A Cippus from Turris Libisonis: Evidence for the Use of Local Materials in Roman Painting on Stone in Northern Sardinia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Non-Invasive Techniques
2.2. Micro-Invasive Techniques
3. Results
3.1. Non-Invasive Techniques
3.2. Micro-Destructive Techniques
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boninu, A. Turris Libisonis Colonia Iulia. In La Sardegna Romana e Altomedievale. Storia e Materali; Angiolillo, S., Martorelli, R., Giuman, M., Corda, A.M., Artizzu, D., Eds.; Regione Autonoma della Sardegna: Cagliari, Italy, 2017; pp. 149–158. [Google Scholar]
- Plinius the Elder. Naturalis Historia, III, 7, 85. Available online: https://penelope.uchicago.edu/Thayer/l/roman/texts/pliny_the_elder/3*.html (accessed on 12 October 2024).
- Zucca, R. Colonia Iulia Turris Libisonis. In Storia della Sardegna Antica; Mastino, A., Ed.; Edizioni Il Maestrale: Nuoro, Italy, 2005; pp. 273–283. [Google Scholar]
- Mastino, A. Popolazioni e classi sociali a Turris Libisonis: I legami con Ostia. In Turris Libisonis Colonia Iulia; Boninu, A., LeGlay, M., Mastino, A., Eds.; Edizioni Gallizzi: Sassari, Italy, 1984; pp. 37–96. [Google Scholar]
- Mastino, A.; Spanu, P.G.; Zucca, R.; Merci, M.S. Mercati e Scambi Marittimi della Sardegna Antica; Carrocci Editore: Rome, Italy, 2005. [Google Scholar]
- Canu, N. Colonia Iulia Turris Libisonis. In Il Tempo dei Romani. La Sardegna dal III Secolo A.C. al V Secolo D.C.; Carboni, R., Giuman, M., Corda, A.M., Eds.; Ilisso: Nuoro, Italy, 2021; pp. 88–99. [Google Scholar]
- Giuliani, S. L’Antiquarium Turritano e l’area archeologica di Porto Torres. Alla scoperta della Sardegna romana. In Italia. Musei da Scoprire. Sardegna; Toniolo, L., Ed.; L’Erma di Bretschneider: Rome, Italy, 2022; pp. 37–49. [Google Scholar]
- Gasperetti, G. Reperti dal porto commerciale di Porto Torres. In Memorie dal Sottosuolo. Scoperte Archeologiche nella Sardegna Centro—Settentrionale. Catalogo della Mostra. Sassari, Museo Nazionale “Giovanni Antonio Sanna”, Padiglione Clemente, Febbraio 2011—Aprile 2013; Usai, L., Ed.; Scuola Sarda Editrice: Quartucciu, CA, USA, 2013; pp. 267–272. [Google Scholar]
- Boninu, A. Terme Maetzke—Terme Centrali—Via Ponte Romano. In Marmore Fluctus. Reperti Marmorei e Indagini Archeologiche a Turris Libisonis; Colombi, R., Pandolfi, A., Eds.; Istituti Editoriali e Poligrafici Internazionali: Rome, Italy, 2004; pp. 12–14. [Google Scholar]
- Grasso, F. Parete con nature morte. In La Pittura Pompeiana; Sampaolo, V., Ed.; Electa: Naples, Italy, 2009; pp. 372–373. [Google Scholar]
- Candida, B. Altari e Cippi nel Museo Nazionale Romano; Bretschneider Giorgio: Rome, Italy, 1979; Volume 10. [Google Scholar]
- Zevi, F. Base di statua di Nerva. In Museo Archeologico dei Campi Flegrei. Catalogo Generale, Liternum, Baia, Miseno; Miniero, P., Zevi, F., Eds.; Electa Napoli: Naples, Italy, 2008; Volume III, p. 221. [Google Scholar]
- Iannaccone, R.; Bracci, S.; Cantisani, E.; Mazzei, B. An integrated multimethodological approach for characterizing the materials and pigments on a sarcophagus in St. Mark, Marcellian and Damasus catacombs. Appl. Phys. A 2015, 121, 1235–1242. [Google Scholar] [CrossRef]
- Magrini, D.; Bracci, S.; Bartolozzi, G.; Iannaccone, R.; Lenzi, S.; Liverani, P. Revealing mithras’ color with the icvbc mobile lab in the museum. Heritage 2019, 2, 2160–2170. [Google Scholar] [CrossRef]
- Dyer, J.; Verri, G.; Cupitt, J. Multispectral Imaging in Reflectance and Photo-Induced Luminescence Modes: A User Manual. 2013. Available online: https://www.britishmuseum.org/pdf/charisma-multispectral-imaging-manual-2013.pdf (accessed on 14 September 2024).
