Petrography and Geochemistry of Hydrothermal Alteration in the Low-Sulfidation Epithermal Kestanelik Au Deposit, Biga Peninsula, NW Turkey
Abstract
1. Introduction
2. Regional Geology
3. Local Geology
4. Materials and Methods
5. Results
5.1. Hydrothermal Alteration and Au Mineralization
5.2. Petrography–Mineralogy of Alteration Forms
5.2.1. Polarizing Microscope Investigations
5.2.2. X-ray Diffraction-Mineralogy of Alteration
5.3. Geochemistry
5.3.1. Petrogenic Elements
5.3.2. Rare Earth Elements
5.4. Hydrothermal Alteration Indices
5.5. Molar Ratio and Mass Gain/Loss
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Silicified Vein | |||||||||||||
Major Oxides (wt.%) | DL | KED 2-2 | KED2-6 | KED2-7 | KED2-13 | KED17-8 | KED63-2 | KED63-3 | KED63-5 | KED63-9 | KED63-10 | KED63-11 | |
SiO2 | 0.01 | 96.32 | 84.32 | 96.50 | 98.02 | 95.37 | 74.04 | 57.74 | 83.90 | 93.53 | 86.04 | 69.14 | |
Al2O3 | 0.01 | 1.20 | 6.67 | 1.23 | 0.55 | 0.97 | 11.89 | 10.85 | 6.41 | 1.19 | 6.36 | 14.33 | |
Fe2O3 | 0.04 | 0.77 | 3.18 | 0.60 | 0.61 | 1.45 | 4.49 | 8.03 | 3.87 | 3.46 | 3.09 | 6.09 | |
MgO | 0.01 | 0.09 | 0.76 | 0.05 | 0.04 | 0.04 | 1.90 | 4.13 | 1.07 | 0.10 | 0.41 | 1.79 | |
CaO | 0.01 | 0.06 | 0.06 | 0.06 | 0.10 | 0.10 | 0.29 | 4.75 | 0.13 | 0.13 | 0.09 | 0.12 | |
Na2O | 0.01 | 0.02 | 0.07 | 0.02 | <0.01 | 0.01 | 0.42 | 0.16 | 0.06 | 0.02 | 0.06 | 0.24 | |
K2O | 0.01 | 0.20 | 1.84 | 0.17 | 0.03 | 0.09 | 3.11 | 2.54 | 1.51 | 0.13 | 1.35 | 3.59 | |
TiO2 | 0.01 | 0.05 | 0.37 | 0.02 | <0.01 | <0.01 | 0.57 | 0.64 | 0.36 | 0.02 | 0.31 | 0.75 | |
P2O5 | 0.01 | 0.02 | 0.05 | <0.01 | <0.01 | 0.02 | 0.13 | 0.16 | 0.07 | 0.02 | 0.03 | 0.10 | |
MnO | 0.01 | 0.01 | 0.02 | <0.01 | <0.01 | <0.01 | 0.11 | 0.47 | 0.03 | 0.02 | <0.01 | 0.03 | |
Cr2O3 | 0.002 | 0.002 | 0.022 | 0.002 | <0.002 | <0.002 | 0.015 | 0.013 | 0.012 | <0.002 | 0.009 | 0.015 | |
Total/C | 0.02 | 0.02 | 0.04 | 0.02 | 0.03 | 0.03 | 0.03 | 2.54 | 0.04 | 0.07 | 0.04 | 0.10 | |
Total/S | 0.02 | <0.02 | <0.02 | <0.02 | <0.02 | 0.46 | 0.07 | 0.13 | <0.02 | <0.02 | <0.02 | <0.02 | |
LOI | 0.1 | 1.20 | 2.60 | 1.30 | 0.60 | 1.47 | 2.90 | 10.30 | 2.50 | 1.35 | 2.20 | 3.6 | |
Total | 0.01 | 99.94 | 99.96 | 99.95 | 99.95 | 99.98 | 99.94 | 99.91 | 99.92 | 99.97 | 99.95 | 99.80 | |
Trace-REE (ppm) | |||||||||||||
Ba | 1 | 199.00 | 225.00 | 18.000 | 252.00 | 27.00 | 428.00 | 305.00 | 173.00 | 21.00 | 165.00 | 405.00 | |
Rb | 0.1 | 0.20 | 2.50 | 0.20 | <0.10 | 0.20 | 2.90 | 3.20 | 2.00 | 0.10 | 1.80 | 4.5 | |
Sr | 0.5 | 1.80 | 6.60 | 0.90 | 0.50 | 0.60 | 9.40 | 10.00 | 6.10 | 0.60 | 5.50 | 13.3 | |
Nb | 0.1 | 12.70 | 90.90 | 11.90 | 4.00 | 7.20 | 99.90 | 106.90 | 72.90 | 11.50 | 71.90 | 173.6 | |
Hf | 0.1 | 12.60 | 27.00 | 17.30 | 10.00 | 20.30 | 14.90 | 44.40 | 21.20 | 14.10 | 23.70 | 59.2 | |
Ta | 0.1 | 0.60 | 4.40 | 0.70 | <0.20 | <0.20 | 6.50 | 9.60 | 5.60 | 0.90 | 4.60 | 9.8 | |
V | 8 | 12.00 | 61.00 | <8.00 | <8.00 | 20.00 | 107.00 | 119.00 | 60.00 | 19.00 | 63.00 | 125 | |
Zr | 0.1 | 7.60 | 89.70 | 6.30 | 2.00 | 5.10 | 104.50 | 115.70 | 78.70 | 4.50 | 69.50 | 165.0 | |
Y | 0.1 | 1.70 | 23.00 | 5.90 | 0.20 | 10.40 | 14.50 | 24.90 | 19.10 | 1.80 | 14.70 | 25.4 | |
Cu | 0.1 | 15.80 | 11.30 | 9.70 | 6.80 | 20.10 | 62.30 | 75.90 | 16.20 | 8.30 | 9.50 | 18.1 | |
Pb | 0.1 | 171.30 | 57.9 | 93.50 | 65.30 | 60.90 | 18.40 | 44.50 | 16.60 | 28.90 | 20.00 | 17.9 | |
Zn | 1 | 65.00 | 86.000 | 32.00 | 18.00 | 25.00 | 62.00 | 88.00 | 54.00 | 24.00 | 21.00 | 86 | |
As | 0.5 | 15.20 | 36.40 | 10.10 | 9.70 | 615.20 | 37.00 | 37.60 | 48.60 | 318.10 | 151.10 | 41.8 | |
Sb | 0.1 | 5.80 | 12.00 | 4.70 | 1.50 | 17.20 | 21.20 | 3.10 | 25.00 | 258.00 | 76.30 | 15.7 | |
Ag | 0.1 | 2.40 | 0.20 | 0.70 | 1.00 | 2.90 | <0.10 | 0.30 | 0.20 | 0.50 | 0.50 | 0.3 | |
Au (ppb) | 0.5 | 266.20 | 80.80 | 64.70 | 434.20 | 7060.70 | 4.00 | 2.50 | 140.10 | 95.20 | 432.00 | 42.8 | |
Hg | 0.01 | 0.08 | 0.02 | 0.05 | 0.02 | 0.09 | 0.11 | 0.05 | 0.02 | 0.06 | 0.05 | 0.04 | |
La | 0.1 | 2.10 | 16.20 | 2.20 | 0.60 | 2.20 | 14.20 | 25.90 | 18.00 | 2.50 | 17.80 | 27.7 | |
Ce | 0.1 | 2.50 | 32.70 | 3.50 | 0.50 | 3.00 | 29.80 | 48.50 | 32.80 | 3,00 | 33.20 | 56.6 | |
Pr | 0.02 | 0.32 | 3.77 | 0.47 | 0.08 | 0.39 | 3.36 | 5.84 | 3.79 | 0.38 | 3.84 | 6.33 | |
Nd | 0.30 | 1.40 | 14.30 | 1.80 | 0.30 | 1.70 | 12.10 | 22.50 | 14.20 | 1.40 | 14.70 | 22.6 | |
Sm | 0.05 | 0.35 | 3.04 | 0.49 | 0.16 | 0.60 | 2.85 | 4.66 | 3.06 | 0.41 | 3.01 | 4.53 | |
Eu | 0.02 | 0.07 | 0.64 | 0.16 | 0.02 | 0.29 | 0.73 | 1.16 | 0.79 | 0.11 | 0.78 | 1.09 | |
Gd | 0.05 | 0.58 | 3.13 | 0.92 | 0.36 | 1.31 | 2.84 | 5.01 | 3.22 | 0.57 | 2.95 | 4.44 | |
Tb | 0.01 | 0.04 | 0.54 | 0.12 | 0.02 | 0.21 | 0.44 | 0.81 | 0.52 | 0.07 | 0.44 | 0.74 | |
Dy | 0.05 | 0.28 | 3.36 | 0.72 | 0.10 | 1.43 | 2.45 | 4.43 | 3.15 | 0.37 | 2.54 | 4.37 | |
