Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin
Abstract
:1. Introduction
2. Geology Setting
2.1. Regional Geology
2.2. Local Geology
3. Sampling and Analytical Methods
4. Results
4.1. Petrography
4.2. Mineralogy
4.3. Elemental Geochemistry
4.3.1. Major Elements
Sample | LOI | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Li | Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga | Rb | Sr | Zr | Nb | Mo | Cd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YQ-1 | 7.72 | 65.26 | 1.77 | 21.37 | 9.84 | 0.005 | 0.265 | 0.191 | 0.107 | 1.102 | 0.088 | 28.5 | 1.07 | 14.7 | 162 | 99.6 | 1.97 | 19.8 | 15.4 | 19.9 | 23.1 | 34.2 | 43.3 | 298 | 29.3 | 1.40 | 0.76 |
YQ-2 | 7.89 | 70.05 | 1.80 | 25.47 | 0.87 | 0.003 | 0.247 | 0.168 | 0.115 | 1.237 | 0.039 | 64.3 | 2.37 | 20.1 | 191 | 83.2 | 2.89 | 28.4 | 14.2 | 18.1 | 22.9 | 48.8 | 62.1 | 379 | 36.7 | 0.51 | 0.55 |
YQ-3 | 7.82 | 71.95 | 1.55 | 24.63 | 0.37 | 0.003 | 0.205 | 0.150 | 0.113 | 0.986 | 0.038 | 52.0 | 1.92 | 16.3 | 119 | 82.7 | 1.79 | 10.8 | 9.59 | 10.4 | 20.1 | 34.2 | 53.6 | 273 | 27.8 | 0.68 | 0.13 |
YQ-4 | 6.60 | 73.37 | 0.99 | 19.02 | 5.43 | 0.021 | 0.187 | 0.128 | 0.081 | 0.736 | 0.041 | 52.6 | 2.03 | 18.0 | 205 | 74.3 | 14.1 | 20.6 | 40.2 | 13.5 | 21.6 | 28.1 | 47.3 | 176 | 13.8 | 0.48 | 0.13 |
YQ-5 | 7.48 | 62.93 | 1.34 | 25.87 | 5.73 | 0.008 | 0.580 | 0.204 | 0.170 | 3.085 | 0.089 | 76.6 | 2.96 | 19.1 | 188 | 75.7 | 13.4 | 20.3 | 51.5 | 17.8 | 28.2 | 106 | 92.0 | 245 | 32.0 | 0.71 | 0.07 |
YQ-6 | 8.62 | 29.62 | 0.56 | 11.42 | 52.92 | 0.283 | 0.462 | 2.318 | 0.136 | 2.103 | 0.170 | 32.5 | 15.2 | 53.8 | 118 | 51.1 | 261 | 157 | 76.6 | 97.6 | 17.5 | 75.7 | 82.4 | 121 | 9.55 | 1.68 | 0.97 |
YQ-7 | 14.64 | 1.61 | 4.05 | 93.44 | 0.48 | 0.002 | 0.106 | 0.070 | 0.000 | 0.088 | 0.151 | 22.9 | 7.41 | 29.0 | 161 | 40.2 | 0.81 | 5.16 | 14.4 | 21.8 | 33.2 | 1.88 | 55.5 | 927 | 47.9 | 0.34 | 0.07 |
YQ-8 | 13.29 | 19.72 | 3.41 | 71.85 | 2.90 | 0.002 | 0.272 | 0.157 | 0.036 | 1.382 | 0.282 | 145 | 6.39 | 59.2 | 283 | 81.8 | 1.59 | 44.7 | 41.2 | 24.3 | 32.3 | 33.3 | 159 | 892 | 157 | 0.98 | 0.13 |
YQ-9 | 13.47 | 36.90 | 2.58 | 57.48 | 0.97 | 0.002 | 0.251 | 0.182 | 0.058 | 1.266 | 0.307 | 345 | 5.35 | 22.9 | 506 | 115 | 2.08 | 72.3 | 14.6 | 17.4 | 20.0 | 28.3 | 210 | 531 | 104 | 0.54 | 0.10 |
UCC | 66.00 | 0.68 | 15.19 | 5.00 | 0.080 | 2.220 | 4.200 | 3.900 | 3.370 | 0.160 | 20.0 | 3.00 | 13.6 | 107 | 83.0 | 17.0 | 44.0 | 25.0 | 71.0 | 17.0 | 112 | 350 | 190 | 12.0 | 1.50 | 0.10 | |
Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu | In | Cs | Ba | Hf | Ta | W | Tl | Pb | Bi | Th | U | A/S |
YQ-1 | 21.9 | 42.8 | 4.66 | 16.1 | 2.92 | 0.64 | 2.71 | 0.50 | 2.96 | 15.1 | 0.57 | 1.63 | 0.30 | 2.02 | 0.31 | 0.11 | 3.08 | 77.0 | 8.36 | 1.32 | 2.28 | 0.25 | 16.3 | 0.57 | 22.5 | 3.56 | 0.33 |
YQ-2 | 20.8 | 41.6 | 4.53 | 16.2 | 3.22 | 0.77 | 3.19 | 0.56 | 3.20 | 15.8 | 0.60 | 1.71 | 0.29 | 1.92 | 0.30 | 0.14 | 4.77 | 118 | 10.3 | 1.65 | 3.18 | 0.32 | 10.6 | 0.55 | 21.8 | 4.39 | 0.36 |
YQ-3 | 17.3 | 31.9 | 3.23 | 11.3 | 2.51 | 0.74 | 2.65 | 0.47 | 2.53 | 9.87 | 0.46 | 1.34 | 0.23 | 1.52 | 0.24 | 0.08 | 3.96 | 68.5 | 7.57 | 1.20 | 2.25 | 0.24 | 11.4 | 0.53 | 10.5 | 3.21 | 0.34 |
