Critical Contribution of Biomass-Based Amendments in Mine Ecological Restoration: Properties, Functional Mechanisms, and Environmental Impacts
Abstract
1. Introduction
2. Challenges Associated with Reclamation Substrates in Mine Ecological Restoration
3. Classification of Biomass-Based Amendments
3.1. Plant-Derived Amendments
3.2. Animal-Derived Amendments
3.3. Industrial Organic By-Products
3.4. Biochar and Hydrochar
3.5. Microbial Inoculants
4. Functional Mechanisms of Biomass-Based Amendments in Mine Ecological Restoration
4.1. Physical Improvement and Structural Optimization
4.2. Chemical Mechanisms and Contaminant Immobilization
4.3. Nutrient Cycling and Fertility Enhancement
4.4. Microbial Activation and Ecosystem Restoration
5. Nutrient Leaching and Secondary Pollution Risks
6. Greenhouse Gas Emissions and Carbon Sequestration Potential
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Sisto, M.; Ul-Durar, S.; Arshed, N.; Iqbal, M.; Nazarian, A. Natural resource extraction—Sustainable development relationship and energy productivity moderation in resource-rich countries: A panel Bayesian regression analysis. J. Clean. Prod. 2024, 477, 143775. [Google Scholar] [CrossRef]
- Sonter, L.J.; Dade, M.C.; Watson, J.E.M.; Valenta, R.K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 2020, 11, 4174. [Google Scholar] [CrossRef] [PubMed]
- Sonter, L.J.; Herrera, D.; Barrett, D.J.; Galford, G.L.; Moran, C.J.; Soares-Filho, B.S. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 2017, 8, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Blanche, M.F.; Dairou, A.A.; Juscar, N.; Romarice, O.M.F.; Arsene, M.; Bernard, T.L.; Leroy, M.N.L. Assessment of land cover degradation due to mining activities using remote sensing and digital photogrammetry. Environ. Syst. Res. 2024, 13, 41. [Google Scholar] [CrossRef]
- Han, W.; Zhao, R.; Liu, W.; Wang, Y.; Zhang, S.; Zhao, K.; Nie, J. Environmental contamination characteristics of heavy metals from abandoned lead–zinc mine tailings in China. Front. Earth Sci. 2023, 11, 1082714. [Google Scholar] [CrossRef]
- Macklin, M.G.; Thomas, C.J.; Mudbhatkal, A.; Brewer, P.A.; Hudson-Edwards, K.A.; Lewin, J.; Scussolini, P.; Eilander, D.; Lechner, A.; Owen, J.; et al. Impacts of metal mining on river systems: A global assessment. Science 2023, 381, 1345–1350. [Google Scholar] [CrossRef]
- Tordoff, G.M.; Baker, A.J.M.; Willis, A.J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000, 41, 219–228. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S. Hotspots of Mining-Related Biodiversity Loss in Global Supply Chains and the Potential for Reduction through Renewable Electricity. Environ. Sci. Technol. 2022, 56, 16357–16368. [Google Scholar] [CrossRef]
- Wu, S.; Wang, F.; Komárek, M.; Huang, L. Ecological rehabilitation of mine tailings. Plant Soil 2024, 497, 1–5. [Google Scholar] [CrossRef]
- Zong, R.; Fang, N.; Zeng, Y.; Lu, X.; Wang, Z.; Dai, W.; Shi, Z. Soil Conservation Benefits of Ecological Programs Promote Sustainable Restoration. Earth’s Future 2025, 13, e2024EF005287. [Google Scholar] [CrossRef]
- Murphy, S.D. Ecological Restoration: Principles, Values, and Structure of an Emerging Profession. Restor. Ecol. 2013, 21, 658. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, X.; Xiao, M. Ecological Restoration and Carbon Sequestration Regulation of Mining Areas—A Case Study of Huangshi City. Int. J. Environ. Res. Public Health 2022, 19, 4175. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Callaham, M.A. Soils and Landscape Restoration; Academic Press: Oxford, UK, 2020; ISBN 0128131942. [Google Scholar]
- Gerrits, G.M.; Waenink, R.; Aradottir, A.L.; Buisson, E.; Dutoit, T.; Ferreira, M.C.; Fontaine, J.B.; Jaunatre, R.; Kardol, P.; Loeb, R.; et al. Synthesis on the effectiveness of soil translocation for plant community restoration. J. Appl. Ecol. 2023, 60, 714–724. [Google Scholar] [CrossRef]
- Muñoz Rojas, M.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restor. Ecol. 2016, 24, S43–S52. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Y.; Xu, K.; Bai, L.; Guo, N.; Li, S. A short review of the sustainable utilization of coal gangue in environmental applications. Rsc Adv. 2024, 14, 39285–39296. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Wang, C.P.; Liu, K.Y.; Pan, S.Y. Towards sustainable management of polyacrylamide in soil-water environment: Occurrence, degradation, and risk. Sci. Total Environ. 2024, 926, 171587. [Google Scholar] [CrossRef]
- Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Batidzirai, B.; Smeets, E.M.W.; Faaij, A. Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments. Renew. Sustain. Energy Rev. 2012, 16, 6598–6630. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Ikubanni, P.P.; Orhadahwe, T.; Christopher, C.; Akano, J.; Agboola, O.; Adegoke, S.; Balogun, A.; Ibikunle, R. Sustainability of multifaceted usage of biomass: A review. Heliyon 2021, 7, e8025. [Google Scholar] [CrossRef]
- Enebe, M.C.; Ray, R.L.; Griffin, R.W. Carbon sequestration and soil responses to soil amendments—A review. J. Hazard. Mater. Adv. 2025, 18, 100714. [Google Scholar] [CrossRef]