Ho | 0.02 | 0.06 | 0.75 | 0.19 | <0.02 | 0.30 | 0.56 | 0.90 | 0.68 | 0.07 | 0.47 | 0.90 | |
Er | 0.03 | 0.21 | 2.13 | 0.52 | 0.03 | 0.88 | 1.77 | 2.76 | 1.97 | 0.20 | 1.47 | 2.58 | |
Tm | 0.01 | 0.03 | 0.33 | 0.08 | 0.01 | 0.12 | 0.25 | 0.41 | 0.28 | 0.04 | 0.21 | 0.39 | |
Yb | 0.05 | 0.17 | 1.98 | 0.54 | 0.10 | 0.81 | 1.87 | 2.74 | 1.80 | 0.19 | 1.49 | 2.71 | |
Lu | 0.01 | 0.04 | 0.28 | 0.09 | 0.02 | 0.12 | 0.30 | 0.40 | 0.27 | 0.03 | 0.24 | 0.40 | |
Quartz–Feldspar-Porphyry | |||||||||||||
Major Oxides (wt.%) | DL | KED6-3 | KED6-4 | KED6-5 | KED6-6 | KED6-7 | KED6-8 | KED6-10 | KED17-1 | KED17-2- | KED17-6 | KED17-7 | KED135-3 |
SiO2 | 0.01 | 67.88 | 70.41 | 69.97 | 67.10 | 71.32 | 6618 | 73.71 | 64.79 | 75.49 | 89.52 | 83.08 | 67.69 |
Al2O3 | 0.01 | 14.99 | 13.77 | 13.45 | 16.39 | 13.62 | 14.04 | 11.48 | 16.00 | 11.92 | 3.34 | 7.37 | 16.61 |
Fe2O3 | 0.04 | 3.05 | 3.61 | 2.52 | 2.59 | 2.79 | 3.48 | 3.46 | 4.57 | 2.10 | 3.35 | 2.35 | 2.31 |
MgO | 0.01 | 1.51 | 1.30 | 0.89 | 0.94 | 0.90 | 1.15 | 0.83 | 1.03 | 0.38 | 0.10 | 0.47 | 0.56 |
CaO | 0.01 | 0.30 | 0.33 | 0.26 | 0.31 | 0.34 | 0.28 | 0.22 | 0.35 | 0.13 | 0.07 | 0.15 | 0.17 |
Na2O | 0.01 | 2.82 | 1.30 | 0.31 | 0.71 | 1.16 | 0.34 | 0.69 | 0.25 | 0.19 | 0.09 | 0.08 | 0.25 |
K2O | 0.01 | 7.00 | 6.61 | 8.90 | 8.27 | 6.68 | 9.21 | 6.79 | 9.03 | 6.89 | 2.06 | 4.34 | 8.13 |
TiO2 | 0.01 | 0.36 | 0.40 | 0.39 | 0.44 | 0.40 | 0.42 | 0.35 | 0.45 | 0.34 | 0.08 | 0.19 | 0.48 |
P2O5 | 0.01 | 0.14 | 0.14 | 0.13 | 0.15 | 0.13 | 0.14 | 0.12 | 0.13 | 0.03 | 0.03 | 0.05 | 0.05 |
MnO | 0.01 | 0.07 | 0.07 | 0.05 | 0.04 | 0.05 | 0.06 | 0.05 | 0.03 | 0.01 | <0.01 | 0.03 | 0.02 |
Cr2O3 | 0.002 | 0.004 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 |
Total/C | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 | 0.03 | 0.06 | <0.02 | 0.04 | 0.04 | 0.04 | 0.03 | <0.02 |
Total/S | 0.02 | 0.45 | 0.05 | 0.62 | 0.38 | 0.11 | 1.22 | 1.22 | <0.02 | <0.02 | 0.54 | <0.02 | <0.02 |
LOI | 0.1 | 1.31 | 1.90 | 2.35 | 2.51 | 2.50 | 3.30 | 0.95 | 3.20 | 2.40 | 0.78 | 1.80 | 3.60 |
Total | 0.01 | 99.88 | 99.89 | 99.84 | 99.83 | 99.97 | 99.82 | 99.87 | 99.83 | 99.88 | 99.96 | 99.91 | 99.87 |
Trace-REE (ppm) | |||||||||||||
Ba | 1 | 230.00 | 670.00 | 674.00 | 791.00 | 668.00 | 647.00 | 583.00 | 836.00 | 575.00 | 190.00 | 142.00 | 866.00 |
Rb | 0.1 | 3.50 | 3.30 | 3.10 | 3.30 | 3.00 | 3.00 | 2.60 | 3.20 | 2.80 | 0.60 | 1.40 | 2.90 |
Sr | 0.5 | 3.70 | 6.40 | 6.30 | 7.10 | 6.70 | 6.30 | 5.50 | 7.10 | 5.70 | 2.00 | 3.00 | 6.70 |
Nb | 0.1 | 365.00 | 315.80 | 426.70 | 404.40 | 319.70 | 442.20 | 307.50 | 420.60 | 325.50 | 97.20 | 217.00 | 371.80 |
Hf | 0.1 | 65.60 | 159.00 | 124.70 | 114.30 | 171.80 | 143.40 | 72.20 | 78.60 | 90.30 | 30.80 | 36.90 | 96.60 |
Ta | 0.1 | 3.90 | 9.10 | 10.00 | 11.10 | 9.70 | 9.60 | 9.10 | 10.80 | 8.10 | 2.40 | 4.30 | 10.80 |
V | 8 | 50.00 | 76.00 | 74.00 | 74.00 | 68.00 | 74.00 | 59.00 | 83.00 | 51.00 | 23.00 | 43.00 | 75.00 |
Zr | 0.1 | 134.90 | 121.30 | 105.60 | 113.20 | 108.30 | 109.50 | 99.00 | 113.60 | 93.00 | 19.60 | 53.40 | 109.00 |
Y | 0.1 | 26.00 | 10.50 | 11.60 | 13.90 | 14.50 | 13.60 | 12.00 | 12.30 | 10.30 | 4.10 | 8.60 | 12.20 |
Cu | 0.1 | 12.80 | 10.40 | 12.40 | 16.10 | 26.60 | 34.60 | 9.30 | 8.30 | 7.10 | 22.50 | 20.80 | 6.60 |
Pb | 0.1 | 60.90 | 35.90 | 53.40 | 29.40 | 13.50 | 102.10 | 32.40 | 31.40 | 34.70 | 69.60 | 46.80 | 7.20 |
Zn | 1 | 93.00 | 49.00 | 34.00 | 31.00 | 32.00 | 54.00 | 40.00 | 97.00 | 33.00 | 26.00 | 62.00 | 22.00 |
As | 0.5 | 413.70 | 5.50 | 340.90 | 458.20 | 175.50 | 1376.50 | 213.60 | 154.20 | 85.60 | 356.00 | 68.40 | 43.60 |
Sb | 0.1 | 7.30 | 1.00 | 10.60 | 8.20 | 3.90 | 28.80 | 3.00 | 23.00 | 9.80 | 19.40 | 14.70 | 6.60 |
Ag | 0.1 | 0.20 | 0.10 | 0.20 | 0.40 | 0.20 | 0.30 | 0.70 | 0.20 | 0.20 | 2.60 | 0.30 | 0.10 |
Au (ppb) | 0.5 | 26.10 | 39.60 | 25.70 | 2.30 | 2.40 | 59.20 | 436.00 | 71.10 | 171.50 | 1205.10 | 461.20 | 136.20 |
Hg | 0.01 | 0.11 | 0.03 | 0.29 | 0.24 | 0.11 | 0.66 | 0.10 | 0.01 | 0.02 | 0.16 | 0.03 | <0.01 |
La | 0.1 | 13.50 | 20.60 | 22.30 | 26.00 | 20.50 | 25.00 | 22.30 | 21.20 | 20.70 | 7.50 | 11.20 | 23.60 |
Ce | 0.1 | 26.30 | 37.10 | 39.70 | 47.80 | 37.10 | 45.30 | 39.10 | 38.90 | 34.10 | 12.60 | 20.00 | 40.20 |
Pr | 0.02 | 3.40 | 4.02 | 4.28 | 5.08 | 3.85 | 5.06 | 4.32 | 4.57 | 3.78 | 1.43 | 2.18 | 4.49 |
Nd | 0.30 | 11.20 | 14.80 | 14.70 | 18.30 | 13.10 | 18.20 | 16.00 | 16.50 | 13.40 | 5.70 | 8.00 | 16.30 |
Sm | 0.05 | 2.58 | 2.95 | 2.93 | 3.42 | 2.87 | 3.65 | 2.95 | 3.13 | 2.70 | 1.09 | 1.60 | 3.44 |
Eu | 0.02 | 0.75 | 0.80 | 0.80 | 1.09 | 0.79 | 0.96 | 0.82 | 0.92 | 0.77 | 0.22 | 0.44 | 0.85 |
Gd | 0.05 | 2.97 | 2.84 | 2.68 | 3.40 | 2.74 | 3.30 | 2.93 | 2.98 | 2.59 | 1.12 | 1.75 | 2.98 |