YQ-4 | 18.1 | 38.3 | 4.63 | 18.5 | 5.58 | 1.63 | 10.6 | 1.97 | 12.0 | 52.5 | 1.88 | 4.38 | 0.58 | 3.33 | 0.46 | 0.09 | 3.24 | 60.6 | 5.16 | 0.85 | 1.66 | 0.25 | 8.32 | 0.24 | 13.1 | 2.53 | 0.26 |
YQ-5 | 94.3 | 227 | 39.1 | 134 | 11.6 | 1.62 | 10.1 | 1.35 | 8.51 | 41.2 | 1.67 | 5.25 | 0.87 | 6.21 | 0.93 | 0.10 | 7.47 | 246 | 7.04 | 1.49 | 2.50 | 0.63 | 10.2 | 0.63 | 30.6 | 6.73 | 0.41 |
YQ-6 | 55.8 | 128 | 24.2 | 102 | 18.1 | 4.29 | 22.1 | 3.76 | 26.1 | 123 | 4.70 | 12.7 | 1.94 | 12.9 | 1.83 | 0.45 | 4.39 | 206 | 3.29 | 0.66 | 1.20 | 1.74 | 7.41 | 0.25 | 9.33 | 3.94 | 0.39 |
YQ-7 | 38.0 | 56.7 | 5.80 | 15.3 | 2.24 | 0.40 | 2.40 | 0.43 | 2.61 | 10.1 | 0.52 | 1.76 | 0.31 | 2.15 | 0.32 | 0.08 | 0.25 | 9.74 | 27.7 | 2.56 | 1.39 | 0.06 | 41.70 | 1.91 | 49.9 | 67.3 | 58.20 |
YQ-8 | 123 | 351 | 43.6 | 158 | 19.9 | 3.03 | 15.6 | 1.77 | 9.74 | 33.3 | 1.70 | 5.08 | 0.78 | 5.34 | 0.77 | 0.10 | 1.62 | 51.9 | 26.0 | 6.69 | 7.78 | 0.29 | 107 | 2.83 | 93.2 | 55.1 | 3.64 |
YQ-9 | 143 | 523 | 52.4 | 198 | 24.2 | 3.79 | 19.8 | 1.98 | 9.67 | 30.4 | 1.53 | 4.20 | 0.62 | 4.08 | 0.59 | 0.09 | 1.55 | 52.3 | 15.9 | 4.51 | 4.28 | 0.29 | 67.9 | 1.70 | 84.9 | 31.1 | 1.56 |
UCC | 30.0 | 64.0 | 7.10 | 26.0 | 4.50 | 0.88 | 3.80 | 0.64 | 3.50 | 22.0 | 0.80 | 2.30 | 0.33 | 2.20 | 0.32 | 0.05 | 4.60 | 550 | 5.80 | 1.00 | 2.00 | 0.75 | 17.0 | 0.13 | 10.70 | 2.80 |
4.3.2. Trace Elements and Rare Earth Elements
5. Discussion
5.1. Provenance Source Rock
5.2. Paleoenvironment
5.2.1. Paleoclimate
5.2.2. Paleoredox
5.3. Potential Economic Significance of Li-REY and Other Associated Critical Metals
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, D.; Groves, D.I.; Santosh, M.; Yang, C.X. Critical metals: Their applications with emphasis on the clean energy transition. Geosystems Geoenviron. 2024, 4, 100310. [Google Scholar] [CrossRef]
- Wen, J.; Wang, X.; Yu, F.; Tian, M.; Wang, C.; Huang, G.; Xu, S. Recovery and value-added utilization of critical metals from spent catalysts for new energy industry. J. Clean. Prod. 2023, 419, 138295. [Google Scholar] [CrossRef]
- Mathieux, F.; Ardente, F.; Bobba, S.; Nuss, P.; Blengini, G.A.; Dias, P.A.; Blagoeva, D.; De Matos, C.T.; Wittmer, D.; Pavel, C. Critical Raw Materials and the Circular Economy; Publications Office of the European Union: Bruxelles, Belgium, 2017. [Google Scholar]
- Watari, T.; Nansai, K.; Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recy. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Wang, D.; Dai, H.; Liu, S.; Wang, C.; Yu, Y.; Zhao, Z. Progress in strategic critical minerals exploration and production and proposals for a new round of prospecting in China. Sci. Technol. Rev. 2024, 45, 7–25. (In Chinese) [Google Scholar]
- Dai, S.; Liu, C.; Zhao, L.; Wang, X.; Ren, D. Strategic Metal Resources in Coal-bearing Strata: Significance and Challenges. J. China Coal Soc. 2022, 47, 1743–1749. (In Chinese) [Google Scholar]
- Dai, S.; Finkelman, R.B. Coal Geology of China; Routledge: London, UK, 2020. [Google Scholar]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Bauer, S.; Yang, J.; Stuckman, M.; Verba, C. Rare earth element (REE) and critical mineral fractions of central appalachian coal-related strata determined by 7-step sequential extraction. Minerals 2022, 12, 1350. [Google Scholar] [CrossRef]
