Oxide Reduction Treatment with a Thermal Plasma Torch: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. How a Plasma Torch Works
2.3. Experimental Procedure
2.4. Characterization Techniques
2.4.1. XRD Analysis
2.4.2. SEM–EDS Analysis
2.5. Thermodynamic Study
3. Results and Discussion
3.1. Heat Transfer Mode
3.2. Thermodynamic Study
3.2.1. Aluminum Oxide (Al2O3)
3.2.2. Titanium Oxide (TiO2)
3.2.3. Iron Oxide
- a.
- Magnetite (Fe3O4)
- b.
- Hematite (Fe2O3)
3.3. XRD Analysis
3.3.1. Aluminum Oxide (Al2O3)
3.3.2. Titanium Oxide (TiO2)
3.3.3. Iron Oxide
- a.
- Magnetite (Fe3O4)
- b.
- Hematite (Fe2O3)
3.3.4. Oxide Mixture (Iron Oxide + Titanium Oxide)
3.4. SEM–EDS Analysis
3.5. Mass Balance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philibert, J.; Vignes, A.; Bréchet, Y.; Combrade, P. Metallurgie, du minerai au materiau. Ann. De Chim.-Sci. Des Mater. 1999, 24, 404. [Google Scholar] [CrossRef]
- Sabat, K.C.; Rajput, P.; Paramguru, R.K.; Bhoi, B.; Mishra, B.K. Reduction of Oxide Minerals by Hydrogen Plasma: An Overview. Plasma Chem. Plasma Process. 2014, 34, 1–23. [Google Scholar] [CrossRef]
- Samal, S. Thermal plasma technology: The prospective future in material processing. J. Clean. Prod. 2017, 142, 3131–3150. [Google Scholar] [CrossRef]
- Dessemond, C.; Soucy, G.; Laroche, N. Reductive thermal plasma conversion of a spodumene concentrate and impact on lithium extraction. Miner. Eng. 2024, 211, 108682. [Google Scholar] [CrossRef]
- Kogelschatz, U. Atmospheric-pressure plasma technology. Plasma Phys. Control. Fusion 2004, 46, B63. [Google Scholar] [CrossRef]
- Chanturia, V.A.; Bunin, I.Z.; Ryazantseva, M.V. The Low-Temperature Plasma Effect of Dielectric Barrier Discharge on Physicochemical and Process Properties of Natural Iron Sulfides. J. Min. Sci. 2023, 59, 621–627. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z. Advances in Pulsed Power Mineral Processing Technologies. Minerals 2022, 12, 1177. [Google Scholar] [CrossRef]
- Samal, S. Thermal Plasma Processing of Ilmenite; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ojebuobon, F.K.; Martins, G.P. Thermal plasma technology in the extractive metallurgy of titanium, refractory metals: Extractions, processing and applications. The Minerals. Met. Mater. Soc. 1990, 101. [Google Scholar]
- Lanyon, M.R.; Lwin, T.; Merritt, R.R. The dissolution of iron in the hydrochloric acid leach of an ilmenite concentrate. Hydrometallurgy 1999, 51, 299–323. [Google Scholar] [CrossRef]
- Heberlein, J.; Murphy, A.B. Thermal plasma waste treatment. J. Phys. D Appl. Phys. 2008, 41, 053001. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Mašláni, A.; Hlína, M.; Fathi, J.; Mates, T.; Pohořelý, M.; Meers, E.; Šyc, M.; Jeremiáš, M. Thermal plasma assisted pyrolysis and gasification of RDF by utilizing sequestered CO2 as gasifying agent. J. CO2 Util. 2022, 66, 102275. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Mašláni, A.; Van Oost, G.; Fathi, J.; Hlína, M.; Mates, T.; Pohořelý, M.; Jeremiáš, M. Integration of thermal plasma with CCUS to valorize sewage sludge. Energy 2024, 288, 129896. [Google Scholar] [CrossRef]
- Hrabovsky, M.; Hlina, M.; Kopecky, V.; Maslani, A.; Zivny, O.; Krenek, P.; Serov, A.; Hurba, O. Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem. Plasma Process. 2017, 37, 739–762. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Christo, F.C.; Rolfe, B.; Shabani, B.; Tran, N.N.; Fulcheri, L.; Escribà-Gelonch, M.; Hessel, V. Thermal plasma-driven looping for metal scrap processing with hydrogen. Energy Convers. Manag. 2024, 299, 117800. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Reichert, A.; Pohorely, M.; Meers, E.; Ferreira, N.L.; Jeremias, M. Equilibrium modeling of thermal plasma assisted co-valorization of difficult waste streams for syngas production. Sustain. Energy Fuels 2021, 5, 4650–4660. [Google Scholar] [CrossRef]