- Svoboda, M.; Cartwright, C.R. Mummy Portraits of Roman Egypt; J. Paul Getty Museum: Los Angeles, CA, USA, 2020. [Google Scholar]
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phys. A Mater. Sci. Process. 2012, 106, 295–307. [Google Scholar] [CrossRef]
- Conti, C.; Botteon, A.; Bertasa, M.; Colombo, C.; Realini, M.; Sali, D. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for: In situ chemical interrogation of painted surfaces. Analyst 2016, 141, 4599–4607. [Google Scholar] [CrossRef]
- Moioli, P.; Seccaroni, C. Analysis of Art Objects Using a Portable X-ray Fluorescence Spectrometer. X-ray Spectrom. Int. J. 2000, 29, 48–52. [Google Scholar] [CrossRef]
- Cartwright, T.A.; Bourguignon, E.; Bromblet, P.; Cassar, J.; Charola, A.E.; De Witte, E.; Delgado-Rodrigues, J.; Fassina, V.; Fitzner, B.; Fortier, L.; et al. ICOMOS-ISCS: Illustrated Glossary on Stone Deterioration Patterns; International Council of Monuments and Sites: Paris, France, 2011; Volume 1. [Google Scholar]
- Flatt, R.J.; Aly Mohamed, N.; Caruso, F.; Derluyn, H.; Desarnaud, J.; Lubelli, B.; Espinosa-Marzal, R.M.; Pel, L.; Rodriguez-Navarro, C.; Scherer, G.W.; et al. Predicting salt damage in practice: A theoretical insight into laboratory tests. RILEM Tech. Lett. 2017, 2, 108–118. [Google Scholar] [CrossRef]
- Zezza, F.; Macrì, F. Marine aerosol and stone decay. Sci. Total Environ. 1995, 167, 123–143. [Google Scholar] [CrossRef]
- La Iglesia, A.; del Cura, M.A.G.; Ordoñez, S. The physicochemical weathering of monumental dolostones, granites and limestones; dimension stones of the Cathedral of Toledo (Spain). Sci. Total Environ. 1994, 152, 179–188. [Google Scholar] [CrossRef]
- Pearson, C. Conservation of Marine Archaeological Objects; Elsiever: Oxford, UK, 2014. [Google Scholar]
- Benavente, D.; del Cura, M.A.G.; García-Guinea, J.; Sánchez-Moral, S.; Ordóñez, S. Role of pore structure in salt crystallisation in unsaturated porous stone. J. Cryst. Growth 2004, 260, 532–544. [Google Scholar] [CrossRef]
- da Fonseca, B.S.; Pinto, A.P.F.; Rucha, M.; Alves, M.M.; Montemor, M.F. Damaging effects of salt crystallization on a porous limestone after consolidation treatments. Constr. Build. Mater. 2023, 374, 130967. [Google Scholar] [CrossRef]
- Chiesa, G.S. Ara Dipinta. In Romana Pictura. La Pittura Romana dalle Origini all’età Bizantina, Rimini, 28 Marzo–30 Agosto 1998; Donati, A., Ed.; Electa Milano: Milan, Italy, 1998; Chapter 25; pp. 277–278. [Google Scholar]
- Aldrovandi, A.; Picollo, M. Metodi di Documentazione e Indagini non Invasive sui Dipinti; Il Prato: Saonara, Italy, 2001. [Google Scholar]
- Bevilacqua, N.; Borgioli, L.; Gracia, I.A. I Pigmenti nell’arte: Dalla Preistoria alla Rivoluzione Industriale; Il Prato: Saonara, Italy, 2010. [Google Scholar]
- Accorsi, G.; Verri, G.; Bolognesi, M.; Armaroli, N.; Clementi, C.; Miliani, C.; Romani, A. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 2009, 23, 3392–3394. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Beny-Bassez, C.; Rouzaud, J.N. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy. Scanning Electron Microsc. 1985, 1, 119–132. [Google Scholar]
- Beyssac, O.; Goffé, B.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud, J.N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 2267–2276. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Spepi, A.; Pieraccioni, M.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Vendrell, M.; Colombini, M.P.; Tinè, M.R.; Duce, C.; et al. A multi-analytical characterization of artists’ carbon-based black pigments. J. Therm. Anal. Calorim. 2019, 138, 3287–3299. [Google Scholar] [CrossRef]
- Froment, F.; Tournié, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568. [Google Scholar] [CrossRef]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddal, R. Pigment Compendium. A Dictionary and Optical Microscopy of Historical Pigments; Routledge: London, UK, 2013; Volume 53. [Google Scholar] [CrossRef]
- Cornell, R.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses. 2003. Available online: https://www.degruyter.com/document/doi/10.1515/CORRREV.1997.15.3-4.533/pdf?licenseType=restricted (accessed on 8 October 2024).
