Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Organic Geochemical Characteristics
4.2. Mineral Composition
4.3. Elemental Geochemical Characteristics
4.3.1. Major Element Characteristics
4.3.2. Trace Element Characteristics
5. Discussion
5.1. Reconstruction of the Paleo-Depositional Environment
5.1.1. Paleo-Redox Conditions
5.1.2. Hydrothermal Activity
5.1.3. Paleoclimate
5.1.4. Paleoproductivity Conditions
5.1.5. Terrigenous Clastic Input and Sedimentation Rate
5.2. OM Enrichment Mechanisms
5.2.1. Main Controlling Factors for OM Enrichment
5.2.2. OM Enrichment Models
6. Conclusions
- The fine-grained sedimentary rocks of Mbr1 from Xujiahe FM in the Southeastern Sichuan Basin were deposited in two distinct sedimentary environments. SubMbr1 was formed in a lacustrine–deltaic environment with weakly oxic to oxic water conditions and a predominantly felsic provenance. SubMbr2 was deposited in a semi-restricted coastal environment with dysoxic to weak oxic water conditions and a felsic provenance. Both submembers experienced moderate to intense chemical weathering. The paleoclimate during shale deposition was warm and semi-humid to humid, characterized by high sedimentation rates.
- OM enrichment resulted from the interplay and mutual influence of multiple factors, including paleoclimate, paleoproductivity, water column conditions, sedimentation rate, terrigenous input, and sea-level fluctuations. The primary controlling factors for OM enrichment in SubMbr1 of Mbr1 from Xujiahe FM were paleoclimate and sedimentation rate. In contrast, the main controlling factors for SubMbr2 were redox conditions, climate, sedimentation rate, and the adsorption by clay minerals.
- This study reveals the OM enrichment mechanisms for different periods within the first member of Xujiahe FM, establishing two distinct models: a “strong preservation model” under relatively oxic conditions for SubMbr1 and a “strong preservation–productivity composite model” dominated by excellent preservation conditions with a secondary contribution from productivity for SubMbr2. The fundamental cause of OM enrichment is a burial rate that exceeds the decomposition rate. However, the influence of climate and water column conditions led to the formation of these two different models. The fine-grained sedimentary rocks of SubMbr1 were deposited in a weakly oxic lacustrine–deltaic environment. The warm, humid climate and ample precipitation caused intense weathering, which delivered terrigenous OM into the lake basin but also diluted it with concurrent input of felsic terrigenous clastics. Nevertheless, high sedimentation rates compensated for this dilution by rapidly burying OM before significant decomposition could occur. The fine-grained sedimentary rocks of SubMbr2 were formed in a complex marine–terrestrial transitional environment with dynamic hydrographic conditions. As the climate became relatively drier with reduced precipitation, the water body evolved into a dysoxic, weakly oxic, semi-restricted setting where aquatic organisms began to flourish, leading to a more significant increase in the influence of paleoproductivity. However, the dysoxic weakly oxic water conditions, high sedimentation rate, and adsorption of OM by clay minerals remained the dominant factors controlling the OM enrichment model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FM | Formation |
Mbr | Member |
SubMbr | Submember |
TOC | Total organic carbon |
OM | Organic matter |
REE | Rare earth element |
XRD | X-ray diffraction |
References
- Yildirim, L.T.O.; Wang, J.H. Assessment of total and contingent CO2 storage resources in the Marcellus shale. Geoenergy Sci. Eng. 2025, 247, 213669. [Google Scholar] [CrossRef]
- Nie, H.K.; Chen, Q.; Li, P.; Dang, W.; Zhang, J.C. Shale gas potential of Ordovician marine Pingliang shale and Carboniferous–Permian transitional Taiyuan–Shanxi shales in the Ordos Basin, China. Aust. J. Earth Sci. 2023, 70, 411–422. [Google Scholar] [CrossRef]
- Pszonka, J.; Wendorff, M. Cathodoluminescence-revealed diagenesis of carbonates and feldspars in Cergowa sandstones (Oligocene), Outer Carpathians. Gospod. Surowcami Miner.—Miner. Resour. Manag. 2014, 30, 21–36. [Google Scholar] [CrossRef]
- Pszonka, J.; Wendorff, M. Carbonate cements and grains in submarine fan sandstones—The Cergowa Beds (Oligocene, Carpathians of Poland) recorded by cathodoluminescence. Int. J. Earth Sci. 2017, 64, 28–53. [Google Scholar] [CrossRef]
- Sageman, B.B.; Murphy, A.E.; Werne, J.P.; Ver Straeten, C.A.; Hollander, D.J.; Lyons, T.W. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin. Chem. Geol. 2003, 195, 229–273. [Google Scholar] [CrossRef]
- Mort, H.; Jacquat, O.; Adatte, T.; Steinmann, P.; Föllmi, K.; Matera, V.; Berner, Z.; Stüben, D. The Cenomanian/Turonian anoxic event at the Bonarelli level in Italy and Spain: Enhanced productivity and/or better preservation. Cretac. Res. 2007, 28, 597–612. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhang, J.C.; Tang, X.; Huo, Z.P.; Han, S.B.; Lang, Y.; Zheng, Y.Y.; Li, X.Q.; Liu, T. Elemental geochemical evidence for depositional conditions and OM enrichment of black rock series strata in an inter-platform basin: The Lower Carboniferous Datang Formation, southern Guizhou, Southwest China. Minerals 2018, 8, 509. [Google Scholar] [CrossRef]
- Gallego-Torres, D.; Martínez-Ruiz, F.; Paytan, A.; Jimenez-Espejo, F.J.; Ortega-Huertas, M. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 246, 424–439. [Google Scholar] [CrossRef]
