Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analytical Methods
4. Results
4.1. Mineralogical Features of Pyrochlore Supergroup Minerals
4.2. Chemical Composition of Pyrochlore Supergroup Minerals
4.3. Compositional Zoning of Pyrochlore Supergroup Minerals
5. Discussion
5.1. Substitution of Elements in the Pyrochlore in the Miyi Pegmatite
5.2. Genesis of Four Types of Pyrochlores in the Miyi Pegmatite
5.3. Nb Mineralization during the Magmatic-Hydrothermal Evolution in the Miyi Pegmatite
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linnen, R.L.; van Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Vasyukova, O.V. Niobium, Critical metal, and progeny of the mantle. Econ. Geol. 2023, 118, 837–855. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Lahaye, Y.; Brey, G.P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Miner. Petrol. 2010, 98, 197–208. [Google Scholar] [CrossRef]
- Pirajno, F. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res. 2014, 27, 1181–1216. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Chung, S.L.; Xiao, L.; Wang, Y. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet. Sc. Lett. 2003, 213, 391–405. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Zhou, M.F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chem. Geol. 2007, 243, 286–316. [Google Scholar] [CrossRef]
- Xu, Y.G.; Chung, S.L.; Jahn, B.M.; Wu, G.Y. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Xu, Y.G.; Luo, Z.Y.; Huang, X.L.; He, B.; Xiao, L.; Xie, L.W.; Shi, Y.R. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochim. Cosmochim. Acta 2008, 72, 3084–3104. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, W.G.; Hu, R.Z.; Xie, L.W.; He, D.F.; Liu, F.; Chu, Z.Y. Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Lithos 2009, 110, 109–128. [Google Scholar] [CrossRef]
- Zhong, H.; Campbell, I.H.; Zhu, W.G.; Allen, C.M.; Hu, R.Z.; Xie, L.W.; He, D.F. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochim. Cosmochim. Acta 2011, 75, 1374–1395. [Google Scholar] [CrossRef]
- Zhou, M.F.; Arndt, N.T.; Malpas, J.; Wang, C.Y.; Kennedy, A.K. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos 2008, 103, 352–368. [Google Scholar] [CrossRef]
- Wang, F.L.; Wang, Y.W.; Zhao, T.P. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dykes in the ~260 Ma Emeishan large igneous province (SW China). Ore Geol. Rev. 2015, 65, 1110–1126. [Google Scholar] [CrossRef]
- Yin, R.; Sun, X.M.; Wang, S.W.; Wang, R.C.; Ran, M.L.; Wu, B.; Huang, X.L. Zircons in NYF-type pegmatites in the Emeishan large igneous province, SW China: A record of Nb and REE mineralization processes. Ore Geol. Rev. 2023, 162, 105700. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revised. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- He, J.L. Ore-forming geological conditions and prospecting potential for Nb-Ta mineral deposits in Panzhihua-Xichang region, Sichuan. Acta Geol. SiChuan 2004, 24, 206–211, (In Chinese with English Abstract). [Google Scholar]
- Linnen, R.L.; Keppler, H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib. Mineral. Petr. 1997, 128, 213–227. [Google Scholar] [CrossRef]
- McNeil, A.G.; Linnen, R.L.; Flemming, R.L. Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-rich haplogranitic melts between 700° and 850 °C and 200 MPa. Lithos 2020, 352–353, 105239. [Google Scholar] [CrossRef]
- Yin, R.; Huang, X.L.; Wang, R.C.; Sun, X.M.; Tang, Y.; Wang, Y.; Xu, Y.G. Rare-metal enrichment and Nb–Ta fractionation during magmatic–hydrothermal processes in rare-metal granites: Evidence from zoned micas from the Yashan pluton, South China. J. Petrol. 2022, 63, egac093. [Google Scholar] [CrossRef]