- Safa, S.; Soucy, G. Liquid and solution treatment by thermal plasma: A review. Int. J. Environ. Sci. Technol. 2014, 11, 1165–1188. [Google Scholar] [CrossRef]
- Chen, L.; Pershin, L.; Mostaghimi, J. A New Highly Efficient High-Power DC Plasma Torch. IEEE Trans. Plasma Sci. 2008, 36, 1068–1069. [Google Scholar] [CrossRef]
- Mitrasinovic, A.; Pershin, L.; Mostaghimi, J. Electronic Waste Treatment by High Enthalpy Plasma Jet; International Plasma Chemistry Society (IPCS20): Philadelphia, PA, USA, 2013; pp. 1–4. [Google Scholar]
- Safa, S.; Hekmat-Ardakan, A.; Soucy, G. Comparison of CO2and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution. J. Phys. Conf. Ser. 2014, 550, 012015. [Google Scholar] [CrossRef]
- Verozub, E.Y.; Miringof, N.S.; Zvyagintsev, K.N.; Yur’ev, Y.M.; Shchedrov, S.A.; Volkov, A.V.; Cherepov, P.V.; Mezentsev, E.P.; Simonov, K.V.; Sukhoteplov, V.N.; et al. Performance analysis of gas-burner equipment of rotary kilns for calcining magnesite. Refractories 1975, 16, 355–359. [Google Scholar] [CrossRef]
- Wu, K.-K.; Chang, Y.-C.; Chen, C.-H.; Chen, Y.-D. High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel 2010, 89, 2455–2462. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.L.; Pfender, E. The plasma state. In Handbook of Thermal Plasmas; Springer: Berlin/Heidelberg, Germany, 2023; pp. 3–55. [Google Scholar]
- Kobayashi, A.; Osaki, K.; Yamabe, C. Treatment of CO2 gas by high-energy type plasma. Vacuum 2002, 65, 475–479. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasmas: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- León-Reina, L.; García-Maté, M.; Álvarez-Pinazo, G.; Santacruz, I.; Vallcorba, O.; De la Torre, A.G.; Aranda, M.A.G. Accuracy in Rietveld quantitative phase analysis: A comparative study of strictly monochromatic Mo and Cu radiations. J. Appl. Crystallogr. 2016, 49, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, C.B. Synthèse de Poudres Ultrafines de Carbure de Silicium Dans un Réacteur à Plasma à Courant Continu. Ph.D. Thesis, Universite de Sherbrooke, Sherbrooke, QC, Canada, 1991. [Google Scholar]
- Harvey, J.-P.; Lebreux-Desilets, F.; Marchand, J.; Oishi, K.; Bouarab, A.-F.; Robelin, C.; Gheribi, A.E.; Pelton, A.D. On the Application of the FactSage Thermochemical Software and Databases in Materials Science and Pyrometallurgy. Processes 2020, 8, 1156. [Google Scholar] [CrossRef]
- Sang, L.; Lv, X.; Wu, Y. NaNO3-KNO3-KCl/K2CO3 with the elevated working temperature for CSP application: Phase diagram calculation and machine learning. Sol. Energy 2023, 252, 322–329. [Google Scholar] [CrossRef]
- Perry, D.W.G.R.H. Perry’s Chemical Engineers’ Handbook; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Bird, R.B. Transport phenomena. Appl. Mech. Rev. 2002, 55, R1–R4. [Google Scholar] [CrossRef]
- Baehr, H.D.; Stephan, K. Heat and Mass Transfer; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Taler, D.; Taler, J. Simplified analysis of radiation heat exchange in boiler superheaters. Heat Transf. Eng. 2009, 30, 661–669. [Google Scholar] [CrossRef]
- Safa, S.; Soucy, G. Decomposition of high molecular weight carboxylic acid in aqueous solution by submerged thermal plasma. Chem. Eng. J. 2014, 244, 178–187. [Google Scholar] [CrossRef]
- El Khalloufi, M.; Soucy, G.; Lapointe, J.; Paquet, M. Reduction of an ilmenite concentrate by using a novel CO2/CH4 thermal plasma torch. Minerals, 2024. [Google Scholar]