- Wei, H.Y.; Chen, D.Z.; Wang, J.G.; Yu, H.; Tucker, M.E. Organic accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from pyrite morphology and multiple geochemical proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 353–355, 73–86. [Google Scholar] [CrossRef]
- Gao, J.H.; Jin, Z.J.; Liang, X.P.; Li, S.X.; Yang, W.W.; Zhu, R.K.; Du, X.Y.; Liu, Q.Y.; Li, T.; Dong, L.; et al. The impact of volcanism on eutrophication and water column in a freshwater lacustrine basin: A case study of Triassic Chang 7 Member in Ordos Basin. Oil Gas Geol. 2023, 44, 887–898. [Google Scholar]
- Tyson, R.V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study. Org. Geochem. 2001, 32, 333–339. [Google Scholar] [CrossRef]
- Müller, P.J.; Suess, E. Productivity, sedimentation rate, and sedimentary OM in the oceans—I. Organic carbon preservation. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1979, 26, 1347–1362. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Y.H.; Feng, J.L.; Liu, Y.; Yin, C.H. Study on Differential Enrichment Mechanisms of OM in a Typical Lithofacies Fine-grained Sag, Songliao Basin. Acta Sedimentol. Sin. 2024, 44, 734. [Google Scholar]
- Canfield, D.E. Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in euxinic environments. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 121–138. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhang, J.C.; Shi, G.; Shen, B.J.; Tang, X.; Yang, Z.H.; Li, X.Q.; Li, C.X. Sedimentary environment and organic matter accumulation for the Longtan Formation shale in Xuancheng area. Acta Sedimentol. Sin. 2021, 39, 324–340, (In Chinese with English Abstract). [Google Scholar]
- Zheng, M.J.; Long, H.; Wu, Y.; Ou, Z.P.; Liu, W.L.; Wang, D.D.; Chen, W.Y.; Jiang, Z.X.; Tang, X.L. Comparative Analysis of Shale Gas Enrichment and High Yield Geological Conditions of Wufeng-Longmaxi Formation and Qiongzhusi Formation in Southern Sichuan Basin. Geofluids 2024, 2024, 4656943. [Google Scholar] [CrossRef]
- Wang, F.T.; Guo, S.B. Shale gas content evolution in the Ordos Basin. Int. J. Coal Geol. 2019, 211, 103231. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Xiao, Z.H.; Dong, C.Y.; Ye, X.Z.; Li, H.J.; Zhang, Y.; Ma, Y.; Ma, L.; Xu, Y.H. The geochemical characteristics and gas potential of the Longtan formation in the eastern Sichuan Basin, China. J. Pet. Sci. Eng. 2019, 179, 1102–1113. [Google Scholar] [CrossRef]
- Zhou, G.X.; Wei, G.Q.; Hu, G.Y. The geochemical and organic petrological characteristics of coal measures of the Xujiahe for-mation in the Sichuan Basin, China. Energy Explor. Exploit. 2019, 37, 889–906. [Google Scholar] [CrossRef]
- Deng, T.; Li, Y.; Wang, Z.J.; Yu, Q.; Dong, S.L.; Yan, L.; Hu, W.C.; Chen, B. Geochemical characteristics and organic matter en-richment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: Implications for paleo-weathering, provenance and tectonic setting. Mar. Pet. Geol. 2019, 109, 698–716. [Google Scholar] [CrossRef]
- Dai, J.X.; Ni, Y.Y.; Zou, C.N.; Tao, S.Z.; Hu, G.Y.; Hu, A.P.; Yang, C.; Tao, X.W. Carbon isotope features of alkane gases in the coal measures of the Xujiahe Formation in the Sichuan Basin and their significance to gas–source correlation. Oil Gas Geol. 2009, 30, 519–529, (In Chinese with English Abstract). [Google Scholar]
- Peng, Y.; Zheng, M.P.; Zhang, Y.S.; Xing, E.Y.; Gui, B.L.; Zuo, F.F. Geochronology and geochemistry of lithium–rich tuffs in the Sichuan basin, western Yangtze: Implication for the magmatic origin and final closure of eastern Paleo–Tethys. Geosci. Front. 2023, 14, 101480. [Google Scholar] [CrossRef]
- Liu, X.W.; Jiang, F.J.; Zheng, X.W.; Gao, Y.; Zhou, S.Y. Sedimentary Record of the Bio–Geological Events in Tethys: Insight from the Permian Yangtze Block Breakup in the Sichuan Basin. Appl. Sci. 2024, 14, 11863. [Google Scholar] [CrossRef]
- Li, L.Q.; Wang, Y.D.; Kürschner, W.M.; Ruhl, M.; Vajda, V. Palaeovegetation and palaeoclimate changes across the Triassic-Jurassic transition in the Sichuan Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 556, 109891. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Wu, G.H.; Wen, Y.Y.; Nance, R.D.; He, B.; Li, C.H.; Zou, Y. Retreating subduction–related intracratonic rifting in the Ediacaran Sichuan Basin (SW China). Precambrian Res. 2024, 413, 107569. [Google Scholar] [CrossRef]
- Yan, Z.K.; Tian, Y.T.; Li, R.; Vermeesch, P.; Sun, X.L.; Li, Y.; Rittner, M.; Carter, A.; Shao, C.J.; Huang, H. Late Triassic tectonic inversion in the upper Yangtze Block: Insights from detrital zircon U–Pb geochronology from south–western Sichuan Basin. Basin Res. 2019, 31, 92–113. [Google Scholar] [CrossRef]
- Li, Z.Q.; Ying, D.L.; Li, H.K.; Yang, G.; Zeng, Q.; Guo, X.Y.; Chen, X. Evolution of the western Sichuan basin and its superimposed characteristics, China. Acta Petrol. Sin. 2011, 27, 2362–2370. [Google Scholar]
- Bo, S.S.; Tian, J.X.; Wang, Y.T.; Fu, S.; Chen, H.C.; Sun, G.Q. Sedimentary environment evolution of marine–continental transi-tional facies in Xujiahe Formation, northeastern Sichuan Basin: Evidence from element geochemistry. Nat. Gas Geosci. 2024, 35, 645–660, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.H.; Hao, C.G.; Jin, H.; Cun, J.F.; Wu, X.Q.; Bo, D.M.; Su, Y.Q. Geochemical characteristics and hydrocarbon generation potential of main source rocks in the Upper Triassic Xujiahe Formation, Sichuan Basin, China. Front. Earth Sci. 2023, 11, 1233959. [Google Scholar] [PubMed]
- Blakey, R. ~200 Ma Base Map. Colorado Plateau Geosystem Inc. Available online: http://deeptimemaps.com/ (accessed on 6 October 2022).
