian, B. Insights into Carboniferous subduction-related petroleum systems in the Central Asian Orogenic Belt (CAOB) from hydrocarbons in vein calcite cements, West Junggar, northwest China. Mar. Pet. Geol. 2021, 124, 104796. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Wang, Z.; Chen, W.; Li, C.; Huang, P. Late Palaeozoic mineralization and tectonic evolution of the West Junggar metallogenic belt, Central Asia: Constraints from Re–Os and 40Ar/39Ar geochronology. Int. Geol. Rev. 2017, 59, 1131–1153. [Google Scholar] [CrossRef]
- Wu, K.; Pei, Y.; Li, T.; Wang, X.; Liu, Y.; Liu, B.; Ma, C.; Hong, M. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China. Front. Earth Sci. 2018, 12, 555–568. [Google Scholar] [CrossRef]
- Su, Y.-P.; Tang, H.-F.; Liu, C.-Q.; Hou, G.-S.; Liang, L.-L. The determination and a preliminary study of sujiquan aluminous a-type granites in east junggar, xinjiang. Acta Petrol. Mineralogica. 2006, 25, 10. [Google Scholar]
- Yang, H.; JuLi, W.; JianQi, W.; Meng, Y.; Pan, Y. Geochemistry and geochronology of the Miaoergou granite pluton in West Junggar, Xinjiang. Acta Petrol. Sin. 2015, 18, 505–522. [Google Scholar]
- Huang, P.; Chen, X.; Wang, Z.; Ye, B.; Li, X.; Yi, Y. Late Paleozoic Granitic Magmatism in West Junggar Metallogenic Belt(Xinjiang), Central Asia, and its Tectonic Implication. Geotecton. Metallog. 2016, 40, 16. [Google Scholar]
- Geng, H.Y.; Sun, M.; Yuan, C.; Xian, W.S.; Kong, K. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction. Geochim. Cosmochim. Acta 2009, 73, A426. [Google Scholar] [CrossRef]
- Chen, J.F.; Han, B.F.; Ji, J.Q. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos Int. J. Mineral. Petrol. Geochem. 2010, 115, 137–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Pe-Piper, G.; Piper, D.J.W. Geochemistry and petrogenesis of Early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process. Gondwana Res. 2015, 28, 1466–1481. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Li, Z.; Zhu, W.; Zhou, T.; Wu, J.; Wang, J. Whole-rock geochemistry and zircon Hf isotope of L ate C arboniferous–T riassic sediments in the B ogda region, NW C hina: Clues for provenance and tectonic setting. Geol. J. 2019, 54, 1853–1877. [Google Scholar] [CrossRef]
- Han, B.-F.; Guo, Z.-J.; Zhang, Z.-C.; Zhang, L.; Chen, J.-F.; Song, B. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Bulletin 2010, 122, 627–640. [Google Scholar] [CrossRef]
- Li, D.; He, D.; Santosh, M.; Ma, D.; Tang, J. Tectonic framework of the northern Junggar Basin part I: The eastern Luliang Uplift and its link with the East Junggar terrane. Gondwana Res. 2015, 27, 1089–1109. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Taylor, S.R. Trace-element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia. Chem. Geol. 1981, 33, 115–125. [Google Scholar] [CrossRef]
- Armstrong-Altrin, J.S.; Verma, S.P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment. Geol. 2005, 177, 115–129. [Google Scholar] [CrossRef]
- Wang, X.; Algeo, T.J.; Liu, W.; Xu, Z. Effects of weathering and fluvial transport on detrital trace metals. Earth-Sci. Rev. 2023, 241, 104420. [Google Scholar] [CrossRef]
- Kasanzu, C.; Maboko, M.A.H.; Manya, S. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Res. 2008, 164, 201–213. [Google Scholar] [CrossRef]
- Roy, P.D.; Smykatz-Kloss, W. REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance. Geochemistry 2007, 67, 55–68. [Google Scholar] [CrossRef]