- Cruz-Jiménez, G.; Loredo-Portales, R.; Del Rio-Salas, R.; Moreno-Rodríguez, V.; Castillo-Michel, H.; Ramiro-Bautista, L.R.; Aquilanti, G.; De La Rosa-Álvarez, M.G.; Rocha-Amador, D.O. Multi-synchrotron techniques to constrain mobility and speciation of Zn associated with historical mine tailings. Chem. Geol. 2020, 558, 119866. [Google Scholar] [CrossRef]
- Jerzykowska, I.; Majzlan, J.; Michalik, M.; Göttlicher, J.; Steininger, R.; Błachowski, A.; Ruebenbauer, K. Mineralogy and speciation of Zn and As in Fe-oxide-clay aggregates in the mining waste at the MVT Zn–Pb deposits near Olkusz, Poland. Geochemistry 2014, 74, 393–406. [Google Scholar] [CrossRef]
- Johnson, J. Soluble Salts and Deterioration of Archeological Materials. 1998. Available online: https://repository.si.edu/bitstream/handle/10088/56540/ConserveOGram06-05.pdf (accessed on 10 April 2024).
- Steiger, M.; Charola, A.E.; Sterflinger, K. Weathering and deterioration. In Stone in Architecture: Properties, Durability; Springer Science and Business Media: New York, NY, USA, 2011; pp. 227–316. [Google Scholar] [CrossRef]
- Torfs, K.; Van Grieken, R. Chemical relations between atmospheric aerosols, deposition and stone decay layers on historic buildings at the Mediterranean coast. Atmos. Environ. 1997, 31, 2179–2192. [Google Scholar] [CrossRef]
- Ospitali, F.; Bersani, D.; Di Lonardo, G.; Lottici, P.P. ‘Green earths’: Vibrational and elemental characterization of glauconites, celadonites and historical pigments. J. Raman Spectrosc. 2008, 39, 1066–1073. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Textures. 1962, pp. 108–121. Available online: https://archives.datapages.com/data/specpubs/carbona2/data/a038/a038/0001/0100/0108.htm (accessed on 13 August 2024).
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The geological map of Sardinia (Italy) at 1:250,000 scale. J. Maps 2015, 12, 826–835. [Google Scholar] [CrossRef]
- Fanost, A.; Gimat, A.; de Viguerie, L.; Martinetto, P.; Giot, A.C.; Clémancey, M.; Blondin, G.; Gaslain, F.; Glanville, H.; Walter, P.; et al. Revisiting the identification of commercial and historical green earth pigments. Colloids Surf. A Physicochem. Eng. Asp. 2020, 584, 124035. [Google Scholar] [CrossRef]
- Knittle, E.; Phillips, W.; Williams, Q. An infrared and Raman spectroscopic study of gypsum at high pressures. Phys. Chem. Min. 2001, 28, 630–640. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Singh, P.; Banerjee, S.; Choudhury, T.R.; Bhattacharya, S.; Pande, K. Distinguishing celadonite from glauconite for environmental interpretations: A review. J. Palaeogeogr. 2023, 12, 179–194. [Google Scholar] [CrossRef]
- Aliatis, I.; Bersani, D.; Campani, E.; Casoli, A.; Lottici, P.P.; Mantovan, S.; Marino, I.G.; Ospitali, F. Green pigments of the Pompeian artists’ palette. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 532–538. [Google Scholar] [CrossRef]
- Mateos, L.D.; Cosano, D.; Esquivel, D.; Osuna, S.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman microspectroscopy to characterize wallpaintings in Cerro de las Cabezas and the Roman villa of Priego de Cordoba (Spain). Vib. Spectrosc. 2018, 96, 143–149. [Google Scholar] [CrossRef]
- Caporusso, D.; Donati, M.T.; Masseroli, S.; Tibiletti, T.; Gerli, V. Civico Museo Archeologico. Sezione Milano Antica V Secolo A.C.—V Secolo D.C.; Edizione Et: Milan, Italy, 2016. [Google Scholar]
- Prieto, F.J.N. Una ara pintada de ampurias dedicada a Esculapio. Ampurias 1971, 72, 385–390. Available online: https://www.raco.cat/index.php/Empuries/article/download/117168/287812 (accessed on 3 June 2024).
