New Maya Blue-like Pigments Obtained in the Presence of Green Seaweed Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bentonite-Based Nanopigments
2.3. Adsorption Study
2.4. Characterization of Powders
2.4.1. Stability Studies
2.4.2. Photosensitivity Assessment
2.4.3. Effect on Seed Germination
2.5. Adsorption Isotherm Models
3. Results and Discussion
3.1. Characterization of Nanopigments
3.1.1. X-Ray Diffraction
3.1.2. X-Ray Fluorescence
3.1.3. UV-Vis Spectroscopy
3.1.4. FTIR Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raha, S.; Quazi, N.; Ivanov, I.; Bhattacharya, S. Dye/clay intercalated nanopigments using commercially available non-ionic dye. Dye. Pigm. 2012, 93, 1512–1518. [Google Scholar] [CrossRef]
- del Río, M.S.; Doménech, A.; Doménech-Carbó, M.T.; de Agredos Pascual, M.L.V.; Suárez, M.; García-Romero, E. The Maya Blue Pigment. Dev. Clay Sci. 2011, 3, 453–481. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, L.; Chen, H.; Zhang, J.; Zhang, Y.; Wang, A. Learning from ancient Maya: Preparation of stable palygorskite/methylene blue@SiO2 Maya Blue-like pigment. Microporous Mesoporous Mater. 2015, 211, 124–133. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Rybinski, P.; Prochon, M. New organic/inorganic pigments based on azo dye and aluminum-magnesium hydroxycarbonates with various Mg/Al ratios. Materials 2019, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Onganer, Y.; Tabak, A. Preparation and characterization of “green” hybrid clay-dye nanopigments. J. Phys. Chem. Solids 2015, 78, 95–100. [Google Scholar] [CrossRef]
- Pérez, E.; Ibarra, I.A.; Guzmán, A.; Lima, E. Hybrid pigments resulting from several guest dyes onto γ-alumina host: A spectroscopic analysis. Spectrochim. Acta A 2017, 172, 174–181. [Google Scholar] [CrossRef]
- Dumbrava, A.; Berger, D.; Prodan, G.; Badea, M.; Olar, R.; Moscalu, F.; Diacon, A. A study on thermal degradation of zinc oxide nanopowders functionalized with anthocyanins, in correlation with their properties and applications. Appl. Phys. A 2018, 124, 819. [Google Scholar] [CrossRef]
- Lima, L.C.B.; Silva, F.C.; Silva-Filho, E.C.; Fonseca, M.G.; Zhuang, G.; Jaber, M. Saponite-anthocyanin derivatives: The role of organoclays in pigment photostability. Appl. Clay Sci. 2020, 191, 105604. [Google Scholar] [CrossRef]
- Klika, Z.; Weissmannova, H.; Capkova, P.; Pospisil, M. The rhodamine B intercalation of montmorillonite. J. Colloid Interface Sci. 2004, 275, 243–250. [Google Scholar] [CrossRef]
- Raha, S.; Ivanov, I.; Quazi, N.H.; Bhattacharya, S.N. Photo-stability of rhodamine-B/montmorillonite nanopigments in polypropylene matrix. Appl. Clay Sci. 2009, 42, 661–666. [Google Scholar] [CrossRef]
- Bujdak, J.; Iyi, N.; Fujita, T. The aggregation of methylene blue in montmorillonite dispersions. Clay Miner. 2002, 37, 121–133. [Google Scholar] [CrossRef]
- Mahmoodi, A.; Ebrahimi, M. Role of a hybrid dye-clay nano-pigment (DCNP) on corrosion resistance of epoxy coatings. Prog. Org. Coat. 2018, 114, 223–232. [Google Scholar] [CrossRef]
- Mahmoodi, A.; Ebrahimi, M.; Khosravi, A.; Eivaz Mohammadloo, H. A hybrid dye-clay nano-pigment: Synthesis, characterization and application in organic coatings. Dye. Pigm. 2017, 147, 234–240. [Google Scholar] [CrossRef]
- Khenifi, A.; Bouberka, Z.; Sekrane, F.; Kameche, M.; Derriche, Z. Adsorption study of an industrial dye by an organic clay. Adsorption 2007, 13, 149–158. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, H.; Zhang, S.; Qiu, J.; Li, H.; Yang, M.; Ma, S.; Komarneni, S. Synthesis and characterization of a dual-cation organomontmorillonite nanocomposite. Materials 2018, 11, 2320. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, J.V.; Gent, P.L. Use of modified ‘Bentone-34’ for the gas chromatographic separation of aromatic hydrocarbons. Nature 1963, 197, 789–790. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Kowouvi, K.; Alies, B.; Gendrot, M.; Gaubert, A.; Vacher, G.; Gaudin, K.; Mosnier, J.; Pradines, B.; Barthelemy, P.; Grislaine, L.; et al. Nucleoside-lipid-based nanocarriers for methylene blue delivery: Potential application as anti-malarial drug. RSC Adv. 2019, 9, 18844. [Google Scholar] [CrossRef] [PubMed]