Tb | 0.01 | 0.55 | 0.39 | 0.40 | 0.47 | 0.42 | 0.47 | 0.40 | 0.42 | 0.37 | 0.13 | 0.25 | 0.41 |
Dy | 0.05 | 3.55 | 1.99 | 2.01 | 2.52 | 2.39 | 2.53 | 2.19 | 2.43 | 1.98 | 0.78 | 1.33 | 2.18 |
Ho | 0.02 | 0.82 | 0.37 | 0.43 | 0.49 | 0.55 | 0.49 | 0.43 | 0.52 | 0.38 | 0.13 | 0.31 | 0.45 |
Er | 0.03 | 2.32 | 1.12 | 1.17 | 1.49 | 1.56 | 1.43 | 1.24 | 1.43 | 1.19 | 0.43 | 0.89 | 1.24 |
Tm | 0.01 | 0.37 | 0.19 | 0.20 | 0.27 | 0.25 | 0.22 | 0.19 | 0.23 | 0.18 | 0.06 | 0.15 | 0.18 |
Yb | 0.05 | 2.30 | 1.30 | 1.28 | 1.59 | 1.59 | 1.56 | 1.40 | 1.63 | 1.21 | 0.44 | 0.95 | 1.48 |
Lu | 0.01 | 0.37 | 0.21 | 0.20 | 0.28 | 0.24 | 0.25 | 0.23 | 0.27 | 0.19 | 0.09 | 0.15 | 0.23 |
Quartz–Mica Schist | |||||||||||||
Major Oxides (wt.%) | DL | KED2-5 | KED2-11 | KED6-11 | KED44-2 | KED44-3 | KED44-12 | KED70-1 | KED70-2 | ||||
SiO2 | 0.01 | 90.65 | 95.19 | 80.37 | 87.95 | 78.10 | 52.92 | 95.78 | 71.54 | ||||
Al2O3 | 0.01 | 2.79 | 1.88 | 9.22 | 4.66 | 8.78 | 14.85 | 1.19 | 9.37 | ||||
Fe2O3 | 0.04 | 2.88 | 1.15 | 2.91 | 2.67 | 4.66 | 14.06 | 0.65 | 7.92 | ||||
MgO | 0.01 | 0.21 | 0.16 | 0.49 | 0.73 | 2.00 | 4.78 | 0.09 | 3.08 | ||||
CaO | 0.01 | 0.004 | 0.06 | 0.09 | 0.13 | 0.15 | 0.44 | 0.07 | 0.17 | ||||
Na2O | 0.01 | 0.03 | 0.03 | 0.09 | 0.03 | 0.04 | 0.06 | 0.01 | 0.03 | ||||
K2O | 0.01 | 0.99 | 0.37 | 3.61 | 1.60 | 2.44 | 3.56 | 0.11 | 2.77 | ||||
TiO2 | 0.01 | 0.13 | 0.07 | 0.45 | 0.22 | 0.50 | 1.63 | 0.01 | 0.68 | ||||
P2O5 | 0.01 | 0.07 | 0.02 | 0.06 | 0.05 | 0.07 | 0.15 | 0.07 | 0.09 | ||||
MnO | 0.01 | 0.02 | 0.02 | <0.01 | 0.01 | 0.03 | 0.07 | <0.01 | 0.04 | ||||
Cr2O3 | 0.002 | 0.008 | 0.004 | 0.010 | 0.004 | 0.035 | 0.036 | <0.002 | 0.030 | ||||
Total/C | 0.02 | 0.08 | 0.03 | 0.04 | <0.02 | 0.03 | 0.02 | 0.79 | 0.07 | ||||
Total/S | 0.02 | 0.06 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | ||||
LOI | 0.1 | 2.10 | 1.00 | 2.60 | 1.90 | 3.10 | 7.20 | 2.00 | 4.10 | ||||
Total | 0.01 | 99.98 | 99.95 | 99.90 | 99.95 | 99.91 | 99.77 | 99.98 | 99.82 | ||||
Trace-REE (ppm) | |||||||||||||
Ba | 1 | 90.00 | 92.00 | 281.00 | 120.00 | 279.00 | 95.00 | 36.00 | 208.00 | ||||
Rb | 0.1 | 0.80 | 0.60 | 3.30 | 1.30 | 2.80 | 2.80 | 0.20 | 2.30 | ||||
Sr | 0.5 | 2.50 | 1.70 | 8.60 | 4.10 | 8.90 | 1.80 | 0.40 | 11.00 | ||||
Nb | 0.1 | 49.40 | 21.80 | 191.10 | 67.80 | 113.00 | 177.80 | 10.20 | 132.40 | ||||
Hf | 0.1 | 16.20 | 19.00 | 58.00 | 24.50 | 18.40 | 75.20 | 149.60 | 47.60 | ||||
Ta | 0.1 | 2.10 | 1.00 | 6.70 | 4.00 | 6.60 | <0.20 | 0.80 | 5.90 | ||||
V | 8 | 25.00 | 18.00 | 71.00 | 41.00 | 75.00 | 319.00 | 10.00 | 103.00 | ||||
Zr | 0.1 | 33.90 | 24.10 | 129.70 | 47.30 | 105.00 | 100.50 | 6.0 | 94.60 | ||||
Y | 0.1 | 5.30 | 2.70 | 14.60 | 13.10 | 20.50 | 30.10 | 4.000 | 17.50 | ||||
Cu | 0.1 | 33.50 | 15.90 | 13.90 | 16.70 | 22.30 | 40.60 | 54.60 | 33.70 | ||||
Pb | 0.1 | 128.10 | 95.10 | 27.90 | 24.80 | 13.70 | 21.80 | 26.00 | 28.00 | ||||
Zn | 1 | 49.00 | 54.00 | 21.00 | 38.00 | 88.00 | 128.00 | 16.00 | 101.00 | ||||
As | 0.5 | 169.80 | 16.10 | 99.50 | 105.60 | 118.60 | 326.20 | 10.90 | 422.40 | ||||
Sb | 0.1 | 7.80 | 3.60 | 18.90 | 25.80 | 17.00 | 40.70 | 8.90 | 58.90 | ||||
Ag | 0.1 | 0.70 | 0.70 | 0.30 | 0.20 | <0.10 | 0.20 | 10.40 | 0.40 | ||||
Au (ppb) | 0.5 | 376.40 | 376.70 | 552.1 | 79.4 | 18.70 | 128.00 | 903.10 | 158.10 | ||||
Hg | 0.01 | 0.06 | 0.04 | 0.04 | 0.01 | <0.01 | 0.020 | 2.87 | 0.02 | ||||
La | 0.1 | 7.60 | 2.40 | 19.5 | 19.6 | 23.30 | 3.70 | 5.20 | 22.90 | ||||
Ce | 0.1 | 11.30 | 3.40 | 37.6 | 33.8 | 45.40 | 6.50 | 6.70 | 43.80 | ||||
Pr | 0.02 | 1.19 | 0.54 | 4.51 | 4.58 | 5.54 | 1.23 | 0.84 | 5.02 | ||||
Nd | 0.30 | 4.40 | 2.00 | 17.5 | 17.0 | 21.80 | 6.30 | 4.00 | 19.90 | ||||
Sm | 0.05 | 0.99 | 0.55 | 3.57 | 3.37 | 4.29 | 2.19 | 1.10 | 4.03 | ||||
Eu | 0.02 | 0.20 | 0.10 | 0.75 | 0.74 | 0.94 | 0.74 | 0.24 | 0.85 | ||||
Gd | 0.05 | 1.04 | 0.72 | 3.13 | 3.08 | 4.19 | 3.87 | 1.12 | 3.85 | ||||
Tb | 0.01 | 0.15 | 0.08 | 0.47 | 0.41 | 0.62 | 0.76 | 0.12 | 0.57 | ||||
Dy | 0.05 | 0.88 | 0.48 | 2.47 | 2.21 | 3.30 | 5.10 | 0.64 | 3.07 | ||||
Ho | 0.02 | 0.20 | 0.09 | 0.56 | 0.44 | 0.69 | 1.17 | 0.13 | 0.64 | ||||
Er | 0.03 | 0.58 | 0.25 | 1.58 | 1.28 | 2.01 | 3.31 | 0.35 | 1.84 | ||||
Tm | 0.01 | 0.10 | 0.05 | 0.24 | 0.20 | 0.30 | 0.50 | 0.05 | 0.27 | ||||
Yb | 0.05 | 0.67 | 0.29 | 1.74 | 1.30 | 1.92 | 3.27 | 0.31 | 1.77 | ||||
Lu | 0.01 | 0.11 | 0.05 | 0.25 | 0.21 | 0.32 | 0.50 | 0.05 | 0.27 |
References
- Berger, B.R.; Bonham, H.F., Jr. Epithermal gold-silver deposits in the western United States: Time-space products of evolving plutonic, volcanic and tectonic environments. J. Geochem. Explor. 1990, 36, 103–142. [Google Scholar] [CrossRef]
- Yılmaz, H.; Oyman, T.; Arehart, G.A.; Çolakoğlu, R.; Billor, Z. Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey. Ore Geol. Rev. 2007, 32, 81–124. [Google Scholar] [CrossRef]