- Bolan, S.; Sharma, S.; Mukherjee, S.; Kumar, M.; Rao, C.S.; Nataraj, K.; Singh, G.; Vinu, A.; Bhowmik, A.; Sharma, H.; et al. Biochar modulating soil biological health: A review. Sci. Total Environ. 2024, 914, 169585. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Maiti, S.K. Can biochar reclaim coal mine spoil? J. Environ. Manag. 2020, 272, 111097. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, H.; Wang, Z.; Liu, J.; Li, Y.; Xia, L.; Song, S. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. J. Environ. Manag. 2024, 368, 122200. [Google Scholar] [CrossRef] [PubMed]
- Owiny, A.A.; Dusengemungu, L. Mycorrhizae in mine wasteland reclamation. Heliyon 2024, 10, e33141. [Google Scholar] [CrossRef]
- Salazar-Fillippo, A.A.; Srinivasan, J.; van der Bij, A.; Miko, L.; Frouz, J.; Berg, M.P.; van Diggelen, R. Ecomorphological groups in oribatid mite communities shift with time after topsoil removal—Insight from multi-trait approaches during succession in restored heathlands. Appl. Soil Ecol. 2023, 191, 105046. [Google Scholar] [CrossRef]
- Mcmahen, K.; Anglin, C.D.L.; Lavkulich, L.M.; Grayston, S.J.; Simard, S.W. Small-volume additions of forest topsoil improve root symbiont colonization and seedling growth in mine reclamation. Appl. Soil Ecol. 2022, 180, 104622. [Google Scholar] [CrossRef]
- Ribeiro, R.A.; Giannini, T.C.; Gastauer, M.; Awade, M.; Siqueira, J.O. Topsoil application during the rehabilitation of a manganese tailing dam increases plant taxonomic, phylogenetic and functional diversity. J. Environ. Manag. 2018, 227, 386–394. [Google Scholar] [CrossRef]
- Min, X.; Xu, D.; Hu, X.; Li, X. Changes in total organic carbon and organic carbon fractions of reclaimed minesoils in response to the filling of different substrates. J. Environ. Manag. 2022, 312, 114928. [Google Scholar] [CrossRef]
- Bulot, A.; Potard, K.; Bureau, F.; Bérard, A.; Dutoit, T. Ecological restoration by soil transfer: Impacts on restored soil profiles and topsoil functions. Restor. Ecol. 2017, 25, 354–366. [Google Scholar] [CrossRef]
- Valliere, J.M.; D’Agui, H.M.; Dixon, K.W.; Nevill, P.G.; Wong, W.S.; Zhong, H.; Veneklaas, E.J. Stockpiling disrupts the biological integrity of topsoil for ecological restoration. Plant Soil 2022, 471, 409–426. [Google Scholar] [CrossRef]
- Hernandez, J.A.C.; Ribeiro, H.M.; Bayne, E.; Kenzie, M.; Lanoil, B. Impact of stockpile depth and storage time on soil microbial communities. Appl. Soil Ecol. 2024, 196, 105275. [Google Scholar] [CrossRef]
- Birnbaum, C.; Bradshaw, L.E.; Ruthrof, K.X.; Fontaine, J.B. Topsoil Stockpiling in Restoration: Impact of Storage Time on Plant Growth and Symbiotic Soil Biota. Ecol. Restor. 2017, 35, 237–245. [Google Scholar] [CrossRef]
- Cabrera Hernandez, J.A.; Davidson, H.; MacKenzie, M.D.; Lanoil, B.D. Impact of stockpiling on soil fungal communities and their functions. Restor. Ecol. 2025, 33, e14333. [Google Scholar] [CrossRef]
- Xie, L.; van Zyl, D. The geochemical processes affecting the mobility of Cu, Pb, Zn during phytostabilization on sulfidic mine tailings revealed by a greenhouse study. J. Clean. Prod. 2023, 418, 138119. [Google Scholar] [CrossRef]
- Song, W.; Xu, R.; Li, X.; Min, X.; Zhang, J.; Zhang, H.; Hu, X.; Li, J. Soil reconstruction and heavy metal pollution risk in reclaimed cultivated land with coal gangue filling in mining areas. Catena 2023, 228, 107147. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Ondrasek, G.; Zovko, M.; Kranjčec, F.; Savić, R.; Romić, D.; Rengel, Z. Wood biomass fly ash ameliorates acidic, low-nutrient hydromorphic soil & reduces metal accumulation in maize. J. Clean. Prod. 2021, 283, 124650. [Google Scholar] [CrossRef]
- Matsi, T.; Keramidas, V.Z. Fly ash application on two acid soils and its effect on soil salinity, pH, B, P and on ryegrass growth and composition. Environ. Pollut. 1999, 104, 107–112. [Google Scholar] [CrossRef]
- Urbaniak, M.; Baran, A.; Mierzejewska, E.; Kannan, K. The evaluation of Hudson River sediment as a growth substrate—Microbial activity, PCB-degradation potential and risk assessment. Sci. Total Environ. 2022, 836, 155561. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, F.; Liang, X.; Huang, J.; Yan, J.; Wang, H.; Hou, Y. Beneficial use of dredged sediments as a resource for mine reclamation: A case study of Lake Dianchi’s management in China. Waste Manag. 2023, 167, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Kachoueiyan, F.; Karbassi, A.; Nasrabadi, T.; Rashidiyan, M.; De-La-Torre, G.E. Speciation characteristics, ecological risk assessment, and source apportionment of heavy metals in the surface sediments of the Gomishan wetland. Mar. Pollut. Bull. 2024, 198, 115835. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shi, Y.; Wu, M.; Rezakazemi, M.; Aminabhavi, T.M.; Huang, R.; Jia, C.; Ge, S. Biomass-MOF composites in wastewater treatment, air purification, and electromagnetic radiation adsorption—A review. Chem. Eng. J. 2024, 494, 152932. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Abinandan, S.; Chen, C.; Venkateswartlu, K.; Megharaj, M. Chapter Two—Microbial inoculant carriers: Soil health improvement and moisture retention in sustainable agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Oxford, UK, 2023; Volume 180, pp. 35–91. ISBN 0065-2113. [Google Scholar]