- Hower, J.C.; Warwick, P.D.; Scanlon, B.R.; Reedy, R.C.; Childress, T.M. Distribution of rare earth and other critical elements in lignites from the Eocene Jackson Group, Texas. Int. J. Coal Geol. 2023, 275, 104302. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; Johnston, M.N.; Ruppert, L.F.; Hopps, S.D.; Morgan, T.D. Geochemistry of the Leatherwood coal in eastern Kentucky with an emphasis on enrichment and modes of occurrence of rare earth elements. Int. J. Coal Geol. 2023, 280, 104387. [Google Scholar] [CrossRef]
- Coe, H.H.; Birgenheier, L.P.; Fernandez, D.P.; Gall, R.D.; Vanden Berg, M.D.; Giebel, A. Rare earth element enrichment in coal and coal-adjacent strata of the Uinta Region, Utah and Colorado. Front. Earth Sci. 2024, 12, 1381152. [Google Scholar] [CrossRef]
- Liu, C.; Chang, Y.; Sun, B.; Wang, X.; Qi, F. Detrital material controlling the enrichment of critical element Li in No. 9 coal seam of the Ningwu Coalfield, northeastern Shanxi Province, China: Heavy mineral and detrital zircon constraints. Int. J. Coal Geol. 2024, 294, 104605. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Algeo, T.J.; Yu, W.; He, X. Critical metal enrichment in Upper Carboniferous karst bauxite of North China Craton. Mineral. Deposita 2024, 59, 237–254. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, F.; Liu, D.; Zhao, L.; Zhang, X.; Lin, J.; Dong, H.; Zhao, S.; Liu, X.; Zan, M. Modes of occurrence of critical metal elements (Li, REEs and other critical elements) in low-grade bauxite from southern shanxi province, China. Minerals 2022, 12, 990. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, L.; French, D.; Graham, I.; Wei, Q.; Dai, S.; Feng, L. Revisiting sustainable resources in the combustion products of alumina-rich coal: Critical metal (Li, Ga, Nb, and REY) potential of ash from the Togtoh Power Plant, Inner Mongolia, China. Sci. Total Environ. 2024, 950, 175056. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Song, X.; Chekryzhov, I.Y.; Tarasenko, I.A.; Budnitskiy, S.Y. Detrital U-Pb zircon geochronology, zircon Lu-Hf and Sr-Nd isotopic signatures of the Lopingian volcanic-ash-derived Nb-Zr-REY-Ga mineralized horizons from eastern Yunnan, SW China. Lithos 2024, 468, 107494. [Google Scholar] [CrossRef]
- Vergunov, A.; Arbuzov, S.; Spears, D.; Kholodov, A.; Ilenok, S. Mineralogy and geochemistry of rare metal (Zr-Nb-Hf-Ta-REE-Ga) coals of the seam XXX of the Izykh Coalfield, Minusinsk Basin, Russia: Implications for more widespread rare metal mineralization in North Asia. Int. J. Coal Geol. 2024, 289, 104542. [Google Scholar] [CrossRef]
- Arbuzov, S.; Chekryzhov, I.Y.; Verkhoturov, A.; Spears, D.; Melkiy, V.; Zarubina, N.; Blokhin, M. Geochemistry and rare-metal potential of coals of the Sakhalin coal basin, Sakhalin island, Russia. Int. J. Coal Geol. 2023, 268, 104197. [Google Scholar] [CrossRef]