- Thesnaar, L.; Bezuidenhout, J.J.; Petzer, A.; Petzer, J.P.; Cloete, T.T. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. Eur. J. Pharm. Sci. 2021, 157, 105603. [Google Scholar] [CrossRef]
- Donauerová, A.; Bujdák, J.; Smolinská, M.; Bujdáková, H. Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue. J. Photochem. Photobiol. B 2015, 151, 135–141. [Google Scholar] [CrossRef]
- Dominguez, H.; Loret, E.P. Ulva lactuca, A source of troubles and potential riches. Mar. Drugs 2019, 17, 357. [Google Scholar] [CrossRef]
- Lahaye, M.; Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Matei, C.; Berger, D.; Dumbrava, A.; Radu, M.D.; Gheorghe, E. Calcium carbonate as silver carrier in composite materials obtained in green seaweed extract with topical applications. J. Sol-Gel Sci. Technol. 2020, 93, 315–323. [Google Scholar] [CrossRef]
- Dumbrava, A.; Matei, C.; Diacon, A.; Moscalu, F.; Berger, D. Novel ZnO-biochar nanocomposites obtained by hydrothermal method in extracts of Ulva lactuca collected from Black Sea. Ceram. Int. 2023, 49, 10003–10013. [Google Scholar] [CrossRef]
- Ranal, M.A.; De Santana, D.G.; Ferreira, W.R.; Mendes-Rodrigues, C. Calculating germination measurements and organizing spreadsheets. Rev. Brasil. Bot. 2009, 32, 849–855. [Google Scholar] [CrossRef]
- Younes, N.A.; Hassan, H.S.; Elkady, M.F.; Hamed, A.M.; Dawood, M.F.A. Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon 2020, 6, e03188. [Google Scholar] [CrossRef] [PubMed]
- Majd, M.M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Tan, H.; Liu, K.; Gao, W. Removal of methylene blue from aqueous solution by bone char. Appl. Sci. 2018, 8, 1903. [Google Scholar] [CrossRef]
- Weber, T.; Chakravorti, R. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- de Paiva, L.B.; Morales, A.R.; Valenzuela Díaz, F.R. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Garcıa-Sancho, C.; Vilarrasa-Garcıa, E.; Jimenez-Jimenez, J.; Rodriguez-Castellon, E. Synthesis, characterization, uses and applications of porous clays heterostructures: A review. Chem. Rec. 2018, 18, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Dakovic, A.; Smiljanic, D.; Markovic, M.; Ožegovic, M.; Krstic, J.; Vukovic, N.; Milojevic-Rakic, M. Bentonite modified with surfactants–efficient adsorbents for the removal of non-steroidal anti-inflammatory drugs. Processes 2024, 12, 96. [Google Scholar] [CrossRef]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Zhirong, L.; Azhar Uddin, M.; Zhanxue, S. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim. Acta A 2011, 79, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Park, Y.; Zheng, S.; Ayoko, G.A.; Frost, R.L. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide. J. Colloid Interface Sci. 2013, 408, 75–81. [Google Scholar] [CrossRef]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef] [PubMed]
- Damian, G.; Damian, F.; Szakács, Z.; Iepure, G.; Astefanei, D. Mineralogical and physico-chemical characterization of the Orasu-Nou (Romania) bentonite resources. Minerals 2021, 11, 938. [Google Scholar] [CrossRef]
- Ouaddari, H.; Abbou, B.; Lebkiri, I.; Habsaoui, A.; Ouzzine, M.; Allah, R.F. Removal of Methylene Blue by adsorption onto natural and purified clays: Kinetic and thermodynamic study. Chem. Phys. Impact 2024, 8, 100405. [Google Scholar] [CrossRef]
- Chaari, I.; Fakhfakh, E.; Medhioub, M.; Jamoussi, F. Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J. Mol. Struct. 2019, 1179, 672–677. [Google Scholar] [CrossRef]
- Jurado, E.; Fernández-Serrano, M.; Núñez-Olea, J.; Luzón, G.; Lechuga, M. Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests. Chemosphere 2006, 65, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Karickhoff, S.W.; Bailey, G.W. Optical absorption spectra of clay minerals. Clays Clay Miner. 1973, 21, 59–70. [Google Scholar] [CrossRef]
- Carazeanu Popovici, I.; Rosca, I.; Dumbrava, A. Modified red clays as adsorbents in the removal of cationic dyes from aqueous solutions. Dig. J. Nanomater. Biostruct. 2023, 18, 567–578. [Google Scholar] [CrossRef]