- Sarathchandra, S.S.; Rengel, Z.; Solaiman, Z.M. Metal uptake from iron ore mine tailings by perennial ryegrass (Lolium perenne L.) is higher after wheat straw than wheat straw biochar amendment. Plant Soil 2024, 502, 481–496. [Google Scholar] [CrossRef]
- Shang, X.; Wu, S.; Liu, Y.; Zhang, K.; Guo, M.; Zhou, Y.; Zhu, J.; Li, X.; Miao, R. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. J. Hazard. Mater. 2024, 466, 133684. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Díaz-Raviña, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Arias-Estévez, M.; Rousk, J. Using pine bark and mussel shell amendments to reclaim microbial functions in a Cu polluted acid mine soil. Appl. Soil Ecol. A Sect. Agric. Ecosyst. Environ. 2018, 127, 102–111. [Google Scholar] [CrossRef]
- Peltoniemi, K.; Velmala, S.; Fritze, H.; Jyske, T.; Rasi, S.; Pennanen, T. Impacts of coniferous bark-derived organic soil amendments on microbial communities in arable soil—A microcosm study. Fems Microbiol. Ecol. 2023, 99, fiad012. [Google Scholar] [CrossRef]
- Rees, F.; Quideau, S.; Dyck, M.; Hernandez, G.; Yarmuch, M. Water and nutrient retention in coarse-textured soil profiles from the Athabasca oil sand region. Appl. Geochem. 2020, 114, 104526. [Google Scholar] [CrossRef]
- Nawu, T.; Zvomuya, F.; Adesanya, T.; Amarakoon, I.; Bekele, A. Soil properties following borrow pit reclamation with insufficient topsoil amended with peat and biochar. Land Degrad. Dev. 2024, 35, 1061–1073. [Google Scholar] [CrossRef]
- Breza, L.C.; Grandy, A.S. Organic amendments tighten nitrogen cycling in agricultural soils: A meta-analysis on gross nitrogen flux. Front. Agron. 2025, 7, 1472749. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Gaind, S.; Nain, L. Exploration of composted cereal waste and poultry manure for soil restoration. Bioresour. Technol. 2010, 101, 2996–3003. [Google Scholar] [CrossRef]
- Hodson, M.E.; Valsami-Jones, É.; Cotter-Howells, J.D. Bonemeal Additions as a Remediation Treatment for Metal Contaminated Soil. Environ. Sci. Technol. 2000, 34, 3501–3507. [Google Scholar] [CrossRef]
- Shi, R.; Li, J.; Xu, R.K.; Qian, W. Ameliorating effects of individual and combined application of biomass ash, bone meal and alkaline slag on acid soils. Soil Tillage Res. 2016, 162, 41–45. [Google Scholar] [CrossRef]
- Dere, A.L.; Stehouwer, R.C.; Aboukila, E.; McDonald, K.E. Nutrient leaching and soil retention in mined land reclaimed with stabilized manure. J. Environ. Qual. 2012, 41, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yu, H.; Xiong, M.; Zhu, P.; Liu, Y.; Shu, L. Mineralization of Organic Nitrogen in Soils with Contrasting Fertility Was Regulated Differently by Addition of Biochar and Animal Manures. Commun. Soil Sci. Plant Anal. 2020, 51, 1227–1237. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; Igalavithana, A.D.; Tang, R.; Cai, Y.; Chang, S.X. Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. Sci. Total Environ. 2023, 881, 163311. [Google Scholar] [CrossRef]
- Proto, M.; Courtney, R. Application of organic wastes to subsoil materials can provide sustained soil quality in engineered soil covers for mine tailings rehabilitation: A 7 years study. Ecol. Eng. 2023, 192, 106971. [Google Scholar] [CrossRef]
- Reid, C.J.; Farrell, M.; Kirby, J.K. Microbial communities in biosolids-amended soils: A critical review of high-throughput sequencing approaches. J. Environ. Manag. 2025, 375, 124203. [Google Scholar] [CrossRef]
- Pozzebon, E.A.; Seifert, L. Emerging environmental health risks associated with the land application of biosolids: A scoping review. Environ. Health 2023, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Tan, X.; Zhao, X.; Qian, L.; Nie, Y.; Pan, X.; Gao, Q.; Peng, M.; Liu, Y.; Han, X. Biological neutralization of bauxite residue with fermented waste sludge and bio-acid, and the microbial ecological restoration. Chem. Eng. J. 2023, 474, 145758. [Google Scholar] [CrossRef]
- Cyphers, L. Pilot Testing of a Geomorphic Landform Design Reclamation Using a Vegetative Layer with Short Paper Fiber Amendment on an Abandoned Coal Refuse Pile in Appalachia; West Virginia University: Morgantown, WV, USA, 2018; p. 85. [Google Scholar]
- Feng, J.; Yang, Y.; Ruan, K.; Wu, D.; Xu, Y.; Jacobs, D.F.; Zeng, S. Combined application of sewage sludge, bagasse, and molybdenum tailings ameliorates rare earth mining wasteland soil. J. Soils Sediments 2023, 23, 1775–1788. [Google Scholar] [CrossRef]
- Li, Y.; Tsend, N.; Li, T.; Liu, H.; Yang, R.; Gai, X.; Wang, H.; Shan, S. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Bioresour. Technol. 2019, 273, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Chintala, R.; Schumacher, T.E.; Kumar, S.; Malo, D.D.; Rice, J.A.; Bleakley, B.; Chilom, G.; Clay, D.E.; Julson, J.L.; Papiernik, S.K.; et al. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard. Mater. 2014, 279, 244–256. [Google Scholar] [CrossRef]
- Khosravi, A.; Zheng, H.; Liu, Q.; Hashemi, M.; Tang, Y.; Xing, B. Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chem. Eng. J. 2022, 430, 133142. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.A.; Al-Farraj, A.S.; Ok, Y.S.; Abduljabbar, A.; Al-Faraj, A.I.; Sallam, A.S. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environ. Geochem. Health 2019, 41, 1705–1722. [Google Scholar] [CrossRef]
