Industrial-Based Comprehension on the Ceramic Body Composition by Continuous/Batch Grinding Methods
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Batch Ball Milling Studies
3.1.1. Effect of Permanent Mill Rotational Speed
3.1.2. Effect of Varying Mill Rotational Speed
3.2. Continuous Ball Milling Studies
3.3. Particle Size Distribution of Batch/Continuous Grinding and the Effects on Sintering Properties
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Size (µm) | % Volume Under for Batch-Ground Material | % Volume Under for Continuous-Ground Material |
---|---|---|
0.767 | 0 | 0 |
0.872 | 0.14 | 0 |
0.991 | 0.42 | 0.27 |
1.13 | 0.86 | 0.64 |
1.28 | 1.52 | 1.25 |
1.45 | 2.41 | 2.13 |
1.65 | 3.65 | 3.34 |
1.88 | 5.24 | 4.93 |
2.13 | 7.22 | 6.91 |
2.42 | 9.9 | 9.29 |
2.75 | 12.36 | 12.06 |
3.12 | 15.49 | 15.1 |
3.55 | 18.95 | 18.63 |
4.03 | 22.57 | 22.37 |
4.58 | 25.51 | 26.34 |
5.21 | 30.7 | 30.4 |
5.92 | 34.85 | 34.71 |
6.72 | 38.82 | 38.97 |
7.64 | 42.54 | 42.21 |
8.68 | 47.57 | 47.36 |
9.86 | 51.06 | 51.41 |
11.2 | 54.87 | 55.22 |
12.7 | 58.53 | 59.1 |
14.5 | 62.06 | 62.75 |
16.4 | 65.53 | 66.27 |
18.7 | 68.91 | 69.58 |
21.2 | 72.21 | 72.96 |
24.1 | 75.44 | 76.12 |
27.4 | 78.56 | 79.12 |
31.1 | 81.96 | 81.96 |
35.3 | 84.39 | 84.59 |
40.1 | 87.02 | 87.01 |
45.6 | 89.41 | 89.19 |
51.8 | 91.56 | 91.14 |
58.9 | 93.44 | 92.85 |
66.9 | 95.06 | 94.35 |
76 | 95.43 | 95.53 |
86.4 | 97.54 | 96.71 |
98.1 | 98.42 | 97.6 |
111 | 99.08 | 98.31 |
127 | 99.55 | 98.84 |
144 | 99.84 | 99.23 |
163 | 100 | 99.5 |
186 | 100 | 99.59 |
211 | 100 | 99.82 |
240 | 100 | 99.92 |
272 | 100 | 100 |
Appendix C
References
- Ferrara, L.; Deegan, P.; Pattarini, A.; Sonebi, M.; Taylor, S. Recycling Ceramic Waste Powder: Effects Its Grain-Size Distribution on Fresh and Hardened Properties of Cement Pastes/Mortars Formulated from SCC Mixes. J. Sustain. Cem.-Based Mater. 2019, 8, 145–160. [Google Scholar] [CrossRef]
- Framinan, J.M.; Leisten, R.; García, R.R. A Case Study: Ceramic Tile Production. In Springer eBooks; Springer: Berlin/Heidelberg, Germany, 2014; pp. 371–395. [Google Scholar]
- Sahishna, S.S.; Subash Chandran, M.P.; Prasobh, G.R.; Akhila, J.B.; Rejakumar, P.; Renjini, A.S. An overview on blushing powder. Int. J. Pharm. Res. Appl. 2022, 7, 1043–1050. [Google Scholar]
- Durgut, E.; Cinar, M.; Terzi, M.; Unver, I.K.; Yildirim, Y.; Boylu, F.; Ozdemir, O. Effect of Blunging/Dispersion Parameters on Separation of Halloysite Nanotubes from Gangue Minerals. Minerals 2022, 12, 683. [Google Scholar] [CrossRef]
- Kumar, A.; Sahu, R.; Tripathy, S.K. Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills—A Review. Energies 2023, 16, 5277. [Google Scholar] [CrossRef]