- Yılmaz, H.; Oyman, T.; Sönmez, F.N.; Arehart, G.B.; Billor, Z. Intermediate sulfidation epithermal gold-base metal deposits in Tertiary subaerial volcanic rocks Şahinli/Tespih Dere (Lapseki/Western Turkey). Ore Geol. Rev. 2010, 37, 236–258. [Google Scholar] [CrossRef]
- Ünal İmer, E.; Güleç, N.; Kuşcu, İ.; Fallick, A.E. Genetic investigation and comparison of Kartaldag and Madendag epithermal gold deposits in Çanakkale, NW Turkey. Ore Geol. Rev. 2013, 53, 204–222. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, X.; Deng, H.; Li, B.; Zhang, S.; Lai, J.; Bayless, R.C.; Pan, M.; Li, L.; Shang, Q. Hydrothermal processes at the Axi epithermal Au deposit, Western Tianshan: Insights from geochemical effects of alteration, mineralization and trace elements in pyrite. Ore Geol. Rev. 2018, 102, 368–385. [Google Scholar] [CrossRef]
- Najaran, M.; Mehrabi, B.; Siani, M.G. Mineralogy, hydrothermal alteration, fluid inclusion, and O–H stable isotopes of the Siah Jangal-Sar Kahno epithermal gold deposit, SE Iran. Ore Geol. Rev. 2020, 125, 103689. [Google Scholar] [CrossRef]
- Novruzov, N.; Valiyev, A.; Bayramov, A.; Mammadov, S.; Ibrahimov, J.; Ebdulrehimli, A. Mineral composition and paragenesis of altered and mineralized zones in the Gadir low sulfidation epithermal deposit (Lesser Caucasus, Azerbaijan). Iran. J. Earth Sci. 2019, 11, 14–29. [Google Scholar]
- Siani, M.G.; Lentz, D.R. Lithogeochemistry of various hydrothermal alteration types associated with precious and base metal epithermal deposits in the Tarom-Hashtjin metallogenic province, NW Iran: Implications for regional exploration. J. Geochem. Explor. 2022, 232, 106903. [Google Scholar] [CrossRef]
- Simpson, M.P.; Gazley, M.F.; Stuart, A.G.; Pearce, M.A.; Birchall, R.; Chappell, D.; Christie, A.B.; Stevens, M.R. Hydrothermal alteration at the Karangahake epithermal Au-Ag deposit, Hauraki Goldfield, New Zealand. Econ. Geol. 2019, 114, 243–273. [Google Scholar] [CrossRef]
- Taylor, B.E. Epithermal gold deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposits-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Special Publication N. 5; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 113–139. [Google Scholar]
- White, N.C.; Hedenquist, J.W. Epithermal gold deposits: Styles, characteristics and exploration. SEG Newsl. 1995, 23, 9–13. [Google Scholar] [CrossRef]
- Evans, A.M. Ore Geology and Industrial Minerals: An Introduction; Blackwell Publ.: Oxford, UK, 1993; p. 389. [Google Scholar]
- Hedenquist, J.W.; Arribas, R.A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Soc. Econ. Geol. Rev. 2000, 13, 245–277. [Google Scholar]
- Duba, D.; Williams-Jones, A.E. The application of illite crystallinity, organic-matter reflectance, and isotopic techniques to mineral exploration-A case-study in southwestern Gaspé, Quebec. Econ. Geol. 1983, 78, 1350–1363. [Google Scholar] [CrossRef]
- Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization. Econ. Geol. 2006, 101, 729–752. [Google Scholar] [CrossRef]
- Meyer, C.; Hemley, J.J. Wall Rock Alteration in Geochemistry of Ore Deposits; Barnes, H.L., Ed.; Holt, Rinehart and Winston: New York, NY, USA, 1967; pp. 166–235. [Google Scholar]
- Yoneda, T.; Mokko, H.; Matsumoto, A.; Sato, T. Comparison of smectite–corrensite–chlorite series minerals in the Todoroki and Hishikari Au–Ag deposits: Applicability of mineralogical properties as exploration index for epithermal systems. Nat. Resour. Res. 2021, 30, 2889–2908. [Google Scholar] [CrossRef]
- Guo, N.; Guo, W.; Shi, W.; Huang, Y.; Guo, Y.; Lian, D. Characterization of illite clays associated with the Sinongduo low sulfidation epithermal deposit, Central Tibet using field SWIR spectrometry. Ore Geol. Rev. 2020, 120, 103228. [Google Scholar] [CrossRef]
- Rose, A.W.; Burt, D.M. Hydrothermal alteration. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; John Wiley & Sons: New York, NY, USA, 1979; pp. 173–235. [Google Scholar]
- Chen, M.T.; Wei, J.H.; Li, Y.J.; Shi, W.J.; Liu, N.Z. Epithermal gold mineralization in Cretaceous volcanic belt, SE China: Insight from the Shangshangang deposit. Ore Geol. Rev. 2020, 118, 103355. [Google Scholar] [CrossRef]
- Prihatmoko, S.; Idrus, A. Low sulfidation epithermal gold deposits in Java, Indonesia: Characteristic and linkage to the volcano-tectonic setting. Ore Geol. Rev. 2020, 121, 103490. [Google Scholar] [CrossRef]
- Kıray, D. Determination of the Origin of Kestanelik Au-Ag Mineralization in Şahinli (Lapseki-Çanakkale, Western Turkey) Region by Geological, Mineralogical and Geochemical Investigations. Ph.D. Thesis, Süleyman Demirel University, Isparta, Turkey, 2021; p. 217. [Google Scholar]