- Kravchenko, E.; Yan, W.H.; Privizentseva, D.; Minkina, T.; Sushkova, S.; Kazeev, K.; Bauer, T.; Wong, M.H. Hydrochar as an adsorbent for heavy metals in soil: A meta-analysis. Sustain. Mater. Technol. 2024, 41, e1057. [Google Scholar] [CrossRef]
- Ai, Y.; Wang, Y.; Song, L.; Hong, W.; Zhang, Z.; Li, X.; Zhou, S.; Zhou, J. Effects of biochar on the physiology and heavy metal enrichment of Vetiveria zizanioides in contaminated soil in mining areas. J. Hazard. Mater. 2023, 448, 130965. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, H.; Guo, Y.; Liu, Z.; Jiao, W. Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms. Sci. Total Environ. 2019, 685, 1201–1208. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Y.; Wang, D.; Shen, M.; Hu, D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J. Hazard. Mater. 2020, 398, 122977. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, 867. [Google Scholar] [CrossRef] [PubMed]
- Alguacil, M.M.; Torres, M.P.; Torrecillas, E.; Díaz, G.; Roldán, A. Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol. Biochem. 2011, 43, 167–173. [Google Scholar] [CrossRef]
- Ferrol, N.; Tamayo, E.; Vargas, P. The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. J. Exp. Bot. 2016, 67, 6253–6265. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, L.; Jia, Z.; Tang, Y.; Liu, X.; Zhang, J.; Müller, C. Microbial Inoculants Drive Changes in Soil and Plant Microbiomes and Improve Plant Functions in Abandoned Mine Restoration. Plant Cell Environ. 2025, 48, 1162–1178. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, J.; Yang, C.; Li, H.; Lin, B.; Gao, Y.; Dong, B. Response of Water Stress and Bacterial Fertilizer Addition to the Structure of Microbial Flora in the Rhizosphere Soil of Grapes Under Delayed Cultivation. Commun. Soil Sci. Plant Anal. 2023, 54, 2609–2624. [Google Scholar] [CrossRef]
- Bi, Y.; Xiao, L.; Sun, J. An arbuscular mycorrhizal fungus ameliorates plant growth and hormones after moderate root damage due to simulated coal mining subsidence: A microcosm study. Environ. Sci. Pollut. Res. 2019, 26, 11053–11061. [Google Scholar] [CrossRef]
- Li, M.; Bi, Y.; Yin, K.; Du, X.; Tian, L. Arbuscular mycorrhizal fungi regulation of soil carbon fractions in coal mining restoration: Dominance of glomalin-related soil proteins revealed by stable carbon isotopes (δ13C). Appl. Soil Ecol. 2024, 204, 105753. [Google Scholar] [CrossRef]
- Zhao, Y.; Naeth, M.A. Soil amendment with a humic substance and arbuscular mycorrhizal Fungi enhance coal mine reclamation. Sci. Total Environ. 2022, 823, 153696. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, J.; Sunahara, G.; Yue, W.; Huang, P.; Duran, R. Role of phosphorus-, silicon-, and potassium-solubilizing bacteria in the phytoremediation of Cd, Pb, and Zn contaminated mine tailings. J. Environ. Manag. 2025, 393, 126982. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, J.; Li, H.; Sunahara, G.; Li, M.; Tang, C.; Duran, R.; Ma, B.; Liu, H.; Feng, L.; et al. Effects of three plant growth-promoting bacterial symbiosis with ryegrass for remediation of Cd, Pb, and Zn soil in a mining area. J. Environ. Manag. 2024, 353, 120167. [Google Scholar] [CrossRef] [PubMed]
- Sahlaoui, T.; Raklami, A.; Heinze, S.; Marschner, B.; Bargaz, A.; Oufdou, K. Nature-based remediation of mine tailings: Synergistic effects of narrow-leafed lupine and organo-mineral amendments on soil nutrient-acquiring enzymes and microbial activity. J. Environ. Manag. 2024, 371, 123035. [Google Scholar] [CrossRef]
- Ai, X.; Wang, L.; Xu, D.; Rong, J.; Ai, S.; Liu, S.; Li, C.; Ai, Y. Stability of artificial soil aggregates for cut slope restoration: A case study from the subalpine zone of southwest China. Soil Tillage Res. 2021, 209, 104934. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Piccolo, A.; Drosos, M. The essential role of humified organic matter in preserving soil health. Chem. Biol. Technol. Agric. 2025, 12, 21. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Bougoure, J.J.; Southam, G.; Chan, T.-S.; Lu, Y.-R.; Haw, S.-C.; Nguyen, T.A.H.; You, F.; Huang, L.H. Organic Matter Amendment and Plant Colonization Drive Mineral Weathering, Organic Carbon Sequestration, and Water-Stable Aggregation in Magnetite Fe Ore Tailings. Environ. Sci. Technol. 2019, 53, 13720–13731. [Google Scholar] [CrossRef]
- Sun, X.; Gao, W.; Li, H.; Zhang, J.; Cai, A.; Xu, M.; Hao, X. Animal manures increased maize yield by promoting microbial activities and inorganic phosphorus transformation in reclaimed soil aggregates. Appl. Soil Ecol. A Sect. Agric. Ecosyst. Environ. 2024, 198, 105352. [Google Scholar] [CrossRef]
- Ding, F.; Van Zwieten, L.; Zhang, W.; Weng, Z.; Shi, S.; Wang, J.; Meng, J. A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. J. Soils Sediments 2018, 18, 1507–1517. [Google Scholar] [CrossRef]
- Wu, Q.; Srivastava, A.K.; Cao, M.-Q.; Wang, J. Mycorrhizal function on soil aggregate stability in root zone and root-free hyphae zone of trifoliate orange. Arch. Agron. Soil Sci. 2015, 61, 813–825. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Kranz, C.N.; Mclaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Ju, X.; Gao, L.; She, D.; Jia, Y.; Pang, Z.; Wang, Y. Impacts of the soil pore structure on infiltration characteristics at the profile scale in the red soil region. Soil Tillage Res. 2024, 236, 105922. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, C.; Cheng, Q.; Zeng, H.; Xu, J.-J.; Tian, B.-G.; Shi, B. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. Earth-Sci. Rev. 2021, 216, 103586. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, K.; Shen, Z.; Wang, X.; Zhang, Y.; Tang, C.-S.; Shi, B. Effects of biochar particle size and dosage on the desiccation cracking behavior of a silty clay. Sci. Total Environ. 2022, 837, 155788. [Google Scholar] [CrossRef] [PubMed]