- Nechaev, V.P.; Dai, S.; Zhao, L.; Moore, T.A.; Nechaeva, E.V. The Tarim Basin, China, a prospect for plume-related Zr (Hf)-Nb (Ta)-REY-Ga-U mineralization. Ore Geol. Rev. 2021, 133, 104081. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Zhao, F.; Liu, D.; Zou, Y.; Zhang, W.; Liu, X.; Li, L.; Zhao, L. Geological and geochemical characteristics of karst bauxite-bearing sequences in Xiabu area, Central Shanxi Province, North China. J. Geochem. Explor. 2021, 230, 106849. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, Y.; Zhang, M.; Wang, X.; Wang, J.; Song, X.; Jiang, Y.; Luo, Y.; Song, Z.; Yang, Z. A new type of Nb (Ta)-Zr (Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Dai, S.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, D.; Zhao, F.; Zhang, S.; Zhang, Q.; Emmanuel, N.N.; Zhong, L. Mineralogical and geochemical characteristics of coal from the Southeastern Qinshui Basin: Implications for the enrichment and economic value of Li and REY. Int. J. Coal Geol. 2022, 264, 104136. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Wang, W.; Nechaev, V.P.; French, D.; Graham, I.; Lang, Y.; Li, Z.; Dai, S. Enrichment of critical metals (Li, Ga, and rare earth elements) in the early Permian coal seam from the Jincheng Coalfield, southeastern Qinshui Basin, northern China: With an emphasis on cookeite as the Li host. Ore Geol. Rev. 2024, 167, 105939. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Abundance and distribution pattern of rare earth elements and yttrium in vitrain band of high-rank coal from the Qinshui basin, northern China. Fuel 2019, 248, 93–103. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Xie, P.; Hower, J.C.; Nechaev, V.P.; Ju, D.; Liu, X. Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel 2021, 300, 120948. [Google Scholar] [CrossRef]
- Han, P.; Zhao, F.; Liu, D.; Zhang, Q.; Zhang, Q.; Ullah, S. Occurrence and Favorable Enrichment Environment of Lithium in Gaoping Coal Measures: Evidence from Mineralogy and Geochemistry. Appl. Sci. 2024, 14, 7298. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Wang, H.; Xie, X. Geochemical Characteristics of Critical Metal Elements in the No. 9 Coal Seam from the Xinyuan Mine, Northern Qinshui Coalfield, Shanxi Province, China. Minerals 2023, 13, 278. [Google Scholar] [CrossRef]
- Sun, B.; Guo, Z.; Liu, C.; Kong, Y.; French, D.; Zhu, Z. Lithium isotopic composition of two high-lithium coals and their fractions with different lithium occurrence modes, Shanxi Province, China. Int. J. Coal Geol. 2023, 277, 104338. [Google Scholar] [CrossRef]
- Hou, Y.; Dai, S.; Nechaev, V.P.; Finkelman, R.B.; Wang, H.; Zhang, S.; Di, S. Mineral matter in the Pennsylvanian coal from the Yangquan Mining District, northeastern Qinshui Basin, China: Enrichment of critical elements and a Se-Mo-Pb-Hg assemblage. Int. J. Coal Geol. 2023, 266, 104178. [Google Scholar] [CrossRef]
- Di, S.; Dai, S.; Nechaev, V.P.; Zhang, S.; French, D.; Graham, I.T.; Spiro, B.; Finkelman, R.B.; Hou, Y.; Wang, Y. Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and Ga) in coals from the Eastern Surface Mine, Ningwu Coalfield, Shanxi Province, China. J. Geochem. Explor. 2022, 239, 107016. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the no. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 109. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineral. Deposita 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Z.; Zhang, S.; Zhou, X.; Wang, Y.; Cheng, H. Geochemical features of lithium–rich bauxite from the Benxi formation in Qinyuan County, Shanxi, China: Insights into their depositional environment and lithium enrichment. Ore Geol. Rev. 2023, 163, 105780. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Santosh, M.; Collins, A.S.; Teng, X.M. Microblock amalgamation in the North China Craton: Evidence from Neoarchaean magmatic suite in the western margin of the Jiaoliao Block. Gondwana Res. 2016, 31, 96–123. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Wang, Q.; Sun, X.; Liu, L.; Yang, S.; Deng, J. Provenance and genesis of karstic bauxite deposits in China: Implications for the formation of super-large karstic bauxite deposits. Earth Sci. Rev. 2024, 257, 104882. [Google Scholar] [CrossRef]
- Zhao, G.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res. 2010, 178, 149–167. [Google Scholar] [CrossRef]
- Zhai, W.; Sun, X.; Yi, J.; Zhang, X.; Mo, R.; Zhou, F.; Wei, H.; Zeng, Q. Geology, geochemistry, and genesis of orogenic gold-antimony mineralization in the Himalayan Orogen, South Tibet, China. Ore Geol. Rev. 2014, 58, 68–90. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, S.; Liu, D.; Zhao, F.; Zhang, X.; Wang, Y.; Dai, G.; Li, L.; Li, X. Genesis of Carboniferous aluminous-bearing strata in the northern part of the North China Craton: A case study of the Xingxian bauxite deposit. Ore Geol. Rev. 2024, 170, 106125. [Google Scholar] [CrossRef]
- Chen, P.; Chai, D. Sedimentary Geochemistry of Carboniferous Bauxite Deposits in Shanxi Massif; Shanxi Science and Technology Press: Taiyuan, China, 1997. [Google Scholar]
- Wang, Q.; Deng, J.; Liu, X.; Zhao, R.; Cai, S. Provenance of Late Carboniferous bauxite deposits in the North China Craton: New constraints on marginal arc construction and accretion processes. Gondwana Res. 2016, 38, 86–98. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, Q.; Shi, S. Mineralogy and geochemistry of ammonian illite in intra-seam partings in Permo-Carboniferous coal of the Qinshui Coalfield, North China. Int. J. Coal Geol. 2016, 153, 1–11. [Google Scholar] [CrossRef]
- Shao, L.Y.; Yang, Z.Y.; Shang, X.X.; Xiao, Z.H.; Wang, S.; Zhang, W.L.; Zheng, M.Q.; Lu, J. Lithofacies palaeogeography of the Carboniferous and Permian in the Qinshui basin, Shanxi Province, China. J. Palaeogeog. 2015, 4, 384–412. [Google Scholar] [CrossRef]
- Taylor, J. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffract. 1991, 6, 2–9. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Ward, C.R.; Taylor, J.C.; Matulis, C.; Dale, L. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction. Int. J. Coal Geol. 2001, 46, 67–82. [Google Scholar] [CrossRef]
- Ruan, C.D.; Ward, C.R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Appl. Clay Sci. 2002, 21, 227–240. [Google Scholar] [CrossRef]
- GB/T 14506.30-2010; Methods for Chemical Analysis of Silicate Rocks-Part 30: Determination of 44 Elements. Standards Press of China: Beijing, China, 2010. (In Chinese)
- DZ/T 0202-2020; Geology Mineral Industry Standard of PR China: Specifications for Bauxite Mineral Exploration. Geolohical Press: Beijing, China, 2020. (In Chinese)