- Bakhsh, R.A.; Ahmed, A.H. The Umm Matierah gold prospect: Mineralogical and geochemical characteristics of a potential low-sulfidation epithermal gold deposits, southeastern Arabian Shield, Saudi Arabia. J. Asian Earth Sci. X 2023, 9, 100153. [Google Scholar] [CrossRef]
- Mikaeili, K.; Hosseinzadeh, M.R.; Moayyed, M.; Maghfouri, S. The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag) deposit, Iran: An example of intermediate sulfidation epithermal type mineralization. Minerals 2018, 8, 148. [Google Scholar] [CrossRef]
- Imer, A.; Richards, J.P.; Muehlenbachs, K. Hydrothermal evolution of the Çöpler porphyry-epithermal Au deposit, Erzincan Province, central eastern Turkey. Econ. Geol. 2016, 111, 1619–1658. [Google Scholar] [CrossRef]
- Kıray, D.; Cengiz, O. Petrographical and geochemical characteristics of the Kestanelik granitoid (Çanakkale, Biga Peninsula). Geol. Bull. Turk. 2023, 66, 127–148. [Google Scholar]
- Gürler, Z. Karadere Low Sulfidation Gold Deposit (İvrindi, Balıkesir): An example for Detachment Fault-Related Epithermal Gold Deposits in Western Turkey. Master’s Thesis, Balıkesir University, Balıkesir, Turkey, 2019; p. 100. [Google Scholar]
- Dill, H.G.; Dohrmann, R.; Kaufhold, S.; Çiçek, G. Mineralogical, chemical and micromorphological studies of the argillic alteration zone of the epithermal gold deposit Ovacik, Western Turkey: Tools for applied and genetic economic geology. J. Geochem. Explor. 2015, 148, 105–127. [Google Scholar] [CrossRef]
- Carrillo-Rosúa, J.; Morales-Ruano, S.; Esteban-Arispe, I.; Hach-Ali, P.F. Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment. Insights from the Palai-Islica Au-Cu deposit (Almeria, SE Spain). Clays Clay Miner. 2009, 57, 1–24. [Google Scholar] [CrossRef]
- Cravero, F.; Domınguez, E.; Iglesias, C. Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia Argentina. Appl. Clay Sci. 2001, 18, 157–172. [Google Scholar] [CrossRef]
- Kadir, S.; Erkoyun, H. Genesis of the hydrothermal Karaçayır kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Uşak-Güre Basin, western Turkey. Turk. J. Earth Sci. 2013, 22, 444–468. [Google Scholar] [CrossRef]
- Bozkaya, Ö.; Bozkaya, G.; Uysal, İ.T.; Banks, D.A. Illite occurrences related to volcanic-hosted hydrothermal mineralization in the Biga Peninsula, NW Turkey: Implications for the age and origin of fluids. Ore Geol. Rev. 2016, 76, 35–51. [Google Scholar] [CrossRef]
- Bozkaya, Ö.; Bozkaya, G.; Hanilçi, N.; Güven, A.S.; Banks, D.A.; Uysal, İ.T. Mineralogical evidences on argillic alteration in the Çöpler porphyry-epithermal gold deposit (Erzincan, East-Central Anatolia). Geol. Bull. Turk. 2018, 31, 335–358. [Google Scholar]
- Schalamuck, I.B.; Zubia, M.; Genini, A.; Fernandez, R.R. Jurassic epithermal Au–Ag deposits of Patagonia, Argentina. Ore Geol. Rev. 1997, 305, 57–71. [Google Scholar] [CrossRef]
- Gresens, R.L. Composition volume relationships of metasomatism. Chem. Geol. 1967, 2, 47–65. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Sawaguchi, T.; Iwaya, S.; Horiuchi, M. Delineation of prospecting targets for Kuroko deposits based on models of volcanism of underlying dacite and alteration haloes. Min. Geol. 1976, 26, 105–117. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Myers, R.E.; MacLean, W.H. The geology of the New Insco copper deposit, Noranda District, Quebec. Can. J. Earth Sci. 1983, 20, 1291–1304. [Google Scholar] [CrossRef]
- MacLean, W.H.; Hoy, L.D. Geochemistry of hydrothermally altered rocks at the Horne mine, Noranda, Quebec. Econ. Geol. 1991, 86, 506–528. [Google Scholar] [CrossRef]
- Davies, J.F.; Whitehead, R.E. Molar ratios in the study of unaltered and hydrothermally altered greywackes and shales. Chem. Geol. 1994, 111, 85–100. [Google Scholar] [CrossRef]
- Davies, J.F.; Whitehead, R.E. Alkali-alumina and MgO-alumina molar ratios of altered and unaltered rhyolites. Explor. Min. Geol. 2006, 15, 75–88. [Google Scholar] [CrossRef]
- Davies, J.F.; Whitehead, R.E. Alkali/alumina molar ratio trends in altered granitoid rocks hosting porphyry and related deposits. Explor. Min. Geol. 2010, 19, 13–22. [Google Scholar] [CrossRef]
- Leitch, C.H.B.; Lentz, D.R. The gresens approach to mass balance constraints of alteration systems. In Alteration and Alteration Processes Associated with Ore-Forming Systems; Geological Association of Canada: St. John’s, NL, Canada, 1994; Volume 11, pp. 161–192. [Google Scholar]
- Lentz, D.R.; Gregoire, C. Petrology and mass-balance constraints on major-, trace-, and rare-earth-element mobility in porphyry-greisen alteration associated with the epizonal True Hill granite, southwestern New Brunswick, Canada. J. Geochem. Explor. 1995, 52, 303–331. [Google Scholar] [CrossRef]