- Gürcan, K.; Derïn, B.; Ayas, E. Effect of SIC Particle Size on the Microstructural, Mechanical and Oxidation Properties of in-Situ Synthesized HFB2-SIC Composites. J. Polytech. 2020, 24, 503–510. [Google Scholar] [CrossRef]
- Ranogajec, J.; Djuric, M.; Radeka, M.; Jovanic, P. Influence of Particle Size and Furnace Atmosphere on the Sintering of Powder for Tiles Production. Ceramics 2000, 44, 71–77. [Google Scholar]
- Zheng, W.; Cui, T.; Li, H.; Yang, Y. Novel Dry-Suspension Granulation Process for Preparing Pressed Powders of Ceramic Tiles. Powder Technol. 2020, 377, 274–280. [Google Scholar] [CrossRef]
- Olhero, S.M.; Ferreira, J.M.F. Influence of Particle Size Distribution on Rheology and Particle Packing of Silica-Based Suspensions. Powder Technol. 2003, 139, 69–75. [Google Scholar] [CrossRef]
- Moraga, C.; Astudillo, C.A.; Estay, R.; Maranek, A. Enhancing Comminution Process Modeling in Mineral Processing: A Conjoint Analysis Approach for Implementing Neural Networks with Limited Data. Mining 2024, 4, 966–982. [Google Scholar] [CrossRef]
- Ozsoysal, S.; Heidari, H.; Guner, G.; Clancy, D.J.; Bilgili, E. Modeling Power Consumption: A Novel Correlation for Stirred Media Mills with Variable Bead Filling Ratios. Deleted J. 2025, 2, 14. [Google Scholar] [CrossRef]
- Toprak, N.A.; Benzer, A.H.; Karahan, C.E.; Zencirci, E.S. Effects of Grinding Aid Dosage on Circuit Performance and Cement Fineness. Constr. Build. Mater. 2020, 265, 120707. [Google Scholar] [CrossRef]
- Wills, B.A.; Finch, J.A. Grinding Mills. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 147–179. [Google Scholar]
- Matsanga, N.; Nheta, W.; Chimwani, N. A Review of the Grinding Media in Ball Mills for Mineral Processing. Minerals 2023, 13, 1373. [Google Scholar] [CrossRef]
- Yu, W.; Lv, B.; Yuan, J. Wear Model of Silicon Nitride Ceramic Balls in Three-Body Coupling Grinding Mode. Appl. Sci. 2023, 13, 5796. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Z.; Ma, S. Calculation Method and Its Application for Energy Consumption of Ball Mills in Ceramic Industry Based on Power Feature Deployment. Adv. Appl. Ceram. Struct. Funct. Bioceram. 2020, 119, 183–194. [Google Scholar] [CrossRef]
- Carlos, E.; De Aguiar, P.R.; Eduardo, A.; Chinali, R. Optimization of Ceramics Grinding. In InTech eBooks; InTech: Toulon, France, 2011. [Google Scholar]
- Hogg, R.; Cho, H. A Review of Breakage Behavior in Fine Grinding by Stirred-Media Milling. KONA Powder Part. J. 2000, 18, 9–19. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Zhu, P.; Guo, R.; Li, H.; Ma, S.; Wang, D. Study on Impact and Abrasion Resistance of Minerals Based on JK Drop Weight Test and Grinding Test. Minerals 2025, 15, 407. [Google Scholar] [CrossRef]