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Yang, T.; Shen, Y.; Lu, L.; Jin, J.; Huang, W.; Li, F.; Zhang, Y.; Hu, J.; Zeng, L. Geological factors for the enrichment of critical elements within the Lopingian (Late Permian) coal-bearing strata in western Guizhou, Southwestern China: Constrained with whole-rock and zircon geochemistry. Int. J. Coal Geol. 2024, 282, 104441. [Google Scholar] [CrossRef]
- Deng, W.; Wen, H.-J.; Du, S.-J.; Ling, K.-Y.; Fan, H.-F.; Zhu, C.-W.; Luo, C.-G.; Yang, Y. Provenance of Late Permian Nb-Zr-REE-Ga enrichment in western Guizhou: Implications for the waning volcanism of Emeishan large igneous province. Ore Geol. Rev. 2022, 150, 105160. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Graham, I.T.; Li, X.; Liu, H.; Song, X.; Hower, J.C.; Zhou, Y. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geol. Rev. 2017, 80, 116–140. [Google Scholar] [CrossRef]
- Shen, M.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Liu, S.; Chekryzhov, I.Y.; Tarasenko, I.A.; Zhang, S. Provenance changes for mineral matter in the latest Permian coals from western Guizhou, southwestern China, relative to tectonic and volcanic activity in the Emeishan Large Igneous Province and Paleo-Tethys region. Gondwana Res. 2023, 113, 71–88. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Zhong, Y.T.; Guan, J.P. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos 2010, 119, 10–19. [Google Scholar] [CrossRef]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X. Metallogenic and tectonic implications of detrital zircon U-Pb, Hf isotopes, and detrital rutile geochemistry of late carboniferous karstic bauxite on the southern margin of the North China Craton. Lithos 2019, 350, 105222. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.; Zhao, L.; Honglei Gao, M.J. Palaeozoic uplands and unconformity in the North China Block: Constraints from zircon LA-ICP-MS dating and geochemical analysis of Bauxite. Terra Nova 2010, 22, 264–273. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhao, L.; Peng, Y.; Ma, Y.; Zhou, Z. Metallogeny of the large-scale Carboniferous karstic bauxite in the Sanmenxia area, southern part of the North China Craton, China. Chem. Geol. 2020, 556, 119851. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Peng, Y.; Yin, R.; Ma, Y.; Zhao, L.; Zhang, S. Intensified and apace bauxitization over the paleo-karstic surface linked to volcanism. Bulletin 2023, 135, 1187–1205. [Google Scholar] [CrossRef]
- Zheng, X.; Dai, S.; Nechaev, V.; Sun, R. Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chem. Geol. 2020, 549, 119680. [Google Scholar] [CrossRef]
- Di, S.; Dai, S.; Nechaev, V.P.; French, D.; Graham, I.T.; Zhao, L.; Finkelman, R.B.; Wang, H.; Zhang, S.; Hou, Y. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. Int. J. Coal Geol. 2023, 273, 104262. [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, C.; Gong, H.; Dun, C.; Tong, C.; Chamssidini, L.G. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Mar. Petrol. Geol. 2020, 112, 104057. [Google Scholar] [CrossRef]
- Schellmann, W. A new definition of laterite. Mem. Geol. Surv. India 1986, 120, 1–7. [Google Scholar]