- Huang, H.; Zhang, T.S.; Zhang, X.; Liu, Y.L.; Gao, L.B.; Zhang, J.X. The Sedimentary Record of Marine–Continental Transitional Shales in the Upper Triassic of Xujiahe Formation, Southeast Sichuan Basin, China. J. Mar. Sci. Eng. 2025, 13, 646. [Google Scholar] [CrossRef]
- Gu, J.L.; Zheng, R.C.; Luo, P.; Yang, Z.X. Sequence stratigraphic framework and source–reservoir–cap rock of Xujiahe Formation in West Sichuan depression. J.-Chengdu Univ. Technol. 2004, 31, 282–290, (In Chinese with English Abstract). [Google Scholar]
- Hou, F.H.; Jiang, Y.Q.; Fang, S.X.; Guo, G.A.; Yang, J.L. Sedimentary model of sandstone in second and fourth members of Xiangxi Formation in the Upper Triassic of Sichuan Basin. Acta Pet. Sin. 2005, 26, 30–37, (In Chinese with English Abstract). [Google Scholar]
- Lin, L.B.; Chen, H.D.; Jiang, P.; Hu, X.Q. Sedimentary Facies and Lithofacies Paleogeographic Evolution of the Xujiahe Formation in the Western Sichuan Foreland Basin. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2006, 33, 376–383, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Z.X.; Tian, J.J.; Chen, G.J.; Li, X.Z.; Zhang, M.L. Sedimentary characteristics of the Upper Triassic in western Sichuan foreland basin. J. Palaeogeogr. 2007, 9, 143–154, (In Chinese with English Abstract). [Google Scholar]
- Gao, Z.Y.; Han, G.M.; Zhang, L.H. Parasequence of fluvial deposit: A case study of the Xujiahe Formation in Central Sichuan. Oil Gas Geol. 2007, 28, 59–68, (In Chinese with English Abstract). [Google Scholar]
- Zhao, X.F.; Lu, Z.G.; Zhang, W.L.; Peng, H.R.; Kang, R.D. Paralic tidal deposits in the Upper Triassic Xujiahe Formation in Anyue area, the Sichuan Basin. Nat. Gas Ind. 2008, 28, 14–18+134, (In Chinese with English Abstract). [Google Scholar]
- Lai, W.; Ruan, Z.; Wang, L.D.; Shen, Z.H. Geochemical Characteristics and Geological Significance of Mudstones from the Xujiahe Formation in the Qilixia Section, Northeastern Sichuan Basin. Acta Petrol. Mineral. 2019, 38, 657–672, (In Chinese with English Abstract). [Google Scholar]
- GB/T19145–2003; Determination of Total Organic Carbon in Sedimentary Rock. Standards Press of China: Beijing, China, 2003.
- GB/T 18602-2012; Rock Pyrolysis Analysis. Standards Press of China: Beijing, China, 2012.
- SY/T 5163-2010; Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction. Standards Press of China: Beijing, China, 2010.
- DZ/T0279.2-2016; Analysis Methods for Regional Geochemical Sample-Part 2: Determination of Calcium Oxide etc. 27 Elements Content by Inductively Coupled Plasma Optical Emission Spectrometry. Standards Press of China: Beijing, China, 2016.
- GB/T14506.28–2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. Standards Press of China: Beijing, China, 2010.
- DZ/T0279.3–2016; Analysis Methods for Regional Geochemical Sample-Part 3: Determination of Barium, Beryllium, Bismuth etc. 15 Elements Content by Inductively Coupled Plasma Mass Spectrometry. Standards Press of China: Beijing, China, 2016.
- DZ/T0279.32–2016; Analysis Methods for Regional Geochemical Sample-Part 32: Determination of Lanthanum, Cerium etc. 15 Earth Elements Content by Pressurized Acid Digestion-Inductively Coupled Plasma Mass Spectrometry. Standards Press of China: Beijing, China, 2016.