- Tanner, P.W.G.; Armstrong, H.A.; Owen, A.W. Rare earth element and La–Th–Sc analysis of cherts from the Highland Border Complex, Scotland: Geochemical determination of the sedimentary environment in greenschist facies rocks. Scott. J. Geol. 2013, 49, 15–31. [Google Scholar] [CrossRef]
- Kidder, D.L.; Krishnaswamy, R.; Mapes, R.H. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chem. Geol. 2003, 198, 335–353. [Google Scholar] [CrossRef]
- Zhang, K.-J. Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth Planet. Sci. Lett. 2004, 229, 73–89. [Google Scholar] [CrossRef]
- Zhang, K.-J.; Zhang, Y.-X.; Li, B.; Zhu, Y.-T.; Wei, R.-Z. The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical comparison with the Jinsa suture. Geology 2006, 34, 493–496. [Google Scholar] [CrossRef]
- Gundogdu, M.N.; Bonnot-Courtois, C.; Clauer, N. Isotopic and chemical signatures of sedimentary smectite and diagenetic clinoptilolite of a lacustrine Neogene basin near Bigadiç, western Turkey. Appl. Geochem. 1989, 4, 635–644. [Google Scholar] [CrossRef]
- Daly, J.S. Geochemical and Geochronological Studies in the Stora Le-Marstrand Belt of Orust, S.W. Sweden. Ph.D. Thesis, University of Keele, Keele, UK, 1978. [Google Scholar]
- Boger, P.D. A Study of the History of Sedimentation in the Red Sea by Means of Isotopic and Geochemical Methods. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1976. [Google Scholar]
- Simonov, V.A.; Mikolaichuk, A.V.; Safonova, I.Y.; Kotlyarov, A.V.; Kovyazin, S.V. Late Paleozoic–Cenozoic intra-plate continental basaltic magmatism of the Tienshan–Junggar region in the SW Central Asian Orogenic Belt. Gondwana Res. 2015, 27, 1646–1666. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Zheng, J.; Gao, S.; Dai, H.; Ping, X.; Xiong, Q.; Niyaz, K. Geochronology and petrogenesis of Jurassic intraplate alkali basalts in the Junggar terrane, NW China: Implication for low-volume basaltic volcanism. Lithos 2019, 324, 202–215. [Google Scholar] [CrossRef]
- Carroll, A.R.; Yunhai, L.; Graham, S.A.; Xuchang, X.; Hendrix, M.S.; Jinchi, C.; McKnight, C.L. Junggar basin, northwest China: Trapped Late Paleozoic ocean. Tectonophysics 1990, 181, 1–14. [Google Scholar] [CrossRef]
- Han, C.; Xiao, W.; Zhao, G.; Su, B.; Sakyi, P.A.; Ao, S.; Wan, B.; Zhang, J.; Zhang, Z. Late Paleozoic metallogenesis and evolution of the East Tianshan orogenic belt (NW China, Central Asia orogenic belt). Geol. Ore Depos. 2014, 56, 493–512. [Google Scholar] [CrossRef]
- Guocan, W.; Meng, Z.; Xionghua, Z.; Qun’an, L.; Wei, W.; Jinming, T.; Zeyou, X. Significant Paleozoic tectonic events in the northern part of the East Tianshan Mountains, Xinjiang and their implications for the evolution of CAOB: New evidence from 1: 50000 geological survey of Banfanggou and Xiaoliugou sheets. Geol. China 2019, 46, 954–976. [Google Scholar]
- Xiaoqi, W.; Deliang, L.; Zhensheng, L. Post-collisional volcanism of Kalamaili suture zone. Earth Sci. Front. 2009, 16, 220–230. [Google Scholar]
- Li, G.-Y.; Zhou, J.-B.; Wilde, S.A.; Li, L. The transition from a passive to an active continental margin in the Jiamusi Block: Constraints from Late Paleozoic sedimentary rocks. J. Geodyn. 2019, 129, 131–148. [Google Scholar] [CrossRef]
- Mazza, S.E.; Gazel, E.; Johnson, E.A.; Bizimis, M.; McAleer, R.; Biryol, C.B. Post-rift magmatic evolution of the eastern N orth A merican “passive-aggressive” margin. Geochem. Geophys. Geosyst. 2017, 18, 3–22. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, G.; Eizenhöfer, P.R.; Sun, M.; Han, Y.; Hou, W.; Liu, D.; Wang, B.; Liu, Q.; Xu, B. Varying contents of sources affect tectonic-setting discrimination of sediments: A case study from Permian sandstones in the Eastern Tianshan, northwestern China. J. Geol. 2017, 125, 299–316. [Google Scholar] [CrossRef]