- Tang, Y.; Linnen, R.L.; McNeil, A.G. An experimental study of pyrochlore solubility in peralkaline granitic melts. Econ. Geol. 2023, 118, 209–223. [Google Scholar]
- Yin, R.; Huang, X.L.; Xu, Y.G.; Wang, R.C.; Wang, H.; Yuan, C.; Ma, Q.; Sun, X.M.; Chen, L.L. Mineralogical constraints on the magmatic–hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China. Lithos 2020, 352–353, 105208. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, L.X.; Ma, C.Q.; Wiedenbeck, M.; She, Z.B. Titanite as a tracer for Nb mineralization during magmatic and hydrothermal processes: The case of Fangcheng alkaline complex, Central China. Chem. Geol. 2022, 608, 121028. [Google Scholar] [CrossRef]
- Atencio, D.; Andrade, M.B.; Christy, A.G.; Gieré, R.; Kartashov, P.M. The pyrochlore supergroup of minerals: Nomenclature. Can. Miner. 2010, 48, 673–698. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Ewing, R.C. Geochemical alteration of pyrochlore group minerals. pyrochlore subgroup. Am. Miner. 1995, 80, 732–743. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Ewing, R.C.; Williams, C.T.; Mariano, A.N. An overview of the crystal chemistry, durability, and radiation damage effects of natural pyrochlore. MRS Proc. 2000, 663, 921. [Google Scholar] [CrossRef]
- Hogarth, D.D.; Williams, C.T.; Jones, P. Primary zoning in pyrochlore group minerals from carbonatites. Miner. Mag. 2000, 64, 683–697. [Google Scholar] [CrossRef]
- McCreath, J.A.; Finch, A.A.; Herd, D.A.; Armour, B.A. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: The mineralogy of a syenite-hosted Ta Nb deposit. Am. Miner. 2013, 98, 426–438. [Google Scholar] [CrossRef]
- Sun, Z.H.; Qin, K.Z.; Mao, Y.J.; Tang, D.M.; Wang, F.Y.; Evans, N.J. Mineral chemistry of pyrochlore supergroup minerals from the Boziguoer Nb-Ta-Zr-Rb-REE deposit, NW China: Implications for Nb enrichment by alkaline magma differentiation. Minerals 2022, 12, 785. [Google Scholar] [CrossRef]
- Walter, B.F.; Parsapoor, A.; Braunger, S.; Marks, M.A.W.; Wenzel, T.; Martin, M.; Markl, G. Pyrochlore as a monitor for magmatic and hydrothermal processes in carbonatites from the Kaiserstuhl volcanic complex (SW Germany). Chem. Geol. 2018, 498, 1–16. [Google Scholar] [CrossRef]
- Wu, B.; Hu, Y.Q.; Bonnetti, C.; Xu, C.; Wang, R.C.; Zhang, Z.S.; Li, Z.Y.; Yin, R. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization. Ore Geol. Rev. 2021, 132, 104059. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, N.Y.; Li, G.W. Evolution of Nb–Ta oxide minerals and their relationship to the magmatic-hydrothermal processes of the Nb–Ta mineralized syenitic dikes in the Panxi region, SW China. Minerals 2022, 11, 1204. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.Q.; Ding, J. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China. J. Geol. 2007, 115, 675–689. [Google Scholar] [CrossRef]
- Yan, D.P.; Zhou, M.F.; Song, H.L.; Wang, X.W.; Malpas, J. Origin and tectonic significance of a Mesozoic multi layer over thrust system within the Yangtze Block (South China). Tectonophysics 2003, 361, 239–254. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhou, M.F.; Hou, Z.Q.; Cao, Z.M.; Wang, Y.L.; Li, Y. Geochemical constraints on the mantle source of the upper Permian Emeishan continental flood basalts, southwestern China. Int. Geol. Rev. 2001, 43, 213–225. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.G.; Mei, H.J.; Zheng, Y.F.; He, B.; Pirajno, F. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume–lithosphere interaction. Earth Plane. Sc. Lett. 2004, 228, 525–546. [Google Scholar] [CrossRef]