- Tribovillard, N.; Algeo, T.W.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Shang, H.Y.; Li, J.C. The Abundance and Types of Organic Matter in Lacustrine Oil-forming Rocks. Acta Pet. Sin. 1981, S1, 8–16, (In Chinese with English Abstract). [Google Scholar]
- Shaltami, O.; Hkoma, M.B. Assessing Paleoclimate through Major and Trace Element Concentrations: A Review. AlQalam J. Med. Appl. Sci. 2024, 7, 1187–1193. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. 1993, 1993, 21–40. [Google Scholar]
- Asiedu, D.K.; Agoe, M.; Amponsah, P.O.; Nude, P.M.; Anani, C.Y. Geochemical constraints on provenance and source area weathering of metasedimentary rocks from the Paleoproterozoic (~2.1 Ga) Wa-Lawra Belt, southeastern margin of the West African Craton. Geodin. Acta 2019, 31, 27–39. [Google Scholar] [CrossRef]
- Fedo, C.M.; Eriksson, K.A.; Krogstad, E.J. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochim. Cosmochim. Acta 1996, 60, 17511763. [Google Scholar] [CrossRef]
- van de Kamp, P.C.; Leake, B.E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Trans. R. Soc. Edinb. Earth Sci. 1985, 76, 411–449. [Google Scholar] [CrossRef]
- Xu, X.T.; Shao, L.Y. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. J. Palaeogeogr. 2018, 20, 515–522. [Google Scholar]
- Li, L.Q.; Wang, Y.D.; Vajda, V.; Liu, Z.S. Late Triassic ecosystem variations inferred by palynological records from Hechuan, southern Sichuan Basin, China. Geol. Mag. 2018, 155, 1793–1810. [Google Scholar] [CrossRef]
- Lu, N.; Wang, Y.D.; Popa, M.E.; Xie, X.P.; Li, L.Q.; Xi, S.N.; Xin, C.L.; Deng, C.T. Sedimentological and paleoecological aspects of the Norian-Rhaetian transition (Late Triassic) in the Xuanhan area of the Sichuan Basin, Southwest China. Palaeoworld 2019, 28, 334–345. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Wang, J.; Fu, X.G.; Chen, W.B.; Feng, X.L.; Wang, D.; Song, C.Y.; Wan, Z.W. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Mar. Pet. Geol. 2015, 64, 203–221. [Google Scholar] [CrossRef]
- Kimura, H.; Watanabe, Y. Oceanic anoxia at the Precambrian—Cambrian boundary. Geology 2001, 29, 995–998. [Google Scholar] [CrossRef]
- Makeen, Y.M.; Hakimi, M.H.; Abdullah, W.H. The origin, type and preservation of organic matter of the Barremian-Aptian organic-rich shales in the Muglad Basin, Southern Sudan, and their relation to paleoenvironmental and paleoclimate condition. Mar. Pet. Geol. 2015, 65, 187–197. [Google Scholar] [CrossRef]
- Rimmer, S.M.; Thompson, J.A.; Goodnight, S.A.; Robl, T.L. Multiple controls on the preservation of organic matter in Devonianee Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 215, 125–154. [Google Scholar] [CrossRef]
- Yan, D.; Wang, H.; Fu, Q.L.; Chen, Z.H.; He, J.; Gao, Z. Organic matter accumulation of Late Ordovician sediments in North Guizhou Province, China: Sulfur isotope and trace element evidences. Mar. Pet. Geol. 2015, 59, 348–358. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansasetype cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Canfield, D.E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 1994, 114, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.W. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sediment. Geol. 1994, 90, 213–232. [Google Scholar] [CrossRef]