- Yu, J.; Jin, S.-H.; Raju, K.; Lee, Y.; Lee, H.-K. Analysis of Individual and Interaction Effects of Processing Parameters on Wet Grinding Performance in Ball Milling of Alumina Ceramics Using Statistical Methods. Ceram. Int. 2021, 47, 31202–31213. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, C.; Fang, X.; Liao, N.; Tong, J.; Yu, C. Effect of Slurry Concentration on the Ceramic Ball Grinding Characteristics of Magnetite. Minerals 2022, 12, 1569. [Google Scholar] [CrossRef]
- Heim, A.; Olejnik, T.P.; Pawlak, A. Rate of Ceramic Body Grinding in a Ball Mill. Physicochem. Probl. Miner. Process. 2005, 39, 189–198. [Google Scholar]
- Das, S.; Anil, L.; Pandivelan, C. Design and Development of an Ultrasonic Stack Assembly for Ultrasonic Vibration Assisted Grinding. Mater. Today Proc. 2021, 46, 8778–8782. [Google Scholar] [CrossRef]
- Celis, C.; Antoniou, A.; Cuisano, J.; Pillihuaman, A.; Maza, D. Experimental Characterization of Chalcopyrite Ball Mill Grinding Processes in Batch and Continuous Flow Processing Modes to Reduce Energy Consumption. J. Mater. Res. Technol. 2021, 15, 5428–5444. [Google Scholar] [CrossRef]
- Yan, H.; Deng, F.; Niu, H.; Zhu, J.; Hu, B. Effect of Grinding Parameters on Surface Quality in Internal Grinding of Silicon Nitride Ceramics. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 353. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, C.; Ling, L.; Yao, X.; Li, Z.; Xie, F.; Tian, J. Ceramic Grinding Kinetics of Fine Magnetite Ores in the Batch Ball Mill. Minerals 2023, 13, 1188. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Forssberg, E. Parameter Studies on the Rheology of Limestone Slurries. Int. J. Miner. Process. 2005, 78, 63–77. [Google Scholar] [CrossRef]
- Makokha, A.B.; Moys, M.H.; Muumbo, A.M.; Kiprono, R.J. Optimization of In-Mill Ball Loading and Slurry Solids Concentration in Grinding of UG-2 Ores: A Statistical Experimental Design Approach. Miner. Eng. 2012, 39, 149–155. [Google Scholar] [CrossRef]
- Tang, B.; Cheng, B.; Song, X.; Ji, H.; Li, Y.; Wang, Z. Experimental Study on the Influence of Rotational Speed on Grinding Efficiency for the Vertical Stirred Mill. Minerals 2024, 14, 1208. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Controlling the Powder Milling Process. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 48–83. [Google Scholar]
- Bond, F.C. Crushing and grinding calculations. Part I, Brit. Chem. Eng. 1961, 6, 378–385. Available online: https://www.911metallurgist.com/blog/wp-content/uploads/2015/11/Bond-F-C-1961-Crushing-and-Grinding-Calculations.pdf (accessed on 11 September 2025).
- EN-ISO 10545-3; Ceramic Tiles Part 3: Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density. European Committee for Standardization: Brussels, Belgium, 2018.