- Madeisky, H.E. Quantitative Analysis of Hydrothermal Alteration: Applications in Lithogeochemical Exploration. Doctoral Dissertation, University of London, London, UK, 1996. [Google Scholar]
- Aiuppa, A.; Allard, P.; D’Alessandro, W.; Michel, A.; Parello, F.; Treuil, M.; Valenza, M. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna Volcano (Sicily). Geochim. Cosmochim. Acta 2000, 64, 1827–1841. [Google Scholar] [CrossRef]
- Large, R.R.; Gemmell, J.B.; Paulick, H.; Huston, D.L. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ. Geol. 2001, 96, 957–971. [Google Scholar] [CrossRef]
- Kirschbaum, A.; Martinez, E.; Pettinari, G.; Herrero, S. Weathering profiles in granites, Sierra Notre (Cordoba, Argentina). J. South Am. Earth. Sci. 2005, 19, 479–493. [Google Scholar] [CrossRef]
- Sipahi, F.; Sadıklar, M.B. The alteration mineralogy and mass change of the Zigana (Gümüşhane) volcanics of NE Turkey. Geol. Bull. Turk. 2010, 53, 97–128. [Google Scholar]
- Akaryalı, E.; Tüysüz, N. The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (Eastern Pontides, NE Turkey). Geosci. Front. 2013, 4, 409–421. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Mass transfer in hydrothermal alteration systems-a conceptual approach. Geochim. Cosmochim. Acta 1984, 48, 2693–2711. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria: Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Stanley, C.R. Graphical investigation of lithogeochemical variations using molar element ratio diagrams: Theoretical foundation. In Lithogeochemical Exploration for Metasomatic Zones Associated with Hydrothermal Mineral Deposits Using Molar Element Ratio Analysis; Stanley, C.R., Ed.; Short Course Notes; Mineral Deposits Research Unit, Lithogeochemical Exploration Research Project, University of British Columbia: Vancouver, BC, Canada, 1998; pp. 63–103. [Google Scholar]
- Stanley, C.R. Molar element ratio analysis of lithogeochemical data: A toolbox for use in mineral exploration and mining. Geochem. Explor. Environ. Anal. 2020, 20, 233–256. [Google Scholar] [CrossRef]
- Okay, A.İ.; Tüysüz, O. Tethyan sutures of northern Turkey. In Mediterranean Basins: Tertiary Extension within the Alpine Orogen; Durand, B., Jolivet, L., Horvath, F., Seranne, M., Eds.; Special Publication 156; Geological Society: London, UK, 1999; pp. 475–515. [Google Scholar]
- MTA. General and Economic Geology of the Biga Peninsula; Special Publication Series 28; MTA: Ankara, Turkey, 2012; p. 326. (In Turkish) [Google Scholar]
- Şengör, A.M.C.; Yılmaz, Y. Tethyan evolution of Turkey: Aplate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Richards, J.P. Tectonic, magmatic, and metallogenic evolution of the Tethyan Orogen: From subduction to collision. Ore Geol. Rev. 2015, 70, 323–345. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Altunkaynak, Ş.; Genç, Ş.C. Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia. Lithos 2008, 102, 316–340. [Google Scholar] [CrossRef]
- Ketin, İ. Anadolu’nun tektonik birlikleri. Bull. Miner. Res. Explor. 1966, 66, 20–34. [Google Scholar]
- Yılmaz, Y. Comparision of young volcanic associations of western and eastern Anatolia under compressional regime: A review. J. Volcanol. Geotherm. Res. 1990, 44, 69–87. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Lom, N.; Sunal, G.; Zabcı, C.; Sancar, T. The Phanerozoic palaeotectonics of Turkey. Part I: An inventory. Mediterr. Geosci. Rev. 2019, 1, 91–161. [Google Scholar] [CrossRef]
- Okay, A.İ.; Siyako, M.; Bürkan, K.A. Geology and tectonic evolution of the Biga Peninsula. Turk. Assoc. Pet. Geol Bull 1990, 2, 83–121, (In Turkish with English Abstract). [Google Scholar]
- Göncüoğlu, M.C. Introduction to the geology of Turkey: Geodynamic evolution of the pre-Alpine and Alpine terranes. In General Directorate of Mineral Research and Exploration Monographs Series; MTA: Ankara, Turkey, 2010; p. 66. ISBN 978-605-4075-74. [Google Scholar]
- Topuz, G.; Altherr, R.; Schwartz, W.H.; Dokuz, A.; Meyer, H.P. Variscan amphibolites-facies rocks from the Kurtoğlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey). Int. J. Earth Sci. 2007, 96, 861–873. [Google Scholar] [CrossRef]
- Okay, A.I.; Satir, M.; Siebel, W. Pre-Alpide Palaeozoic and Mesozoic orogenic events in the eastern Mediterranean region. In European Lithosphere Dynamics. Geological Society; Memoirs: London, UK, 2006; Volume 32, pp. 389–405. [Google Scholar]
- Delaloye, M.; Bingöl, E. Granitoids from western and nortwestern Anatolia: Geochemistry and modeling of geodynamic evolution. Int. Geol. Rev. 2000, 42, 241–268. [Google Scholar] [CrossRef]
- Okay, A.İ.; Satır, M. Coeval plutonism and metamorphism in a Latest Oligocene metamorphic core complex in northwest Turkey. Geol. Mag. 2000, 137, 495–516. [Google Scholar] [CrossRef]