- He, C.; Ji, L.M.; Wu, Y.D.; Su, A.; Zhang, M.Z. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry. Sediment. Geol. 2016, 345, 33–41. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.A.C. Comparison of geochemical indexes used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Tenger, T.; Liu, W.H.; Xu, Y.C.; Chen, J.F.; Hu, K.; Gao, C.L. Comprehensive geochemical identification of highly evolved marine hydrocarbon source rocks: Organic matter, palaeoenvironment and development of effective hydrocarbon source rocks. Chin. J. Geochem. 2006, 25, 332–339. [Google Scholar] [CrossRef]
- Jarvis, I.; Murphy, A.M.; Gale, A.S. Geochemistry of pelagic and hemipelagic carbonates: Criteria for identifying systems tracts and sea-level change. J. Geol. Soc. 2001, 158, 685–696. [Google Scholar] [CrossRef]
- Bai, Y.Y.; Liu, Z.J.; Sun, P.C.; Liu, R.; Hu, X.F.; Zhao, H.Q.; Xu, Y.B. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale and coal-bearing layers of the Meihe Basin, northeast China. J. Asian Earth Sci. 2015, 97, 89–101. [Google Scholar] [CrossRef]
- Algeo, T.J.; Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenumuranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar] [CrossRef]
- Wignall, P.B.; Twitchett, R.J. Oceanic anoxia and the end Permian mass extinction. Science 1996, 272, 1155–1158. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The continental crust: Its composition and evolution. J. Geol. 1985, 94, 57–72. [Google Scholar]
- Macrae, N.D.; Nesbitt, H.W.; Kronberg, B.I. Development of a positive Eu anomaly during diagenesis. Earth Planet. Sci. Lett. 1992, 109, 585–591. [Google Scholar] [CrossRef]
- Hou, Z.S.; Chen, S.Y.; Liu, H.M.; Yang, H.Y.; Li, C.; Wang, Y.Y. Hydrothermal fluid activity and its hydrocarbon geological significance in Dongying depression. J. China Univ. Min. Technol. 2019, 48, 1090–1101, (In Chinese with English Abstract). [Google Scholar]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processe. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Dai, X.D.; Du, Y.S.; Ziegler, M.; Wang, C.W.; Ma, Q.L.; Chai, R.; Guo, H. Middle Triassic to Late Jurassic climate change on the northern margin of the South China Plate: Insights from chemical weathering indices and clay mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 585, 110744. [Google Scholar] [CrossRef]
- Schenau, S.J.; Reichart, G.J.; De, L.G.J. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian sea sediments. Geochim. Cosmochim. Acta 2005, 69, 919–931. [Google Scholar] [CrossRef]
- Schoepfer, S.D.; Shen, J.; Wei, H.Y.; Tyson, R.V.; Ingall, E.; Algeo, T.J. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Sci. Rev. 2015, 49, 23–52. [Google Scholar] [CrossRef]
- Wang, Z.W.; Wang, J.; Fu, X.G.; Zhan, W.Z.; Yu, F.; Feng, X.L.; Song, C.Y.; Chen, W.B.; Zeng, S.Q. Organic material accumulation of Carnian mudstones in the north Qiangtang depression, eastern Tethys: Controlled by the paleoclimate, paleoenvironment, and provenance. Mar. Pet. Geol. 2017, 88, 440–457. [Google Scholar] [CrossRef]
- Algeo, T.J.; Ingall, E. Sedimentary Corg: P ratios, paleocean ventilation, and phanerozoic atmospheric PO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 256, 130–155. [Google Scholar] [CrossRef]
- Ding, X.J.; Liu, G.D.; Zha, M.; Huang, Z.L.; Gao, C.H.; Qu, J.X.; Lu, X.J.; Chen, Z.L.; Guo, J.G. Relationship between sedimentation rate and organic matter abundance in source rocks: A case study of Erlian Basin. Nat. Gas Geosci. 2015, 26, 1076–1085, (In Chinese with English Abstract). [Google Scholar]