- Dong, H.; Moys, M.H. Measurement of Impact Behaviour between Balls and Walls in Grinding Mills. Miner. Eng. 2003, 16, 543–550. [Google Scholar] [CrossRef]
- Panjipour, R.; Barani, K. The Effect of Ball Size Distribution on Power Draw, Charge Motion and Breakage Mechanism of Tumbling Ball Mill by Discrete Element Method (DEM) Simulation. Physicochem. Probl. Miner. Process. 2017, 54, 258–269. [Google Scholar] [CrossRef]
- AmanNejad, M.; Barani, K. Effects of Ball Size Distribution and Mill Speed and Their Interactions on Ball Milling Using DEM. Miner. Process. Extr. Metall. Rev. 2020, 42, 374–379. [Google Scholar] [CrossRef]
- Naumenko, Y.; Deineka, K. Building a Model of the Compression Grinding Mechanism in a Tumbling Mill Based on Data Visualization. East.-Eur. J. Enterp. Technol. 2023, 5, 64–72. [Google Scholar] [CrossRef]
- Parapari, P.S.; Parian, M.; Rosenkranz, J. Breakage Process of Mineral Processing Comminution Machines—An Approach to Liberation. Adv. Powder Technol. 2020, 31, 3669–3685. [Google Scholar] [CrossRef]
- Gupta, V.K. Hold-up Weight in Continuous Wet Ball Milling: Relationship with the Size Distribution of the Particulate Contents of the Mill. Powder Technol. 2022, 415, 118137. [Google Scholar] [CrossRef]
- Ipek, H.; Ucbas, Y.; Yekeler, M.; Hosten, Ç. Grinding of Ceramic Raw Materials by a Standard Bond Mill: Quartz, Kaolin and K-Feldspar. Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. Sect. C 2005, 114, 213–218. [Google Scholar] [CrossRef]
- Yıldız, B. Effect of Particle Size Distribution on the Properties of Celsian Based Glazes. J. Aust. Ceram. Soc. 2024, 60, 1495–1504. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Yliniemi, J.; Ismailov, A.; Levanen, E.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Spodumene Tailings for Porcelain and Structural Materials: Effect of Temperature (1050–1200 °C) on the Sintering and Properties. Miner. Eng. 2019, 141, 105843. [Google Scholar] [CrossRef]
- Qian, C.; Hu, K.; Wang, H.; Nie, L.; Feng, Q.; Lu, Z.; Li, P.; Lu, K. The Effect of Particle Size Distribution on the Microstructure and Properties of Al2O3 Ceramics Formed by Stereolithography. Ceram. Int. 2022, 48, 21600–21609. [Google Scholar] [CrossRef]
- Çakar, E.Z.; Akbay, A.; Zırtıl, O.; Altınok, İ. Investigation of Effects Different Particle Size Quartz and Feldspar on Body Physical Properties. Int. J. Eng. Res. Dev. 2024, 17, 498–508. [Google Scholar]
- Alves, H.J.; Melchiades, F.G.; Boschi, A.O. Effect of Feldspar Particle Size on the Porous Microstructure and Stain Resistance of Polished Porcelain Tiles. J. Eur. Ceram. Soc. 2012, 32, 2095–2102. [Google Scholar] [CrossRef]
- Fuertes, V.; Reinosa, J.J.; Fernández, J.F.; Enríquez, E. Engineered Feldspar-Based Ceramics: A Review of Their Potential in Ceramic Industry. J. Eur. Ceram. Soc. 2021, 42, 307–326. [Google Scholar] [CrossRef]
- Garzón, E.; Pérez-Villarejo, L.; Eliche-Quesada, D.; Martínez-Martínez, S.; Sánchez-Soto, P.J. Vitrification Rate and Estimation of the Optimum Firing Conditions of Ceramic Materials from Raw Clays: A Review. Ceram. Int. 2022, 48, 15889–15898. [Google Scholar] [CrossRef]
- Koca, K.; Benkli, Y.E. Microstructural and Elemental Characterization of Pumice–Bauxite–Clay Ceramics: Effects of Sintering Temperature and Scherrer-Based Analysis. J. Aust. Ceram. Soc. 2025. [Google Scholar] [CrossRef]
- Huggett, J.M. Clay Minerals, Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Durgut, E.; Cinar, M.; Ozdemir, O. Effect of Calcite and Mica Contents in Nepheline Syenite Samples on the Ceramic Body Sintering Behaviours and Surface Roughness. Physicochem. Probl. Miner. Process. 2022, 58, 149179. [Google Scholar] [CrossRef]
- Bragança, S.R.; Bergmann, C.P. Effect of Quartz of Fine Particle Size on Porcelain Properties. Mater. Sci. Forum 2006, 530–531, 493–498. [Google Scholar] [CrossRef]
- Rambaldi, E.; Lucchese, B.; Engels, M.; Bignozzi, M.C. Evaluation of Durability and Cleanability Performances of Protective Treatments for Lapped Ceramic Tiles—Part 2. Int. J. Appl. Ceram. Technol. 2018, 16, 625–637. [Google Scholar] [CrossRef]
- EN 14411; Ceramic Tiles—Definition, Classification, Characteristics, Assessment and Verification of Constancy of Performance and Marking. European Committee for Standardization: Brussels, Belgium, 2016.