- Nesbitt, H.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. Jour. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Fedo, C.M.; Wayne Nesbitt, H.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Roy, D.K.; Roser, B.P. Climatic control on the composition of Carboniferous–Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Res. 2013, 23, 1163–1171. [Google Scholar] [CrossRef]
- Yandoka, B.M.S.; Abdullah, W.H.; Abubakar, M.; Hakimi, M.H.; Adegoke, A.K. Geochemical characterisation of Early Cretaceous lacustrine sediments of Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Organic matter input, preservation, paleoenvironment and palaeoclimatic conditions. Mar. Petrol. Geol. 2015, 61, 82–94. [Google Scholar] [CrossRef]
- Khan, D.; Liu, Z.; Qiu, L.; Liu, K.; Yang, Y.; Nie, C.; Liu, B.; Li, X.; Habulashenmu, Y. Mineralogical and geochemical characterization of lacustrine calcareous shale in Dongying Depression, Bohai Bay Basin: Implications for paleosalinity, paleoclimate, and paleoredox conditions. Geochemistry 2023, 83, 125978. [Google Scholar] [CrossRef]
- Calvert, S.; Pedersen, T. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Wignall, P.B.; Twitchett, R.J. Oceanic anoxia and the end Permian mass extinction. Science 1996, 272, 1155–1158. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Zhao, C.L.; Li, Y.H.; Wang, J.X. Minimum mining grade of the selected trace elements in Chinese coal. J. China Coal Soc. 2014, 39, 744–748. (In Chinese) [Google Scholar]
- Zhao, L.; Wang, X.; Dai, S. Lithium resources in coal-bearing strata: Occurrence, mineralization and resource potential. J. China Coal Soc. 2022, 47, 1750–1760. (In Chinese) [Google Scholar]
- DZ/T 0204-2020; Geology Mineral Industry Standard of P.R. China: Specifications for Rare Earth Mineral Exploration. Geolohical Press: Beijing, China, 2020. (In Chinese)
- DZ/T 0203-2020; Geology Mineral Industry Standard of P.R. China: Specifications for Rare Metal Mineral Exploration. Geolohical Press: Beijing, China, 2020. (In Chinese)
- Committee of National Resources. Reference Handbook for Mineral Industry Requirements; Geological Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
Sample | Rock Type | Kln | Ilt | Dsp | Qz | Ant | Rt | Gth | Hem | Mrc | Py | An | Flo | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YQ-1 | Siliceous | 45.7 | 22.0 | 29.0 | 1.2 | 0.9 | 0.9 | 0.4 | 67.7 | |||||
YQ-2 | Siliceous | 51.2 | 15.0 | 31.3 | 0.6 | 0.2 | 0.1 | 1.5 | 66.2 | |||||
YQ-3 | Siliceous | 49.6 | 21.0 | 25.2 | 1.0 | 0.6 | 0.8 | 1.8 | 70.6 | |||||
YQ-4 | Siliceous | 51.6 | 19.7 | 24.7 | 0.2 | 2.8 | 1.0 | 71.3 | ||||||
YQ-5 | Siliceous | 33.7 | 28.7 | 25.5 | 1.3 | 2.7 | 1.2 | 1.4 | 1.1 | 4.3 | 62.4 | |||
YQ-6 | Ferruginous | 22.5 | 40.4 | 27.5 | 1.0 | 4.5 | 2.0 | 0.9 | 0.9 | 0.2 | 62.9 | |||
YQ-7 | Aluminous | 11.2 | 84.2 | 0.4 | 2.8 | 0.6 | 0.7 | 11.2 | ||||||
YQ-8 | Aluminous | 32.7 | 27.3 | 35.6 | 0.8 | 2.1 | 0.9 | 0.6 | 60.0 | |||||
YQ-9 | Aluminous | 59.4 | 26.0 | 10.4 | 2.0 | 1.0 | 1.1 | 85.4 |
Sample | LaN/LuN | LaN/SmN | GdN/LuN | Ce/Ce* | Eu/Eu* | Gd/Gd* | Y/Y* | Type | REYdel | Coutl |
---|---|---|---|---|---|---|---|---|---|---|
YQ-1 | 0.008 | 0.169 | 0.062 | 0.179 | 1.655 | 0.217 | 0.035 | H | 32.08 | 0.8 |