- Rathour, R.K.; Devi, M.; Dahiya, P.; Sharma, N.; Kaushik, N.; Kumari, D.; Kumar, P.; Baadhe, R.R.; Walia, A.; Bhatt, A.K.; et al. Recent Trends, Opportunities and Challenges in Sustainable Management of Rice Straw Waste Biomass for Green Biorefinery. Energies 2023, 16, 1429. [Google Scholar] [CrossRef]
- Qiu, C.; Xu, L.; Geng, W.; Xu, G.; Zhang, D. Evolutionary Behaviors of Straw-Reinforced Slurry for Sustainable Management of Dredging Sediment: Rheological and Fertility Properties. Waste Biomass Valorization 2025, 16, 1057–1071. [Google Scholar] [CrossRef]
- Shree, B.; Kumari, S.; Singh, S.; Rani, I.; Dhanda, A.; Chauhan, R. Exploring various types of biomass as adsorbents for heavy metal remediation: A review. Environ. Monit. Assess. 2025, 197, 406. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef]
- Vélez-Bermúdez, I.C.; Schmidt, W. Plant strategies to mine iron from alkaline substrates. Plant Soil 2023, 483, 1–25. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Xu, Y.; John, R. The recovery of soil N-cycling and P-cycling following reforestation in a degraded tropical limestone mine. J. Clean. Prod. 2024, 448, 141580. [Google Scholar] [CrossRef]
- Elmeknassi, M.; Elghali, A.; de Carvalho, H.W.P.; Laamrani, A.; Benzaazoua, M. A review of organic and inorganic amendments to treat saline-sodic soils: Emphasis on waste valorization for a circular economy approach. Sci. Total Environ. 2024, 921, 171087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.N.; Fatima, T.; Mishra, J.; Mishra, I.; Verma, S.; Verma, R.; Verma, M.; Bhattacharya, A.; Verma, P.; Mishra, P.; et al. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J. Adv. Res. 2020, 26, 69–82. [Google Scholar] [CrossRef]
- Liu, L.; Yue, T.; Liu, R.; Lin, H.; Wang, D.; Li, B. Efficient absorptive removal of Cd(Ⅱ) in aqueous solution by biochar derived from sewage sludge and calcium sulfate. Bioresour. Technol. 2021, 336, 125333. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Natesan, R.; Koo, B. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 2003, 32, 120–128. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Z.; Si, M.; Zhu, F.; Yang, W.; Zhao, F.; Shi, Y. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. J. Hazard. Mater. 2021, 407, 124376. [Google Scholar] [CrossRef]
- Yang, J.; Ouyang, L.; Chen, S.; Zhang, C.; Zheng, J.; He, S. Amendments affect the community assembly and co-occurrence network of microorganisms in Cd and Pb tailings of the Eucalyptus camaldulensis rhizosphere. Sci. Total Environ. 2024, 930, 172365. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L.; Feng, L.; Li, J.L. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil amended with sewage sludge and sludge compost. Environ. Sci. Pollut. Res. Int. 2019, 26, 34127–34136. [Google Scholar] [CrossRef]
- Woś, B.; Sierka, E.; Kompała-Bąba, A.; Bierza, W.; Chodak, M.; Pietrzykowski, M. Nutrient uptake efficiency and stoichiometry for different plant functional groups on spoil heap after hard coal mining in Upper Silesia, Poland. Sci. Total Environ. 2024, 924, 171612. [Google Scholar] [CrossRef]
- Reichel, R.; Hänsch, M.; Schulz, S.; Martins, B.R.; Schloter, M.; Brüggemann, N. Comparing a real and pseudo chronosequence of mining soil reclamation using free-living nematodes to characterize the food web and C and N dynamics. Agric. Ecosyst. Environ. 2024, 376, 109234. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H. Mineralization or Polymerization: That Is the Question. Environ. Sci. Technol. 2024, 58, 11205–11208. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Kang, Y.; Xi, B.; Yuan, Y.; Liu, Q.; Tan, W. Compost-enhanced humification of organic pollutants: Mechanisms, challenges, and opportunities. Environ. Sci. Ecotechnol. 2025, 26, 100575. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dai, Y.; Zhu, H.; Liu, H.; Zhang, J. Effects of additive on formation and electron transfer capacity of humic substances derived from silkworm-excrement compost during composting. J. Environ. Manag. 2024, 351, 119673. [Google Scholar] [CrossRef] [PubMed]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Tillage Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef]
- Patil, K.; Sikka, R.; Saini, R.; Jatav, H.S.; Rajput, V.D.; Minkina, T. Effect of Rice Residue Biochar on Lead Remediation, Growth, and Micronutrient Uptake in Indian Mustard (Brassica juncea (L.) Czern.) Cultivated in Contaminated Soil. Bull. Environ. Contam. Toxicol. 2024, 113, 62. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Barbarick, K.A. The Clean Water Act and biosolids: A 45-year chronological review of biosolids land application research in Colorado. J. Environ. Qual. 2022, 51, 780–796. [Google Scholar] [CrossRef]