- Okay, A.İ.; Monod, O.; Monie, P. Triassic blueschists and eclogites from northwest Turkey: Vestiges of the Paleo-Tethyan subduction. Lithos 2002, 64, 155–178. [Google Scholar] [CrossRef]
- Okay, A.İ.; Göncüoğlu, C. The Karakaya complex: A review of data and concepts. Turk. J. Earth Sci. 2004, 13, 77–95. [Google Scholar]
- Chesser Resources. Annual Report; Chesser Resources Limited: Çanakkale, Turkey, 2012. [Google Scholar]
- Tümad Mining. Annual Report, 10; Tümad Mining Industry and Trade Inc.: Çanakkale, Turkey, 2020. [Google Scholar]
- Okay, A.İ.; Satır, M. Upper Cretaceous eclogite-facies metamorphic rocks from the Biga Peninsula, northwest Turkey. Turk. J. Earth Sci. 2000, 9, 47–56. [Google Scholar]
- Dönmez, M.; Akçay, A.E.; Genç, Ş.C.; Acar, Ş. Middle-upper Eocene volcanism and marine ignimbrites in the Biga Peninsula. Bull. Miner. Res. Explor. 2005, 131, 49–61. [Google Scholar]
- Erenoğlu, O. Chrono-Stratigraphic Position of Eocene, Oligo-Miocene Volcanics around Dededag (Beyçayır-Çanakkale) and Their Importance for Regional Volcanism in the Biga Peninsula. Ph.D. Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Turkey, 2014; p. 217. [Google Scholar]
- Hedenquist, J.W. Observations on the Kestanelik and Karaayi Prospects, Biga Peninsula, Turkey. In Annual Report; Chesser Resources Limited: Çanakkale, Turkey, 2012. [Google Scholar]
- Gülyüz, N.; Shipton, Z.K.; Kuşcu, İ.; Lord, R.A.; Kaymakcı, N.; Gülyüz, E.; Gladwell, D.R. Repeated reactivation of clogged permeable pathways in epithermal gold deposits: Kestanelik epithermal vein system, NW Turkey. J. Geol. Soc. 2018, 175, 509–524. [Google Scholar] [CrossRef]
- Gülyüz, N.; Shıpton, Z.K.; Kuşcu, İ. Multiphase deformation, fluid flow and mineralization in epithermal systems: Inferences from structures, vein textures and breccias of the Kestanelik epithermal Au-Ag deposit, NW Turkey. Turk. J. Earth Sci. 2023, 32, 75–95. [Google Scholar] [CrossRef]
- Brown, G.; Brindley, G.W. X-ray diffraction procedures for clay mineral identification. In Crystal Structure of Clay Minerals and Their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980. [Google Scholar]
- Celenk, O.; Flores, R.A.; dela Cruz, A.P., Jr. Geochemical characterization of epithermal alteration in Southeast Negros, Philippines. J. Geochem. Explor. 1987, 27, 189–211. [Google Scholar] [CrossRef]
- Berger, B.R. Geologic-geochemical features of hot-spring precious-metal deposits. In Geologic Characteristics of Sediment- and Volcanic-Hosted Disseminated Gold Deposits-Search for an Occurrence Model; Tooker, E.W., Ed.; U.S. Geological Survey Bulletin 1646; U.S. Government Printing Office: Washington, DC, USA, 1985; pp. 47–53. [Google Scholar]
- Hedenquist, J.W.; Reid, F. Epithermal Gold. Earth Resources Foundation; University of Sydney: Sydney, Australia, 1985; 31p. [Google Scholar]
- Turner, S. Fluid inclusion, alteration and ore mineral studies of an epithermal vein system: Mount Kasi, Vanua Levu, Fiji. In Proceedings of the Symposium 5: Volcanism, Hydrothermal Systems and Related Mineralization, International Volcanological Congress, Hamilton, New Zealand, 1–9 February 1986; Volume 5, pp. 87–94. [Google Scholar]
- Sverjensky, D.A. Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 1984, 67, 70–78. [Google Scholar] [CrossRef]
- Yongliang, X.; Yusheng, Z. The mobility of rare-earth elements during hydrothermal activity: A review. Chin. J. Geochem. 1991, 10, 295–306. [Google Scholar] [CrossRef]
- Poitrasson, F.; Pin, C.; Duthou, J.L. Hydrothermal remobilization of rare earth elements and its effect on Nd isotopes in rhyolite and granite. Earth Planet. Sci. Lett. 1995, 130, 1–11. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. Chapter 3. Dev. Geochem. 1984, 2, 63–114. [Google Scholar]
- Barrett, T.; Cattalani, S.; MacLean, W.H. Volcanic lithogeochemistry and alteration at the Dalbridge massive sulphide deposits, Noranda Quebec. J. Geochem. Explor. 1993, 48, 135–173. [Google Scholar] [CrossRef]
- Van Gerven, M. Geochemische Nebengesteins Alterationen and Erfassung Signifikanter Zonierungen im Bereich des Jade-Erzfeldes, Okinawa, Trog, Japan. Ph.D. Thesis, Freir Universitate, Rohstoff and Umweltgeologie, Berlin, Germany, 1995; p. 186. [Google Scholar]
- Buchanan, L.J. Precious metal deposits associated with volcanic environments in the southwest. Arizona Geol. Soc. Digest 1981, 14, 237–261. [Google Scholar]
- Dilekler, G. Mineralization, Textural and Alteration Characteristics of the Şahinli (Sırakayalar and Karatepe) Low Sulfidation Epithermal Deposit (Lapseki, NW Turkey). Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2022; p. 148. [Google Scholar]
- Alderton, D.H.M.; Pearce, J.A.; Potts, P.J. Rare earth element mobility during granite alteration: Evidence from southwest England. Earth Planet. Sci. Lett. 1980, 49, 149–165. [Google Scholar] [CrossRef]