YQ-2 | 0.008 | 0.145 | 0.075 | 0.180 | 1.783 | 0.228 | 0.035 | H | 33.34 | 0.9 |
YQ-3 | 0.008 | 0.155 | 0.078 | 0.187 | 2.070 | 0.227 | 0.028 | H | 30.42 | 0.8 |
YQ-4 | 0.004 | 0.073 | 0.163 | 0.167 | 1.188 | 0.222 | 0.037 | H | 52.16 | 2.0 |
YQ-5 | 0.012 | 0.183 | 0.077 | 0.126 | 1.422 | 0.292 | 0.033 | H | 32.88 | 0.8 |
YQ-6 | 0.003 | 0.069 | 0.086 | 0.115 | 1.527 | 0.237 | 0.035 | H | 50.21 | 1.8 |
YQ-7 | 0.014 | 0.382 | 0.053 | 0.176 | 1.228 | 0.225 | 0.026 | H | 22.01 | 0.5 |
YQ-8 | 0.018 | 0.139 | 0.144 | 0.171 | 1.877 | 0.336 | 0.026 | H | 27.30 | 0.6 |
YQ-9 | 0.028 | 0.133 | 0.238 | 0.213 | 2.043 | 0.377 | 0.026 | H | 24.38 | 0.5 |
Sample | CIA | Sr/Cu | Ga/Rb | C | Th/U | V/(V + Ni) | V/Cr | Ni/Co |
---|---|---|---|---|---|---|---|---|
YQ-1 | 93.4 | 2.81 | 0.68 | 3.02 | 6.32 | 0.89 | 1.63 | 10.05 |
YQ-2 | 93.7 | 4.37 | 0.47 | 0.28 | 4.97 | 0.87 | 2.30 | 9.83 |
YQ-3 | 94.5 | 5.59 | 0.59 | 0.16 | 3.27 | 0.92 | 1.44 | 6.03 |
YQ-4 | 94.7 | 1.18 | 0.77 | 2.49 | 5.18 | 0.91 | 2.76 | 1.46 |
YQ-5 | 87.2 | 1.79 | 0.27 | 0.72 | 4.55 | 0.90 | 2.48 | 1.51 |
YQ-6 | 80.7 | 1.08 | 0.23 | 5.32 | 2.37 | 0.43 | 2.31 | 0.60 |
YQ-7 | 100.1 | 3.85 | 17.66 | 1.07 | 0.74 | 0.97 | 4.00 | 6.37 |
YQ-8 | 98.4 | 3.86 | 0.97 | 0.82 | 1.69 | 0.86 | 3.46 | 28.11 |
YQ-9 | 98.2 | 14.38 | 0.71 | 0.34 | 2.73 | 0.87 | 4.40 | 34.76 |
Sample | LiO2 | REO | Nb2O5 | Ta2O5 | ZrO2 | HfO2 | (Nb, Ta)2O5 | (Zr, Hf)O2 | Ga |
---|---|---|---|---|---|---|---|---|---|
YQ-1 | 66.18 | 145.31 | 45.41 | 1.75 | 437.75 | 10.69 | 47.15 | 448.44 | 25.03 |
YQ-2 | 149.59 | 144.99 | 56.98 | 2.19 | 557.77 | 13.19 | 59.17 | 570.96 | 24.86 |
YQ-3 | 120.88 | 109.05 | 43.13 | 1.59 | 401.44 | 9.69 | 44.72 | 411.13 | 21.80 |
YQ-4 | 120.68 | 216.28 | 21.13 | 1.11 | 255.44 | 6.52 | 22.24 | 261.96 | 23.13 |
YQ-5 | 177.42 | 736.01 | 49.46 | 1.97 | 358.97 | 8.98 | 51.43 | 367.95 | 30.48 |
YQ-6 | 76.21 | 687.48 | 14.95 | 0.88 | 179.50 | 4.25 | 15.83 | 183.75 | 19.15 |
YQ-7 | 57.48 | 190.11 | 80.25 | 3.66 | 1472.04 | 38.28 | 83.91 | 1510.32 | 38.89 |
YQ-8 | 358.33 | 1040.33 | 258.94 | 9.42 | 1394.46 | 35.38 | 268.36 | 1429.84 | 37.25 |
YQ-9 | 854.32 | 1373.33 | 171.87 | 6.36 | 831.80 | 21.68 | 178.24 | 853.48 | 23.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zhao, J.; Xu, Y.; Mu, M.; Zhang, S.; Jing, L.; Huang, G.; Liu, L.; Tian, P. Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin. Minerals 2025, 15, 269. https://doi.org/10.3390/min15030269
Wang N, Zhao J, Xu Y, Mu M, Zhang S, Jing L, Huang G, Liu L, Tian P. Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin. Minerals. 2025; 15(3):269. https://doi.org/10.3390/min15030269
Chicago/Turabian StyleWang, Ning, Jun Zhao, Yingxia Xu, Mangen Mu, Shangqing Zhang, Libo Jing, Guoshu Huang, Liang Liu, and Pengfei Tian. 2025. "Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin" Minerals 15, no. 3: 269. https://doi.org/10.3390/min15030269
APA StyleWang, N., Zhao, J., Xu, Y., Mu, M., Zhang, S., Jing, L., Huang, G., Liu, L., & Tian, P. (2025). Paleoenvironmental Controls and Economic Potential of Li-REY Enrichment in the Upper Carboniferous Coal-Bearing “Si–Al–Fe” Strata, Northeastern Qinshui Basin. Minerals, 15(3), 269. https://doi.org/10.3390/min15030269