- Hafez, M.; Zhang, Z.; Younis, M.; Abdelhamid, M.A.; Rashad, M. Enhancing Micronutrient Availability Through Humic Substances and Vermicompost While Growing Artichoke Plants in Calcareous Soil: Insights from a Two-Year Field Study. Plants 2025, 14, 1224. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, J.; Li, F.; Sun, M.; Yang, X.; Wang, G.; Ma, J.; Sun, W. Exchangeable Ca2+ content and soil aggregate stability control the soil organic carbon content in degraded Horqin grassland. Ecol. Indic. 2022, 134, 108507. [Google Scholar] [CrossRef]
- Zhang, T.; Jiku, M.A.S.; Li, L.; Ren, Y.; Li, L.; Zeng, X.; Colinet, G.; Sun, Y.; Huo, L.; Su, S. Soil ridging combined with biochar or calcium-magnesium-phosphorus fertilizer application: Enhanced interaction with Ca, Fe and Mn in new soil habitat reduces uptake of As and Cd in rice. Environ. Pollut. 2023, 332, 121968. [Google Scholar] [CrossRef]
- Quan, G.; Fan, Q.; Sun, J.; Cui, L.; Wang, H.; Gao, B.; Yan, J. Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application. J. Hazard. Mater. 2020, 384, 121265. [Google Scholar] [CrossRef]
- van der Heyde, M.; Bunce, M.; Dixon, K.; Wardell-Johnson, G.; White, N.; Nevill, P. Changes in soil microbial communities in post mine ecological restoration: Implications for monitoring using high throughput DNA sequencing. Sci. Total Environ. 2020, 749, 142262. [Google Scholar] [CrossRef]
- Chen, J.; Mo, L.; Zhang, Z.; Nan, J.; Xu, D.; Chao, L.; Zhang, X.; Bao, Y. Evaluation of the ecological restoration of a coal mine dump by exploring the characteristics of microbial communities. Appl. Soil Ecol. 2020, 147, 103430. [Google Scholar] [CrossRef]
- Chávez-García, E.; González-Méndez, B.; Molina-Freaner, F. Biochar application on mine tailings from arid zones: Prospects for mine reclamation. J. Arid. Environ. 2023, 217, 105040. [Google Scholar] [CrossRef]
- Zhang, N.; Xing, J.; Wei, L.; Liu, C.; Zhao, W.; Liu, Z.; Wang, Y.; Liu, E.; Ren, X.; Jia, Z.; et al. The potential of biochar to mitigate soil acidification: A global meta-analysis. Biochar 2025, 7, 49. [Google Scholar] [CrossRef]
- Chen, H.; Min, F.; Hu, X.; Ma, D.; Huo, Z. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. J. Hazard. Mater. 2023, 452, 131176. [Google Scholar] [CrossRef]
- Kang, H.; Yu, W.; Dutta, S.; Gao, H. Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient. Geoderma 2021, 383, 114744. [Google Scholar] [CrossRef]
- Crecchio, C.; Curci, M.; Pizzigallo, M.D.; Ricciuti, P.; Ruggiero, P. Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biol. Biochem. 2004, 36, 1595–1605. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Cappelli, S.L.; Shrestha, R.; Gerin, S.; Lohila, A.K.; Heinonsalo, J.; Nelson, D.B.; Kahmen, A.; Duan, P.; Sebag, D.; et al. Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nat. Commun. 2024, 15, 8065. [Google Scholar] [CrossRef]
- Yu, X.; Kang, X.; Li, Y.; Cui, Y.; Tu, W.; Shen, T.; Yan, M.; Gu, Y.; Zou, L.; Ma, M.; et al. Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata. Environ. Pollut. 2019, 255, 113167. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci. Total Environ. 2015, 521–522, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Pardo, T.; Bernal, M.P.; Clemente, R. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere 2014, 107, 121–128. [Google Scholar] [CrossRef]
- Chahal, M.K.; Shi, Z.; Flury, M. Nutrient leaching and copper speciation in compost-amended bioretention systems. Sci. Total Environ. 2016, 556, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Siedt, M.; Schäffer, A.; Smith, K.E.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Venglovsky, J.; Sasakova, N.; Placha, I. Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresour. Technol. 2009, 100, 5386–5391. [Google Scholar] [CrossRef]
- He, B.; Li, W.; Huang, C.; Tang, Z.; Guo, W.; Xi, B.; Zhang, H. The environmental risk of antibiotic resistance genes from manure compost fertilizer gradually diminished during ryegrass planting. Chem. Eng. J. 2023, 466, 143143. [Google Scholar] [CrossRef]
- Weng, Z.; Ma, H.; Ma, J.; Kong, Z.; Shao, Z.; Yuan, Y.; Xu, Y.; Ni, Q.; Chai, H. Corncob-pyrite bioretention system for enhanced dissolved nutrient treatment: Carbon source release and mixotrophic denitrification. Chemosphere 2022, 306, 135534. [Google Scholar] [CrossRef]
- Kołodziej, B.; Bryk, M.; Antonkiewicz, J. Temporal and spatial variability of physical and chemical properties in reclaimed soil after sulphur borehole mining. Soil Tillage Res. 2024, 237, 105980. [Google Scholar] [CrossRef]
- Wang, E.; Yu, B.; Zhang, J.; Gu, S.; Yang, Y.; Deng, Y.; Guo, X.; Wei, B.; Bi, J.; Sun, M.; et al. Low Carbon Loss from Long-Term Manure-Applied Soil during Abrupt Warming Is Realized through Soil and Microbiome Interplay. Environ. Sci. Technol. 2024, 58, 9658–9668. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahzad, S.M.; Chatterjee, N.; Arif, M.S.; Farooq, T.H.; Altaf, M.M.; Tufail, M.A.; Dar, A.A.; Mehmood, T. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. J. Environ. Manag. 2021, 285, 112170. [Google Scholar] [CrossRef]


| Material | Sources | Characteristics | Limitations |
|---|---|---|---|
| Topsoil | • Salvaged from the mining site • From off-site undisturbed areas | • High porosity and stable structure • Favorable chemical properties and essential nutrients • Rich in seeds and diverse microbial communities | • Risk of contaminant accumulation and nutrient loss during mining operations • Limited availability and inconsistent quality |