Compounds | Unit | Clay | Altered Granite | Kaolin | Feldspar | |
---|---|---|---|---|---|---|
Chemical analysis (XRF) | LOI * | % | 7.0 | 1.9 | 5.1 | 2.0 |
SiO2 | 64.4 | 78.4 | 64.9 | 61.3 | ||
Al2O3 | 20.9 | 12.8 | 22.5 | 21.8 | ||
TiO2 | 1.1 | 0.2 | 0.7 | 0.3 | ||
Fe2O3 | 3.4 | 1.1 | 5.1 | 1.2 | ||
CaO | 0.3 | 0.4 | 0.2 | 1.4 | ||
MgO | 0.8 | 0.2 | 0.1 | 0.2 | ||
Na2O | 0.3 | 1.1 | 0.3 | 4.5 | ||
K2O | 2.1 | 4.1 | 1.1 | 7.3 | ||
Mineralogical analysis | Montmorillonite Illite Quartz Anatase Hematite | Microcline Albite Quartz Kaolinite Illite | Kaolinite Illite Quartz Pyrophyllite Hematite | Microcline Albite Muscovite |
Sample | Clay | Altered Granite | Kaolin | Feldspar |
---|---|---|---|---|
Slip density (g/L) | 1700 | |||
Viscosity/T°C (s) | 43 | 43 | 32 | 68 |
Sieve residue for +63 µm (%) | 6 | |||
Grinding time (min.) | 5.5 | 26.0 | 17.0 | 51.0 |
Bond work index (kWh/ton) | - | 17.8 | 12.7 | 20.4 |
Raw Materials | Clay | Altered Granite | Kaolin | Feldspar |
---|---|---|---|---|
Ratio by weight (%) | 28 | 36 | 15 | 21 |
Ball Size (mm) | Ball Load for Batch Mill (kg) | Ball Load for Continuous Mill (kg) | |
---|---|---|---|
1st Chamber | 2nd Chamber | ||
60 | 750 | 3000 | - |
50 | 1000 | 3500 | - |
40 | 3000 | 12,000 | 2000 |
30 | 8000 | 6500 | 5000 |
25 | 6000 | - | 18,000 |
Total | 18,750 | 25,000 | 25,000 |
Period | Mill Rotational Speed (rpm) | 1st Regime (min) | 2nd Regime (min) | 3rd Regime (min) |
---|---|---|---|---|
1st | 16 | 200 | 150 | 100 |
2nd | 14 | 200 | 200 | 200 |
3rd | 12 | 115 | 145 | 185 |
Specimen | Continuous | Batch | |
---|---|---|---|
Shrinkage | % | 8.1 | 8.0 |
Water absorption | % | 0.3 | 1.1 |
Color | L | 43.6 | 44.4 |
a | 10.2 | 10.2 | |
b | 17.4 | 17.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durgut, E. Industrial-Based Comprehension on the Ceramic Body Composition by Continuous/Batch Grinding Methods. Minerals 2025, 15, 1070. https://doi.org/10.3390/min15101070
Durgut E. Industrial-Based Comprehension on the Ceramic Body Composition by Continuous/Batch Grinding Methods. Minerals. 2025; 15(10):1070. https://doi.org/10.3390/min15101070
Chicago/Turabian StyleDurgut, Emrah. 2025. "Industrial-Based Comprehension on the Ceramic Body Composition by Continuous/Batch Grinding Methods" Minerals 15, no. 10: 1070. https://doi.org/10.3390/min15101070
APA StyleDurgut, E. (2025). Industrial-Based Comprehension on the Ceramic Body Composition by Continuous/Batch Grinding Methods. Minerals, 15(10), 1070. https://doi.org/10.3390/min15101070