- Rao, L.; Rivard, F.; Carabin, P. Thermal plasma torches for metallurgical applications. In 4th International SYMPOSIUM on High-Temperature Metallurgical Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; p. 57. [Google Scholar]
- Zhou, M.; Jiang, T.; Ding, X.; Ma, S.; Wei, G.; Xue, X. Thermodynamic study of direct reduction of high-chromium vanadium–titanium magnetite (HCVTM) based on phase equilibrium calculation model. J. Therm. Anal. Calorim. 2019, 136, 885–892. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, Z.; Chen, Z.; Bi, X.T. Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study. Powder Technol. 2017, 316, 410–420. [Google Scholar] [CrossRef]
- Zhang, M.; Kamavarum, V.; Reddy, R.G. New electrolytes for aluminum production: Ionic liquids. JOM 2003, 55, 54–57. [Google Scholar] [CrossRef]
- Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Phase characterization of TiO2 powder by XRD and TEM. Agric. Nat. Resour. 2008, 42, 357–361. [Google Scholar]
- Jiao, S.; Zhu, H. Novel metallurgical process for titanium production. J. Mater. Res. 2006, 21, 2172–2175. [Google Scholar] [CrossRef]
- Ouyang, Z.-W.; Chen, E.-C.; Wu, T.-M. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites. Materials 2015, 8, 4553–4564. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, L. Controlled Preparation of Different Proportions of Metal Fe-Mn from Waste Mn Ferrite by Molten Salt Electrolysis. Processes 2020, 8, 1647. [Google Scholar] [CrossRef]
- Zainuri, M. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012008. [Google Scholar] [CrossRef]
- Yu, J.; Han, Y.; Li, Y.; Gao, P.; Li, W. Mechanism and Kinetics of the Reduction of Hematite to Magnetite with CO–CO2 in a Micro-Fluidized Bed. Minerals 2017, 7, 209. [Google Scholar] [CrossRef]
- Gonoring, T.B.; Franco, A.R.; Vieira, E.A.; Nascimento, R.C. Kinetic analysis of the reduction of hematite fines by cold hydrogen plasma. J. Mater. Res. Technol. 2022, 20, 2173–2187. [Google Scholar] [CrossRef]
- Dai, Z.; Bos, J.-A.; Lee, A.; Wells, P. Mass balance and mineralogical analysis of flotation plant survey samples to improve plant metallurgy. Miner. Eng. 2008, 21, 826–831. [Google Scholar] [CrossRef]
H2 | CO | CH4 | CO2 | C2H2 | H2O | O2 | |
---|---|---|---|---|---|---|---|
Quantity (mole) | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.006 |
Phase | Wt.% (±2) |
---|---|
Al2O3 | 45.4 |
Al | 54.6 |
Phase | Wt.% (±2) |
---|---|
TiO2 | 8.4 |
Ti3O5 | 35.4 |
Ti5O9 | 54.8 |
Ti | 1.4 |
Phase | Wt.% (±2) |
---|---|
FeO | 45.7 |
Fe | 49.7 |
Fe2O3 | 4.3 |
Fe3O4 | 0.3 |
Phase | Wt.% (±2) |
---|---|
Pseudobrookite (FeTi2O5) | 60.2 |
Ilmenite (FeTiO3) | 26.0 |
TiO2 | 1.0 |
Fe | 5.6 |
Ti | 7.2 |
Raw Material | M0 (g) | Reactor + Cone Part | Filter Part | Recovery (%) |
---|---|---|---|---|
Al2O3 | 300 | 285 | 6 | 97 |
TiO2 | 300 | 276 | 2 | 92 |
Fe2O3 | 300 | 250 | 6 | 85 |
Fe3O4 | 300 | 253 | 4 | 86 |
TiO2 + Fe3O4 | 300 | 230 | 8.5 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Khalloufi, M.; Soucy, G. Oxide Reduction Treatment with a Thermal Plasma Torch: A Case Study. Minerals 2024, 14, 443. https://doi.org/10.3390/min14050443
El Khalloufi M, Soucy G. Oxide Reduction Treatment with a Thermal Plasma Torch: A Case Study. Minerals. 2024; 14(5):443. https://doi.org/10.3390/min14050443
Chicago/Turabian StyleEl Khalloufi, Mohammed, and Gervais Soucy. 2024. "Oxide Reduction Treatment with a Thermal Plasma Torch: A Case Study" Minerals 14, no. 5: 443. https://doi.org/10.3390/min14050443
APA StyleEl Khalloufi, M., & Soucy, G. (2024). Oxide Reduction Treatment with a Thermal Plasma Torch: A Case Study. Minerals, 14(5), 443. https://doi.org/10.3390/min14050443