- Meng, Q.T.; Liu, Z.J.; Bruch, A.A.; Liu, R.; Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun Basin, China. J. Asian Earth Sci. 2012, 45, 95–105. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Pevear, D.R.; Hill, R.J. Mineral surface control of organic carbon in black shale. Science 2002, 295, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, R.F.; Yin, W.; Hu, G.; Bian, L.Z.; Fu, X.G. Mechanism of organic matter accumulation in residual bay environments: The Early Cretaceous Qiangtang Basin, Tibet. Energy Fuels 2018, 32, 1024–1037. [Google Scholar] [CrossRef]
- Murray, R.W.; Ten Brink, M.R.B.; Gerlach, D.C.; Russlll, G.P.; Jones, D.L. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim. Cosmochim. Acta 1991, 55, 1875–1895. [Google Scholar] [CrossRef]
- Shi, Z.S.; Zhou, T.Q. Advances and perspectives in the study of the genetic mechanism and organic matter enrichment models of marine fine-grained sediment. Oil Gas Geol. 2024, 45, 910–928. [Google Scholar]
- Tian, N.; Wang, Y.D.; Philippe, M.; Li, L.Q.; Xie, X.P.; Jiang, Z.K. New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 464, 65–75. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, S.J.; He, D.F.; Gao, J.; Wang, Y.C.; Huang, H.Y.; Zhang, J.T.; Zhang, Y. Middle Triassic tectono–sedimentary de-velopment of Sichuan Basin: Insights into the cratonic differentiation. Geol. J. 2020, 56, 1858–1878. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem. Geol. 2009, 260, 1–19. [Google Scholar] [CrossRef]
Parameters | Sample Quantity | Maximum | Minimum | Average Value |
---|---|---|---|---|
TOC (%) | 20 | 7.59 | 1.1 | 2.2 |
S1 (mg/g) | 20 | 0.92 | 0.04 | 0.38 |
S2 (mg/g) | 20 | 3.73 | 0.52 | 1.42 |
S1 + S2 (mg/g) | 20 | 4.11 | 0.61 | 1.8 |
Tmax (°C) | 20 | 488 | 433 | 457.85 |
Sample Number | Quartz | Potassium Feldspar | Plagioclase Feldspar | Calcite | Dolomite | Siderite | Pyrite | Analcime | Clay Minerals |
---|---|---|---|---|---|---|---|---|---|
XDZ-33 | 36.8 | 0 | 1.8 | 14.7 | 17.3 | 0 | 0 | 0 | 29.4 |
XDZ-12 | 61.0 | 8.4 | 3.7 | 0 | 0 | 0 | 0 | 0 | 26.9 |
XDZ-11 | 77.2 | 1.9 | 0.7 | 0 | 0 | 0 | 0 | 0 | 20.2 |
Sample Number | Thickness (m) | SiO2 | Al2O3 | Fe2O3 | K2O | CaO | MgO | TiO2 | Na2O | MnO | P2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
XDZ-35 | 477.3 | 65.6 | 22.3 | 2.9 | 5.9 | 0.3 | 1.5 | 1.1 | 0.1 | 0.0 | 0.1 | 7.4 |
XDZ-34 | 480.8 | 62.8 | 15.6 | 5.0 | 4.0 | 6.7 | 4.4 | 0.7 | 0.2 | 0.2 | 0.2 | 12.0 |
XDZ-33 | 482.3 | 52.8 | 14.5 | 5.4 | 3.7 | 17.3 | 4.8 | 0.7 | 0.2 | 0.2 | 0.1 | 18.6 |
XDZ-32 | 483.9 | 53.1 | 14.2 | 5.2 | 3.6 | 18.2 | 4.3 | 0.7 | 0.2 | 0.2 | 0.2 | 18.3 |
XDZ-31 | 485.5 | 58.2 | 15.0 | 5.1 | 3.7 | 12.2 | 4.4 | 0.7 | 0.2 | 0.2 | 0.2 | 15.2 |
XDZ-30 | 487.2 | 55.7 | 17.0 | 6.4 | 4.3 | 10.6 | 4.5 | 0.8 | 0.2 | 0.2 | 0.2 | 14.8 |
XDZ-29 | 488.7 | 59.6 | 18.9 | 6.9 | 4.7 | 4.7 | 3.8 | 0.8 | 0.2 | 0.1 | 0.2 | 10.7 |
XDZ-28 | 490.3 | 59.5 | 18.0 | 7.2 | 4.4 | 5.2 | 4.2 | 0.9 | 0.2 | 0.1 | 0.2 | 11.0 |
XDZ-27 | 492.0 | 64.4 | 16.8 | 6.6 | 4.2 | 2.9 | 3.6 | 0.8 | 0.2 | 0.1 | 0.2 | 9.2 |
XDZ-26 | 493.5 | 67.9 | 17.0 | 6.4 | 4.3 | 0.6 | 2.4 | 0.9 | 0.2 | 0.0 | 0.2 | 6.5 |
XDZ-25 | 495.2 | 65.2 | 16.7 | 5.9 | 4.3 | 2.7 | 3.6 | 0.9 | 0.2 | 0.1 | 0.2 | 9.3 |
XDZ-24 | 496.7 | 72.5 | 15.2 | 4.7 | 3.9 | 0.3 | 1.7 | 0.7 | 0.6 | 0.0 | 0.2 | 5.7 |
XDZ-23 | 498.6 | 73.5 | 12.9 | 4.7 | 3.4 | 1.6 | 2.3 | 0.6 | 0.8 | 0.0 | 0.2 | 5.8 |
XDZ-22 | 500.0 | 76.1 | 12.1 | 4.9 | 3.3 | 0.4 | 1.4 | 0.5 | 1.0 | 0.0 | 0.2 | 3.5 |
XDZ-21 | 508.3 | 73.1 | 17.6 | 1.8 | 4.8 | 0.1 | 1.3 | 0.9 | 0.2 | 0.0 | 0.0 | 5.9 |