- Kume, A.; Akitsu, T.; Nasahara, K.N. Why is chlorophyll b only used in light-harvesting systems? J. Plant Res. 2018, 131, 961–972. [Google Scholar] [CrossRef]
- Bergmane, K.; O’Konski, C.T. A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite. J. Phys. Chem. 1963, 67, 2169–2177. [Google Scholar] [CrossRef]
- Cenens, J.; Schoonheydt, R.A. Visible spectroscopy of methylene blue on hectorite, laponite b, and barasym in aqueous suspension. Clays Clay Miner. 1988, 36, 214–224. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Sarkar, B. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Appl. Clay Sci. 2017, 137, 115–122. [Google Scholar] [CrossRef]
- Lv, X.; Liu, C.; Song, S.; Qiao, Y.; Hu, Y.; Li, P.; Li, Z.; Sun, S. Construction of a quaternary ammonium salt platform with different alkyl groups for antibacterial and biosensor applications. RSC Adv. 2018, 8, 2941–2949. [Google Scholar] [CrossRef] [PubMed]
- Madejová, J.; Gates, W.P.; Peti, S. Chapter 5–IR Spectra of Clay Minerals. Dev. Clay Sci. 2017, 8, 107–149. [Google Scholar] [CrossRef]
- Azimi, R.; Borzelabad, M.J.; Feizi, H.; Azimi, A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Technol. 2014, 16, 9–25. [Google Scholar] [CrossRef]
- Weng, C.H.; Pan, Y.F. Adsorption of a cationic dye (methylene blue) onto spent activated clay. J. Hazard. Mater. 2007, 144, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Jawada, A.H.; Abdulhameed, A.S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surf. Interfaces 2020, 18, 100422. [Google Scholar] [CrossRef]
- Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 2009, 332, 46–53. [Google Scholar] [CrossRef]
Sample | Constituent Concentration (%) | ||||
---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | S | Other Oxides | |
B34 | 63.41 ± 0.26 | 24.21 ± 0.29 | 11.86 ± 0.09 | 0.15 ± 0.02 | 0.37 |
CB | 63.42 ± 0.24 | 25.20 ± 0.27 | 11.06 ± 0.08 | - | 0.32 |
B-MB 1 | 61.35 ± 0.25 | 23.93 ± 0.28 | 11.80 ± 0.08 | 1.80 ± 0.03 | 1.12 |
B-MB 2 | 59.76 ± 0.25 | 24.06 ± 0.29 | 12.71 ± 0.09 | 2.53 ± 0.04 | 0.94 |
B-MB 3 | 60.16 ± 0.24 | 24.09 ± 0.28 | 12.28 ± 0.08 | 2.50 ± 0.03 | 0.97 |
CB-MB 1 | 61.82 ± 0.21 | 25.68 ± 0.24 | 10.41 ± 0.07 | 1.44 ± 0.02 | 0.65 |
CB-MB 2 | 61.38 ± 0.22 | 25.36 ± 0.25 | 11.26 ± 0.07 | 1.50 ± 0.03 | 0.50 |
CB-MB 3 | 60.48 ± 0.23 | 25.39 ± 0.27 | 12.09 ± 0.08 | 1.55 ± 0.03 | 0.49 |
Sample | G (%) | MGT (day) | CVt (%) | MGR (Day−1) | U (Bit) | Z |
---|---|---|---|---|---|---|
Control | 90.00 ± 4.08 | 3.39 ± 0.31 | 51.77 ± 10.12 | 0.2971 ± 0.0312 | 2.52 ± 0.27 | 0.12 ± 0.01 |
B34 | 90.00 ± 4.08 | 2.67 ± 0.30 | 38.98 ± 7.25 | 0.3776 ± 0.0407 | 1.81 ± 0.21 | 0.21 ± 0.02 |
CB | 90.00 ± 9.43 | 4.11 ± 0.37 | 24.39 ± 6.55 | 0.2478 ± 0.0199 | 1.50 ± 0.12 | 0.33 ± 0.03 |
B-MB 1 | 90.00 ± 7.07 | 3.21 ± 0.31 | 23.24 ± 6.44 | 0.3180 ± 0.0345 | 1.27 ± 0.15 | 0.41 ± 0.04 |
B-MB 2 | 90.00 ± 7.07 | 3.72 ± 0.35 | 21.64 ± 6.27 | 0.2786 ± 0.0256 | 1.47 ± 0.13 | 0.35 ± 0.03 |
Adsorption Conditions | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qmax (mg/g) | KL | R2 | nF | KF (mg/g) | R2 | |
water | 76.9231 | 1.0656 | 0.9916 | 0.3146 | 3.6561 | 0.9614 |
ULE | 322.5806 | 0.1640 | 0.9104 | 0.7452 | 3.8534 | 0.9230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumbrava, A.; Rosca, I.; Rațiu, G.-L.; Berger, D. New Maya Blue-like Pigments Obtained in the Presence of Green Seaweed Extract. Minerals 2025, 15, 226. https://doi.org/10.3390/min15030226
Dumbrava A, Rosca I, Rațiu G-L, Berger D. New Maya Blue-like Pigments Obtained in the Presence of Green Seaweed Extract. Minerals. 2025; 15(3):226. https://doi.org/10.3390/min15030226
Chicago/Turabian StyleDumbrava, Anca, Iulia Rosca, Grigore-Leon Rațiu, and Daniela Berger. 2025. "New Maya Blue-like Pigments Obtained in the Presence of Green Seaweed Extract" Minerals 15, no. 3: 226. https://doi.org/10.3390/min15030226
APA StyleDumbrava, A., Rosca, I., Rațiu, G.-L., & Berger, D. (2025). New Maya Blue-like Pigments Obtained in the Presence of Green Seaweed Extract. Minerals, 15(3), 226. https://doi.org/10.3390/min15030226