- Palacios, C.M.; Hein, U.F.; Dulski, P. Behaviour of rare earth elements during hydrothermal alteration at the Buena Esperanza copper–silver deposit, northern Chile. Earth Planet. Sci. Lett. 1986, 80, 208–216. [Google Scholar] [CrossRef]
- Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 1979, 279, 206–210. [Google Scholar] [CrossRef]
- Warren, I.; Simmons, S.F.; Mauk, J.L. Whole-rock geochemical techniques for evaluating hydrothermal alteration, mass changes, and compositional gradients associated with epithermal Au-Ag mineralization. Econ. Geol. 2007, 102, 923–948. [Google Scholar] [CrossRef]
- Michard, A.; Albarede, F. The REE content of some hydrothermal fluids. Chem. Geol. 1986, 55, 51–60. [Google Scholar] [CrossRef]
Sample Number | Sample Type | Qtz | I-M | Sme+I-M | Kln | Fld | Chl | Kln+Chl | Sme+Chl | Sme | Cal | Dol | Hm | Alu | Hbl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KED02-02 | SV | 16 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
KED02-06 | SV | 16 | 10 | 0 | 3 | 0 | 6 | 0 | 0 | 2 | 3 | 1 | 0 | 0 | 1 |
KED02-07 | SV | 16 | 6 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
KED02-13 | SV | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
KED17-08 | SV | 15 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
KED63-02 | SV | 17 | 8 | 1 | 2 | 4 | 11 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
KED63-03 | SV | 8 | 9 | 0 | 2 | 1 | 10 | 2 | 0 | 0 | 3 | 1 | 0 | 0 | 0 |
KED63-05 | SV | 17 | 8 | 1 | 5 | 1 | 0 | 0 | 0 | 4 | 2 | 1 | 0 | 0 | 0 |
KED63-09 | SV | 15 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
KED63-10 | SV | 17 | 8 | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
KED63-11 | SV | 16 | 8 | 0 | 2 | 1 | 9 | 2 | 0 | 0 | 4 | 1 | 0 | 0 | 0 |
KED06-03 | QFP | 15 | 0 | 0 | 2 | 5 | 7 | 0 | 0 | 3 | 2 | 1 | 1 | 0 | 0 |
KED06-04 | QFP | 16 | 7 | 0 | 1 | 13 | 9 | 0 | 0 | 4 | 3 | 1 | 1 | 0 | 0 |
KED06-05 | QFP | 14 | 6 | 0 | 2 | 11 | 6 | 0 | 0 | 5 | 3 | 1 | 1 | 0 | 0 |
KED06-06 | QFP | 15 | 6 | 1 | 1 | 12 | 6 | 0 | 1 | 9 | 1 | 1 | 0 | 0 | 0 |
KED06-07 | QFP | 18 | 3 | 0 | 1 | 11 | 5 | 0 | 1 | 7 | 2 | 1 | 0 | 0 | 0 |
KED06-08 | QFP | 13 | 4 | 0 | 2 | 9 | 4 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
KED06-10 | QFP | 15 | 4 | 0 | 1 | 11 | 9 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | 0 |
KED17-01 | QFP | 11 | 7 | 0 | 0 | 9 | 0 | 0 | 0 | 3 | 1 | 0 | 1 | 0 | 0 |
KED17-02 | QFP | 12 | 6 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
KED17-06 | QFP | 16 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
KED17-07 | QFP | 15 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
KED135-3 | QFP | 17 | 7 | 1 | 4 | 12 | 0 | 0 | 0 | 9 | 3 | 0 | 1 | 2 | 0 |
KED02-05 | QMS | 16 | 8 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
KED02-11 | QMS | 16 | 8 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
KED06-11 | QMS | 14 | 9 | 0 | 6 | 8 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 |
KED44-02 | QMS | 16 | 6 | 3 | 2 | 3 | 8 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 0 |
KED44-03 | QMS | 17 | 9 | 0 | 0 | 1 | 7 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 |
KED44-12 | QMS | 15 | 2 | 0 | 0 | 5 | 13 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 0 |
KED70-01 | QMS | 18 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
KED70-02 | QMS | 15 | 9 | 0 | 0 | 2 | 12 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 |
Sample Type | Mean Eu/Eu* | La/Yb | La/Sm | LREE/HREE | ƩREE |
---|---|---|---|---|---|
Silicified vein | 0.72 | 5.87 | 3.30 | 2.85 | 65.95 |
Quartz–feldspar porphyry | 0.82 | 9.84 | 4.41 | 4.04 | 81.06 |
Quartz–mica schist | 0.66 | 7.49 | 3.21 | 3.12 | 63.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiray, D.; Cengiz, O. Petrography and Geochemistry of Hydrothermal Alteration in the Low-Sulfidation Epithermal Kestanelik Au Deposit, Biga Peninsula, NW Turkey. Minerals 2024, 14, 379. https://doi.org/10.3390/min14040379
Kiray D, Cengiz O. Petrography and Geochemistry of Hydrothermal Alteration in the Low-Sulfidation Epithermal Kestanelik Au Deposit, Biga Peninsula, NW Turkey. Minerals. 2024; 14(4):379. https://doi.org/10.3390/min14040379
Chicago/Turabian StyleKiray, Didem, and Oya Cengiz. 2024. "Petrography and Geochemistry of Hydrothermal Alteration in the Low-Sulfidation Epithermal Kestanelik Au Deposit, Biga Peninsula, NW Turkey" Minerals 14, no. 4: 379. https://doi.org/10.3390/min14040379
APA StyleKiray, D., & Cengiz, O. (2024). Petrography and Geochemistry of Hydrothermal Alteration in the Low-Sulfidation Epithermal Kestanelik Au Deposit, Biga Peninsula, NW Turkey. Minerals, 14(4), 379. https://doi.org/10.3390/min14040379