- Proietti, L.M. Il Larario ubicato all’incrocio tra il decumano di Via Duomo e il cardine di Via San Proclo. In Nova antiqua Phlegraea. Nuovi Tesori Archeologici dai Campi Flegrei; Gialanella, C., Ed.; Electa: Naples, Italy, 2000; pp. 39–40. [Google Scholar]
- Giacobello, F. Larari Pompeiani. Iconografia e Culto dei Lari in Ambito Domestico; Edizioni Universitarie di Lettere Economia Diritto: Milan, Italy, 2008. [Google Scholar]
- Rossignani, M.P. L’ara e il suo contesto. In L’ara Dipinta di Thaenae. Indagini sul Culto Martiriale nell’Africa Paleocristiana; Cacitti, R., Legrottaglie, G., Pelizzari, G., Rossignani, M.P., Eds.; Viella: Rome, Italy, 2011. [Google Scholar]
Technique | Radiation Source | Filter on Camera Lens |
---|---|---|
Ultraviolet reflected photography—UVR | 4 TL-D Blacklight Blue, 36 W BLB 1SL/25, Philips | X-Nite 330C + X-Nite PB1 |
Ultraviolet induced luminescence photography—UVL | 4 TL-D Blacklight Blue, 36 W BLB 1SL/25 | X-Nite CCI + Zeiss T* UV filter |
Visible photography—VIS | 2 Beghelli 16 W cold light 0120-Z | X-Nite CCI + Zeiss T* UV filter |
Visible induced luminescence—VIL | 2 Beghelli 16 W cold light 0120-Z | X-Nite 715 |
Near-infrared photography—NIR | 2 Incandescent BR125, Philips | X-Nite 715 |
Near-infrared photography—NIR 1000 | 2 Incandescent BR125, Philips | X-Nite 1000 |
Raking light | 2 Beghelli 16 W cold light 0120-Z | X-Nite CCI + Zeiss T* UV filter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, R.; Giuliani, S.; Lenzi, S.; Franceschini, M.M.N.; Vettori, S.; Salvadori, B. A Cippus from Turris Libisonis: Evidence for the Use of Local Materials in Roman Painting on Stone in Northern Sardinia. Minerals 2024, 14, 1040. https://doi.org/10.3390/min14101040
Iannaccone R, Giuliani S, Lenzi S, Franceschini MMN, Vettori S, Salvadori B. A Cippus from Turris Libisonis: Evidence for the Use of Local Materials in Roman Painting on Stone in Northern Sardinia. Minerals. 2024; 14(10):1040. https://doi.org/10.3390/min14101040
Chicago/Turabian StyleIannaccone, Roberta, Stefano Giuliani, Sara Lenzi, Matteo M. N. Franceschini, Silvia Vettori, and Barbara Salvadori. 2024. "A Cippus from Turris Libisonis: Evidence for the Use of Local Materials in Roman Painting on Stone in Northern Sardinia" Minerals 14, no. 10: 1040. https://doi.org/10.3390/min14101040
APA StyleIannaccone, R., Giuliani, S., Lenzi, S., Franceschini, M. M. N., Vettori, S., & Salvadori, B. (2024). A Cippus from Turris Libisonis: Evidence for the Use of Local Materials in Roman Painting on Stone in Northern Sardinia. Minerals, 14(10), 1040. https://doi.org/10.3390/min14101040