XDZ-20 | 509.6 | 67.4 | 17.8 | 5.9 | 4.5 | 0.4 | 2.5 | 0.9 | 0.2 | 0.0 | 0.2 | 6.3 |
XDZ-19 | 510.9 | 71.4 | 15.2 | 5.6 | 4.0 | 0.4 | 2.0 | 0.8 | 0.2 | 0.0 | 0.2 | 4.8 |
XDZ-18 | 512.2 | 64.2 | 20.7 | 5.3 | 5.2 | 0.4 | 2.6 | 1.0 | 0.2 | 0.0 | 0.2 | 7.8 |
XDZ-17 | 513.5 | 65.7 | 19.1 | 5.8 | 4.8 | 0.4 | 2.6 | 0.9 | 0.2 | 0.0 | 0.2 | 7.1 |
XDZ-16 | 514.8 | 63.6 | 20.8 | 5.8 | 5.2 | 0.5 | 2.7 | 0.9 | 0.2 | 0.0 | 0.2 | 7.9 |
XDZ-15 | 516.1 | 67.1 | 16.9 | 5.0 | 4.4 | 1.8 | 3.2 | 0.9 | 0.2 | 0.1 | 0.2 | 8.5 |
XDZ-14 | 517.4 | 67.6 | 15.5 | 6.1 | 4.0 | 2.1 | 3.3 | 0.8 | 0.2 | 0.1 | 0.2 | 7.7 |
XDZ-13 | 518.7 | 70.1 | 14.8 | 7.4 | 3.6 | 0.4 | 2.2 | 0.6 | 0.4 | 0.0 | 0.2 | 5.5 |
XDZ-12 | 525.4 | 73.3 | 13.9 | 5.6 | 3.5 | 0.5 | 1.4 | 0.7 | 0.6 | 0.0 | 0.3 | 5.6 |
XDZ-11 | 552.9 | 84.1 | 10.2 | 1.5 | 2.6 | 0.1 | 0.6 | 0.6 | 0.1 | 0.0 | 0.0 | 3.8 |
XDZ-10 | 554.7 | 84.0 | 8.9 | 3.3 | 2.1 | 0.1 | 0.7 | 0.5 | 0.1 | 0.0 | 0.1 | 4.0 |
XDZ-9 | 556.9 | 81.4 | 10.9 | 2.8 | 2.9 | 0.1 | 0.9 | 0.7 | 0.1 | 0.0 | 0.1 | 4.2 |
XDZ-8 | 558.3 | 74.5 | 15.8 | 3.1 | 3.7 | 0.1 | 1.4 | 0.9 | 0.1 | 0.0 | 0.1 | 6.0 |
XDZ-7 | 560.0 | 80.7 | 11.1 | 3.1 | 2.8 | 0.2 | 1.1 | 0.6 | 0.1 | 0.0 | 0.1 | 3.9 |
XDZ-6 | 562.1 | 77.3 | 13.1 | 3.7 | 3.2 | 0.1 | 1.3 | 0.8 | 0.1 | 0.0 | 0.1 | 5.5 |
XDZ-5 | 563.3 | 79.0 | 11.7 | 3.7 | 3.0 | 0.1 | 1.3 | 0.7 | 0.1 | 0.0 | 0.1 | 4.8 |
XDZ-4 | 564.2 | 83.2 | 9.5 | 2.9 | 2.5 | 0.2 | 1.0 | 0.6 | 0.1 | 0.0 | 0.1 | 3.6 |
XDZ-3 | 565.6 | 57.0 | 29.9 | 4.8 | 4.0 | 0.9 | 1.4 | 1.4 | 0.2 | 0.0 | 0.1 | 67.4 |
XDZ-2 | 566.6 | 62.0 | 20.2 | 9.7 | 5.1 | 0.1 | 1.3 | 1.1 | 0.2 | 0.0 | 0.1 | 8.9 |
XDZ-1 | 568.0 | 71.4 | 17.7 | 3.0 | 4.7 | 0.1 | 1.6 | 1.2 | 0.1 | 0.0 | 0.1 | 6.3 |
Sample Number | Thickness (m) | Ba | Zr | Rb | V | Sr | Ce | Zn | Li | Cr | La | Th | U | Yb | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XDZ-35 | 477.3 | 588.3 | 450.7 | 219.4 | 162.7 | 90.8 | 113.1 | 71.1 | 21.4 | 76.2 | 68.0 | 15.9 | 5.3 | 5.7 | 2.5 |
XDZ-34 | 480.8 | 365.7 | 282.3 | 131.5 | 91.9 | 82.4 | 58.6 | 71.4 | 43.1 | 55.2 | 32.1 | 10.7 | 3.9 | 2.8 | 1.0 |
XDZ-33 | 482.3 | 379.9 | 234.5 | 126.2 | 107.5 | 171.1 | 49.6 | 66.4 | 47.3 | 50.5 | 29.1 | 10.1 | 3.2 | 2.4 | 1.5 |
XDZ-32 | 483.9 | 321.8 | 250.2 | 120.7 | 91.0 | 182.2 | 56.9 | 64.5 | 43.9 | 46.6 | 32.2 | 10.2 | 3.1 | 2.7 | 1.0 |
XDZ-31 | 485.5 | 343.8 | 274.3 | 119.2 | 91.4 | 124.5 | 60.5 | 76.8 | 42.2 | 43.9 | 33.0 | 10.2 | 3.1 | 2.9 | 1.3 |
XDZ-30 | 487.2 | 436.8 | 283.8 | 158.6 | 146.7 | 148.7 | 71.5 | 86.3 | 59.7 | 66.1 | 40.3 | 14.0 | 4.5 | 3.4 | 2.2 |
XDZ-29 | 488.7 | 520.9 | 292.7 | 182.0 | 123.0 | 100.6 | 85.0 | 95.8 | 69.9 | 95.9 | 46.1 | 17.0 | 3.0 | 3.3 | 0.7 |
XDZ-28 | 490.3 | 491.0 | 316.4 | 168.8 | 121.6 | 100.7 | 86.6 | 98.1 | 70.3 | 88.1 | 47.2 | 16.5 | 3.4 | 3.4 | 1.1 |
XDZ-27 | 492.0 | 509.5 | 294.5 | 162.9 | 105.5 | 81.3 | 89.2 | 89.1 | 67.3 | 79.9 | 48.9 | 16.1 | 3.3 | 3.2 | 1.3 |
XDZ-26 | 493.5 | 554.5 | 319.6 | 169.6 | 110.7 | 74.6 | 99.6 | 108.9 | 69.6 | 89.0 | 54.2 | 17.0 | 3.4 | 3.2 | 0.6 |
XDZ-25 | 495.2 | 528.8 | 314.9 | 168.0 | 106.6 | 78.1 | 91.8 | 96.8 | 61.8 | 87.3 | 50.9 | 17.0 | 3.3 | 3.0 | 0.8 |
XDZ-24 | 496.7 | 532.9 | 284.2 | 136.4 | 85.9 | 75.4 | 96.4 | 82.5 | 58.6 | 53.9 | 51.8 | 15.3 | 3.0 | 2.9 | 1.0 |
XDZ-23 | 498.6 | 514.8 | 258.4 | 112.9 | 65.3 | 78.4 | 81.4 | 89.0 | 58.6 | 67.6 | 44.4 | 13.1 | 2.5 | 2.4 | 0.6 |
XDZ-22 | 500.0 | 563.6 | 210.2 | 105.2 | 52.9 | 83.0 | 67.8 | 58.8 | 59.9 | 45.3 | 37.8 | 10.3 | 1.9 | 1.9 | 0.5 |