- Song, P.; Wang, T.; Tong, Y.; Zhang, J.; Huang, H. Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): Implications for a tectonic switch from subduction to collision. Int. Geol. Rev. 2023, 65, 1601–1621. [Google Scholar] [CrossRef]
- Gao, F.; Cheng, Y.; Guo, R.; Liu, X.; Li, Z.; Chen, Y.; Wang, M.; Liu, Z.; Cai, H. Slab break-off of the Kalamaili oceanic slab revealed by the latest Carboniferous mafic–ultramafic rocks in eastern North Tianshan (NW China). J. Asian Earth Sci. 2024, 273, 106274. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, G. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 129–152. [Google Scholar] [CrossRef]
- Wanfeng, C.; Gang, G.; Xiuquan, M.; Jinrong, W.; Wanlong, H.; Binbin, Z.; Lifei, F. Geochemical Characteristics and Tectonic Significance of Early Carboniferous Volcanic Rocks of Kalamaili, Xinjiang. Adv. Earth Sci. 2016, 31, 180–191. [Google Scholar]
- Xu, Q.; Zhao, L.; Niu, B.; Zheng, R.; Yang, Y.; Liu, J. Early Paleozoic arc magmatism in the Kalamaili orogenic belt, Northern Xinjiang, NW China: Implications for the tectonic evolution of the East Junggar terrane. J. Asian Earth Sci. 2020, 194, 104072. [Google Scholar] [CrossRef]
- Luo, J.; Xiao, W.; Wakabayashi, J.; Han, C.; Zhang, J.e.; Wan, B.; Ao, S.; Zhang, Z.; Tian, Z.; Song, D. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids. Gondwana Res. 2017, 43, 17–40. [Google Scholar] [CrossRef]
- Xu, X.-W.; Jiang, N.; Li, X.-H.; Qu, X.; Yang, Y.-H.; Mao, Q.; Wu, Q.; Zhang, Y.; Dong, L.-H. Tectonic evolution of the East Junggar terrane: Evidence from the Taheir tectonic window, Xinjiang, China. Gondwana Res. 2013, 24, 578–600. [Google Scholar] [CrossRef]
- Ye, X.-T.; Zhang, C.-L.; Zou, H.-B.; Yao, C.-Y.; Dong, Y.-G. Age and geochemistry of the Zhaheba ophiolite complex in eastern Junggar of the Central Asian Orogenic Belt (CAOB): Implications for the accretion process of the Junggar terrane. Geol. Mag. 2017, 154, 419–440. [Google Scholar] [CrossRef]
Sample and Strata | ΣREE | LREE | HREE | LREE/HREE | LaN/YbN | δEu | δCe | LaN/SmN | GdN/YbN | Ceanom |
---|---|---|---|---|---|---|---|---|---|---|
C1-J1b2 | 175.83 | 155.34 | 20.48 | 7.58 | 1.00 | 2.85 | 0.98 | 0.97 | 1.15 | −0.03 |
C1-J1b3 | 201.97 | 180.83 | 21.14 | 8.56 | 1.20 | 1.05 | 0.96 | 0.89 | 1.06 | −0.03 |
C3-J1b2 | 77.78 | 68.17 | 9.61 | 7.09 | 1.24 | 2.48 | 0.99 | 1.04 | 1.00 | −0.02 |
C3-J1b1 | 94.88 | 83.38 | 11.50 | 7.25 | 0.96 | 1.22 | 1.00 | 1.00 | 0.99 | −0.02 |
Zh1-J1b3 | 114.17 | 100.63 | 13.53 | 7.44 | 1.03 | 1.16 | 0.97 | 1.07 | 1.00 | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, Z.; Zhao, C.; Han, J.; Liu, J.; Guo, Y.; Tang, X.; Su, C.; Chang, X.; Wu, T. Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting. Minerals 2025, 15, 279. https://doi.org/10.3390/min15030279
Li F, Zhang Z, Zhao C, Han J, Liu J, Guo Y, Tang X, Su C, Chang X, Wu T. Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting. Minerals. 2025; 15(3):279. https://doi.org/10.3390/min15030279
Chicago/Turabian StyleLi, Furong, Zhi Zhang, Can Zhao, Jinqi Han, Jiaye Liu, Yaoyun Guo, Xinyu Tang, Chang Su, Xu Chang, and Tong Wu. 2025. "Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting" Minerals 15, no. 3: 279. https://doi.org/10.3390/min15030279
APA StyleLi, F., Zhang, Z., Zhao, C., Han, J., Liu, J., Guo, Y., Tang, X., Su, C., Chang, X., & Wu, T. (2025). Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting. Minerals, 15(3), 279. https://doi.org/10.3390/min15030279