| Coal gangue | • By-product of coal mining | • Abundant and easily accessible in coal mining • Contains mineral components (Si, Al, Fe, Ca) • Exhibits good physical stability | • Low organic matter and nutrient content • Potential release of heavy metals and acid mine drainage |
| Fly ash | • Residue from coal combustion | • Fine texture with high specific surface area • Rich in mineral nutrients (Ca, Si, Fe, K) • Enhances aeration, porosity, and structural stability of substrates | • High salinity and alkalinity • Potential heavy metal contamination • Limited water-holding capacity |
| Tailings | • By-product of mineral processing | • Large available volume near mine sites • Variable texture depending on ore type • Provide structural support and limited mineral nutrients | • Poor fertility and microbial activity • Potential toxicity due to residual metals or flotation reagents |
| Dredged sediment | • By-product of river and lake dredging | • Fine texture and high water-holding capacity • Contains appreciable amounts of organic matter and nutrients (N, P) | • Potential contamination with heavy metals or organic pollutants • Unstable sources with heterogeneous fertility and contamination |
| Material | Substrate | Region | Application Rate | Co-Applied Materials | Observed Effects |
|---|---|---|---|---|---|
| Wheat straw | Iron ore tailings, mixed with river sand (1:1) [47] | Pilbara iron ore mine tailings, Western Australia | 0%, 1%, 2%, 5%, and 10% | / | Increased EC, total C, N, and CEC; promoted microbial biomass carbon and respiration; enhanced plant shoot biomass; increased uptake of Co, Cu, Fe, Mn, Zn, Cr, and Ni in shoots |
| Rice husk | Co-contaminated soils (PAHs + Zn, Cr) [48] | Liaoning, China | 2% | / | Enhanced rhizosphere microbial activity and PAH degradation; decreased Zn and Cr bioavailability |
| Pine bark | Acid Cu-polluted mine soil [49] | Touro abandoned Cu mine tailing area, Galicia, NW Spain | 6, 12, 24, 48, and 96 g kg−1 | Alone/with crushed mussel shell (1:1) | Stimulated bacterial and fungal growth; improved microbial function recovery; increased DOM |
| Coniferous bark compost | Acidic mine tailings (Cu, Ni, S) [50] | Outokumpu Cu–Ni mine tailings, Finland | 0%, 5%, 10%, and 20% | / | Increased pH, CEC, nutrient availability, microbial diversity |
| Peat | Coarse-textured reclaimed soils combined with lean oil sand or tailing sand [51] | Athabasca Oil Sands Region, Alberta, Canada | 50 kg N·ha−1 | / | Reduced N leaching; enhanced water-holding capacity, increased nutrient availability for vegetation growth |
| Borrow pit soil with insufficient salvaged topsoil [52] | Cold Lake, Alberta, Canada | 20 kg·m−2 | Alone/with aspen woodchips biochar (1.5 kg·m−2) | Improved soil fertility and moisture retention under limited topsoil conditions |
| Material | Substrate | Region | Application Rate | Co-Applied Materials | Observed Effects |
|---|---|---|---|---|---|
| Poultry manure compost | Coal surface mine spoil [58] | Pennsylvania, USA | 112 Mg ha−1 (dry weight) | With paper-mill sludge | Enhanced fertility and vegetation growth; increased microbial activity; composting reduced nutrient loss and stabilized organic matter |
| Chicken and sheep manure compost | Reclaimed coal-mine soil [59] | Huaibei, Anhui Province, China | 200 mg N·kg−1 | Alone/with wheat-straw biochar (0%, 1%, 3%) | Chicken manure showed higher N mineralization potential (~36% above sheep manure); faster initial N release rate |
| Bone meal | Metal-contaminated soils from historic mining sites [56] | Parys Mountain, Leadhills, Wanlockhead, United Kingdom | 2% | / | Increased soil and leachate pH; reduced Zn, Pb, Cd, and Cu concentrations in leachate; decreased metal bioavailability |
| Acidic Ultisols [57] | Anhui, Hunan, Guangdong, Zhejiang, Southern China | 1–2 g/kg | Alone/with biomass ash and alkaline slag | Decreased exchangeable acidity; reduced exchangeable Al3+; promoted metal–phosphate formation |
| Material | Substrate | Region | Application Rate | Co-Applied Materials | Observed Effects |
|---|---|---|---|---|---|
| Spent Mushroom Compost | Subsoil cover on Pb/Zn tailings [61] | University of Limerick Pb/Zn TSF site, Ireland | 33% | Alone/co-applied | Improved porosity and aggregate stability; increased organic carbon and total N; soil fertility and vegetation establishment |
| Compost-like Output | |||||
| Urban sewage sludge | Bauxite residue–soil mixture [64] | Shenyang, China | 30% | Direct/inoculated fermentation | Reduced pH; increased TOC and decreased Na and Al; enhanced Z. japonica growth and microbial diversity |
| Sewage sludge compost | Rare earth mining wasteland soil [66] | Meizhou, Guangdong, China | 40% | Alone/co-applied | SSC improved soil fertility but increased Cu, Zn, Cd, Ni accumulation and inhibited growth; bagasse improved soil structure, and SOC; co-application enhanced root growth, nutrient uptake, and biomass while reducing heavy metal bioavailability |
| Bagasse | |||||
| Paper mill sludge | Surface soil of mined land [58] | Pennsylvania, USA | 20 or 40 Mg·ha−1 (dry weight) | With manure | Increased soil pH, total N and C, and reduced nutrient leaching; enhances N stabilization and soil fertility |
