Editorial for the Special Issue of Minerals, “Advances in Low-Temperature Mineralogy and Geochemistry”
Acknowledgments
Conflicts of Interest
References
- Bourdelle, F. Low-Temperature chlorite geothermometry and related recent analytical advances: A review. Minerals 2021, 11, 130. [Google Scholar] [CrossRef]
- Bobos, I.; Sá, C.; Noronha, F. Mineralogy, Fluid Inclusions, and Oxygen Isotope Geochemistry Signature of Wolframite to Scheelite and Fe,Mn-Chlorite Veins from the W, (Mo, Cu) Ore Deposit of Borralha, Portugal. Minerals 2022, 12, 24. [Google Scholar] [CrossRef]
- Bobos, I.; Noronha, F.; Mateus, A. Fe-, Fe,Mn- and Fe,Mg-chlorite: A genetic linkage to W, (Cu,Mo)—Mineralization in the magmatic-hydrothermal system of Borralha, Northern Portugal. Mineral. Mag. 2018, 82, S259–S279. [Google Scholar] [CrossRef]
- Bobos, I.; Stein, H.; Deng, X.D.; Sudo, M.; Noronha, F. U–Pb LA-ICP-MS and Re–Os dating of wolframite and molybdenite: Constraints on multiple mineralization and cooling history (40Ar/39Ar) for the magmatic–hydrothermal system at Borralha, northern Portugal. Ore Geol. Rev. 2024, 168, 106013. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.C.; Zhang, D.H.; Zhou, Z.J.; Han, F.B. The precipitation mechanisms of scheelite from CO2-rich hydrothermal fluids: Insight from thermodynamic modeling. Appl. Geochem. 2024, 175, 106187. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Chopin, C.; Beyssac, O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Miner. Petrol. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T sections and geothermometry. Contrib. Miner. Petrol. 2014, 167, 968–984. [Google Scholar] [CrossRef]
- Inoue, A.; Meunier, A.; Patrier-Mas, P.; Rigault, C.; Beaufort, D.; Vieillard, P. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays Clay Miner. 2009, 57, 371–382. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Q.; Xia, Y.; Liu, J.; Yang, C.; Li, S.; Li, T.; Chen, F.; Wang, X.; Pan, Q.; et al. Sm-Nd Isochron Age constraints of Au and Sb mineralization in the southeasterm Guizhou Province, China. Minerals 2021, 11, 100. [Google Scholar] [CrossRef]
- Song, W.; Liu, J.; Zou, Y.; Liu, X.; Long, T.; Zhu, J.; Fu, S.; Chen, S.; Xiong, Y.; Zhou, R.; et al. Genesis of the Baiyun gold deposit in the northeastern Hubei Province, China: Insights from In-Site Trace elements and S-Fe isotopes of sulfides. Minerals 2024, 14, 517. [Google Scholar] [CrossRef]
- Bozkaya, O.; Yalcin, H. Mineral Chemistry of Low-Temperature Phyllosilicates in Early Paleozoic Metaclastic Rocks, Eastern Tauride Belt, Türkiye. Minerals 2022, 12, 1088. [Google Scholar] [CrossRef]
- Bourdelle, F.; Dubois, M.; Lloret, E.; Durand, C.; Addad, A.; Bounoua, S.; Ventalon, S.; Recourt, P. Kaolinite-to-chlorite conversion from Si, Al-rich fluid origin veins Fe-rich Carboniferous shale interaction. Minerals 2021, 11, 804. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ. Geol. 1992, 97, 1927–1944. [Google Scholar]
- Christenson, B.W.; Wood, C.P. Evolution of a vent-hosted hydrothermal system beneath Ruapehu crater lake, New Zeeland. Bull. Volcanol. 1993, 55, 547–565. [Google Scholar] [CrossRef]
- Delmelle, P.; Bernard, A. Geochemistry, mineralogy, and chemical modelling of the acid crater lake of Kawah Ijen volcano, Indonesia. Geochim. Cosmochim. Acta 1994, 58, 2445–2460. [Google Scholar] [CrossRef]
- Africano, F.; Bernard, A. Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J. Volcanol. Geotherm. Res. 2000, 97, 475–495. [Google Scholar] [CrossRef]
- Bobos, I.; Gomes, C. Mineralogy and Geochemistry (HFSE and REE) of the present-day acid-sulfate types alteration from the active hydrothermal system of Furnas volcano, São Miguel Island, Azores Archipelago. Minerals 2021, 11, 335. [Google Scholar] [CrossRef]
- Zhitova, E.S.; Khanin, D.A.; Nuzhdaev, A.A.; Nazarova, M.A.; Ismagilova, R.M.; Shilovskikh, V.V.; Kupchinenko, A.N.; Kuznetsov, R.A.; Zhegunov, P.S. Efflorescent sulfates with M+ and M2+ cations from fumarole and active geothermal fields of Mutnovski volcano (Kamchatka, Russia). Minerals 2022, 12, 600. [Google Scholar] [CrossRef]
- Volkert, R.A.; Gorring, M.L.; Peck, W.H.; Stanford, S.D. Characterization and Origin of Basalt-Derived Carnelian in the Mesozoic Newark Basin, New Jersey, USA. Minerals 2023, 13, 1249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobos, I.; Bourdelle, F. Editorial for the Special Issue of Minerals, “Advances in Low-Temperature Mineralogy and Geochemistry”. Minerals 2025, 15, 84. https://doi.org/10.3390/min15010084
Bobos I, Bourdelle F. Editorial for the Special Issue of Minerals, “Advances in Low-Temperature Mineralogy and Geochemistry”. Minerals. 2025; 15(1):84. https://doi.org/10.3390/min15010084
Chicago/Turabian StyleBobos, Iuliu, and Franck Bourdelle. 2025. "Editorial for the Special Issue of Minerals, “Advances in Low-Temperature Mineralogy and Geochemistry”" Minerals 15, no. 1: 84. https://doi.org/10.3390/min15010084
APA StyleBobos, I., & Bourdelle, F. (2025). Editorial for the Special Issue of Minerals, “Advances in Low-Temperature Mineralogy and Geochemistry”. Minerals, 15(1), 84. https://doi.org/10.3390/min15010084