XDZ-21 | 508.3 | 567.5 | 301.4 | 185.9 | 98.9 | 66.8 | 83.8 | 60.1 | 36.2 | 51.4 | 47.6 | 15.3 | 3.5 | 2.6 | 0.3 |
XDZ-20 | 509.6 | 573.6 | 311.0 | 181.4 | 118.6 | 74.8 | 99.3 | 146.1 | 65.5 | 80.1 | 52.9 | 17.2 | 3.9 | 3.7 | 0.5 |
XDZ-19 | 510.9 | 598.2 | 297.8 | 146.0 | 87.4 | 70.1 | 93.5 | 119.0 | 67.6 | 59.1 | 50.1 | 16.4 | 3.3 | 3.0 | 1.0 |
XDZ-18 | 512.2 | 559.7 | 342.5 | 205.9 | 131.3 | 81.3 | 108.0 | 73.0 | 74.1 | 92.4 | 60.0 | 20.5 | 4.1 | 3.3 | 0.5 |
XDZ-17 | 513.5 | 559.5 | 327.6 | 196.1 | 126.9 | 78.3 | 103.2 | 94.9 | 72.5 | 78.1 | 57.6 | 18.9 | 3.9 | 3.3 | 0.8 |
XDZ-16 | 514.8 | 569.9 | 305.2 | 211.0 | 126.2 | 77.4 | 104.5 | 86.9 | 73.0 | 82.6 | 56.6 | 18.6 | 3.8 | 3.4 | 0.4 |
XDZ-15 | 516.1 | 579.2 | 304.2 | 173.3 | 105.4 | 76.4 | 100.6 | 71.6 | 62.3 | 81.4 | 55.8 | 17.4 | 3.4 | 3.2 | 0.5 |
XDZ-14 | 517.4 | 565.2 | 305.6 | 152.7 | 97.2 | 77.2 | 98.3 | 86.2 | 69.1 | 67.1 | 55.3 | 16.2 | 3.1 | 3.0 | 0.5 |
XDZ-13 | 518.7 | 677.9 | 228.1 | 125.0 | 79.1 | 69.9 | 89.3 | 89.0 | 86.9 | 61.7 | 48.5 | 14.1 | 2.5 | 2.5 | 0.4 |
XDZ-12 | 525.4 | 863.6 | 318.9 | 116.6 | 77.2 | 79.3 | 108.8 | 45.3 | 69.2 | 57.9 | 63.2 | 15.9 | 3.2 | 3.1 | 0.5 |
XDZ-11 | 552.9 | 281.9 | 298.3 | 107.6 | 59.6 | 57.6 | 71.9 | 16.7 | 34.8 | 35.5 | 41.1 | 12.4 | 2.8 | 2.1 | 0.6 |
XDZ-10 | 554.7 | 349.8 | 233.9 | 82.9 | 48.9 | 67.2 | 58.4 | 50.9 | 48.3 | 36.2 | 30.4 | 10.6 | 2.4 | 1.7 | 0.3 |
XDZ-9 | 556.9 | 353.8 | 312.3 | 121.4 | 68.5 | 65.4 | 75.5 | 61.3 | 63.7 | 47.5 | 41.1 | 14.2 | 3.5 | 2.3 | 0.5 |
XDZ-8 | 558.3 | 407.4 | 329.4 | 161.0 | 98.6 | 85.9 | 91.5 | 65.2 | 92.3 | 59.8 | 47.4 | 15.8 | 4.0 | 3.0 | 0.6 |
XDZ-7 | 560.0 | 354.3 | 320.1 | 119.9 | 69.4 | 67.4 | 77.7 | 91.9 | 75.3 | 45.4 | 42.0 | 14.0 | 3.3 | 2.3 | 0.5 |
XDZ-6 | 562.1 | 444.3 | 332.2 | 142.9 | 82.5 | 82.8 | 75.2 | 71.7 | 88.4 | 50.7 | 39.9 | 15.5 | 3.8 | 2.7 | 0.5 |
XDZ-5 | 563.3 | 856.9 | 323.1 | 133.4 | 75.5 | 92.4 | 78.6 | 80.3 | 82.1 | 48.8 | 42.9 | 14.8 | 3.6 | 2.7 | 0.6 |
XDZ-4 | 564.2 | 363.2 | 306.3 | 98.0 | 55.1 | 76.5 | 69.5 | 52.2 | 48.5 | 36.3 | 37.5 | 13.5 | 3.1 | 2.2 | 0.3 |
XDZ-3 | 565.6 | 277.5 | 225.3 | 56.3 | 63.0 | 38.2 | 45.3 | 79.0 | 57.8 | 29.5 | 23.6 | 19.8 | 9.5 | 5.2 | 1.0 |
XDZ-2 | 566.6 | 579.8 | 339.6 | 168.6 | 214.7 | 96.5 | 137.6 | 159.4 | 67.7 | 111.5 | 71.5 | 20.3 | 4.0 | 4.8 | 0.9 |
XDZ-1 | 568.0 | 234.5 | 486.9 | 175.9 | 132.6 | 81.5 | 97.6 | 50.5 | 135.9 | 74.2 | 54.8 | 19.9 | 4.6 | 4.3 | 0.4 |
Paleoproductivity Proxy | SubMbr1 | SubMbr2 | |
---|---|---|---|
Ba | Range | 234.54–863.55 | 321.84–677.93 |
Average | 447.26 | 517.52 | |
Babio | Range (ppm) | 19.00–741.63 | 198.06–563.90 |
Average | 302.65 | 373.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Chen, Z.; Zhang, T.; Zhang, X.; Zhang, J. Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin. Minerals 2025, 15, 1071. https://doi.org/10.3390/min15101071
Huang H, Chen Z, Zhang T, Zhang X, Zhang J. Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin. Minerals. 2025; 15(10):1071. https://doi.org/10.3390/min15101071
Chicago/Turabian StyleHuang, Hao, Zhongyun Chen, Tingshan Zhang, Xi Zhang, and Jingxuan Zhang. 2025. "Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin" Minerals 15, no. 10: 1071. https://doi.org/10.3390/min15101071
APA StyleHuang, H., Chen, Z., Zhang, T., Zhang, X., & Zhang, J. (2025). Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin. Minerals, 15(10), 1071. https://doi.org/10.3390/min15101071