| Short paper fiber | Abandoned coal refuse pile in Appalachia [65] | West Virginia, USA | 20% or 40% | / | Reduced infiltration; improved water retention and structural stability |
| Material | Substrate | Region | Application Rate | Temperature | Co-Applied Materials | Observed Effects |
|---|---|---|---|---|---|---|
| Rice husk biochar | Co-contaminated soils (PAHs + Zn, Cr) [48] | Liaoning, China | 2% | 500 °C | / | Biochar performed better than rice husk; lower bioavailability of heavy metals; higher PAH removal efficiency. |
| Date palm waste biochar | Mine tailings (Cd, Cu, Pb, Zn) [70] | Saudi Arabia | 1–5% | Low (300–400 °C) High (500–600 °C) | / | Low: decreased Cd, Cu, Pb, Zn bioavailability; high: reduced CO2 emission and maintained metal immobilization |
| Peanut shell biochar | Acidic Cu-mine tailings [72] | Jiujiang, Jiangxi, China | 5–10% | 500 °C | / | Increased pH and reduced Cu leachability; improved plant growth; stabilized Cu through precipitation and surface complexation |
| Modified hydrochar | Pb–Cd contaminated soils [73] | Beijing, China | 1–5% | 220 °C | / | Increased immobilization efficiency; decreased acid-soluble and reducible fractions; increased pH and electronegativity |
| Iron-modified rice husk hydrochar | Pb–Sb contaminated soil [74] | Hunan, China | 1–5% | 180 °C | / | Reduced bioavailable Pb and Sb by 25% and 40%; immobilization via cation exchange, precipitation, surface complexation, and formation of Fe–Sb stable minerals |
| Material | Substrate | Region | Application Rate | Co-Applied Materials | Observed Effects |
|---|---|---|---|---|---|
| Funneliformis mosseae (AMF) | Simulated coal-mining subsidence soils [80] | Beijing, China | 50 g inoculum per hole | / | Enhanced N, P, K, Ca, and Mg uptake; increased shoot and root biomass; improved hormone regulation; promoted root recovery and plant tolerance |
| open-pit coal mine dump [81] | Inner Mongolia, China | 100 g AMF inoculum per plant | / | Accelerated leaf decomposition; increased macroaggregate formation and GRSP accumulation; enhanced mineral-associated organic carbon; promoted carbon stabilization and aggregate development | |
| multiple AMF (Rhizophagus, Claroideoglomus, Funneliformis) | Degraded copper tailings/mine-impacted soils [82] | Jiangxi Province, China | / | Enhanced plant biomass and chlorophyll; restored AMF community composition; improved soil nutrient availability (P, N); reduced Cu uptake and metal toxicity; | |
| P-solubilizing bacteria | Cd/Pb/Zn-contaminated nonferrous metal mine tailings [83,84] | Dabao Mountain mining area, Guangdong, China | 5 mL bacterial suspension injected into rhizosphere every 10 days × 4 times (total 45 days) | With Straw compost (1%) | Increased available P and chlorophyll; reduced Cd/Pb/Zn and increased plant extraction efficiency; improved soil enzyme activities and microbial metabolic heat |
| Si-solubilizing bacteria | Increased available Si and improved ryegrass root length; enhanced soil redox potential; increased antioxidant enzyme activity; promoted transformation of metals to exchangeable forms and enhanced phytoextraction | ||||
| K-solubilizing bacteria | Strongest stimulation of soil urease and phosphatase among single strains; increased available K; enhanced microbial calorimetric parameters; promoted ryegrass biomass accumulation and metal uptake. | ||||
| Combined strains | Most effective treatment; increases in ryegrass growth and antioxidant enzymes; highest Cd/Pb/Zn extraction; largest decrease in soil metal concentrations; strongest enhancement of metal bioavailability. | ||||
| Mixed microbial inoculant | Abandoned carbonate mine restoration soil [78] | Nanjing, Jiangsu, China | 1 L/m2 inoculum | Reshaped root, fine-root, rhizosphere and bulk soil bacterial/fungal communities; enhanced plant–soil nutrient coupling; increased complexity and stability of soil microbiome network; increased functional traits in root and nodule microbiomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.-M.; Li, X.-Y.; Xie, J.; Liu, W.-H.; Li, S.-X.; Luo, J.-L.; Zhao, L. Critical Contribution of Biomass-Based Amendments in Mine Ecological Restoration: Properties, Functional Mechanisms, and Environmental Impacts. Minerals 2025, 15, 1250. https://doi.org/10.3390/min15121250
Peng S-M, Li X-Y, Xie J, Liu W-H, Li S-X, Luo J-L, Zhao L. Critical Contribution of Biomass-Based Amendments in Mine Ecological Restoration: Properties, Functional Mechanisms, and Environmental Impacts. Minerals. 2025; 15(12):1250. https://doi.org/10.3390/min15121250
Chicago/Turabian StylePeng, Si-Mai, Xin-Yue Li, Jia Xie, Wen-Hui Liu, Su-Xin Li, Jian-Lan Luo, and Lei Zhao. 2025. "Critical Contribution of Biomass-Based Amendments in Mine Ecological Restoration: Properties, Functional Mechanisms, and Environmental Impacts" Minerals 15, no. 12: 1250. https://doi.org/10.3390/min15121250
APA StylePeng, S.-M., Li, X.-Y., Xie, J., Liu, W.-H., Li, S.-X., Luo, J.-L., & Zhao, L. (2025). Critical Contribution of Biomass-Based Amendments in Mine Ecological Restoration: Properties, Functional Mechanisms, and Environmental Impacts. Minerals, 15(12), 1250. https://doi.org/10.3390/min15121250