- Huang, H.; Huyskens, M.H.; Yin, Q.Z.; Cawood, P.A.; Hou, M.C.; Yang, J.H.; Xiong, F.H.; Du, Y.S.; Yang, C.C. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: Relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary. Geology 2022, 50, 1083–1087. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, W.G.; Song, X.Y.; He, D.F. SHRIMP U–Pb zircon geochronology, geochemistry, and Nd–Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chem. Geol. 2007, 236, 112–133. [Google Scholar] [CrossRef]
- Munteanu, M.; Yao, Y.; Wilson, A.H.; Chunnett, G.; Luo, Y.N.; He, H.; Cioacǎ, M.; Wen, M.L. Panxi region (South-West China): Tectonics, magmatism and metallogenesis. A review. Tectonophysics 2013, 608, 51–71. [Google Scholar] [CrossRef]
- Lu, P.F.; Liu, P.P. Constraints of combined Sr-Nd-Pb-Hf-O isotopic systematics on the petrogenesis of peralkaline, metaluminous and peraluminous granitoids in the Permian Emeishan large igneous province, SW China. Chem. Geol. 2023, 624, 121423. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, Z.C.; Encarnacion, J.; Santosh, M. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe–Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, southwest China. Ore Geol. Rev. 2012, 49, 109–127. [Google Scholar] [CrossRef]
- Zhong, H.; Yao, Y.; Prevec, S.A.; Wilson, A.H.; Viljoen, M.J.; Viljoen, R.P.; Liu, B.G.; Luo, Y.N. Trace-element and Sr–Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China. Chem. Geol. 2004, 203, 237–252. [Google Scholar] [CrossRef]
- Zhong, H.; Yao, Y.; Hu, S.F.; Zhou, X.H.; Liu, B.G.; Sun, M.; Zhou, M.F.; Viljoen, M.J. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Hongge layered intrusion, Southwestern China. Int. Geol. Rev. 2003, 45, 371–382. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Wang, C.Y.; Zhou, M.F.; Yang, Y.H. Zircon Lu–Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): Constraints on the mantle source. J. Asian Earth Sci. 2009, 35, 45–55. [Google Scholar] [CrossRef]
- Zurevinski, S.E.; Mitchell, R.H. Extreme compositional variation of pyrochlore group minerals at the Oka carbonatite complex, Quebec: Evidence of magma mixing. Can. Miner. 2004, 42, 1159–1168. [Google Scholar] [CrossRef]
- Nasraoui, M.; Bilal, E. Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): A geochemical record of different alteration stages. J. Asian Earth Sci. 2000, 18, 237–251. [Google Scholar] [CrossRef]
- Vasyukova, O.V.; Williams-Jones, A.E. A new model for the origin of pyrochlore: Evidence from the St Honor´e Carbonatite, Canada. Chem. Geol. 2023, 632, 121549. [Google Scholar] [CrossRef]
- Ivanyuk, G.Y.; Konopleva, N.G.; Yakovenchuk, V.N.; Pakhomovsky, Y.A.; Panikorovskii, T.L.; Kalashnikov, A.O.; Bocharov, V.N.; Mikhailova, J.A.; Bazai, A.A.; Goryainov, P.M. Three-D mineralogical mapping of the Kovdor phoscorite-carbonatite complex, NW Russia: III. Pyrochlore supergroup minerals. Minerals 2018, 8, 277. [Google Scholar] [CrossRef]
- Viladkar, S.G.; Sorokhtina, N.V. Evolution of pyrochlore in carbonatites of the Amba Dongar complex, India. Miner. Mag. 2021, 85, 554–567. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Spratt, J.; Shtukenberg, A.G.; Zolotarev, A.A.; Britvin, S.N.; Petrov, S.V.; Kuptsova, A.V.; Antonov, A.V. Oscillatory- and sector- zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania. Miner. Mag. 2021, 85, 532–553. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Williams, C.T.; Wall, F.; Zolotarev, A.A. Evolution of chemical composition of pyrochlore group minerals from phoscorites and carbonatites of the Khibina alkaline massif. Geol. Ore Deposit. 2012, 54, 503–515. [Google Scholar] [CrossRef]
- Zhang, A.C.; Wang, R.C.; Hu, H.; Zhang, H.; Zhu, J.C.; Chen, X.M. Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China. Mineral. Mag. 2004, 68, 739–756. [Google Scholar] [CrossRef]
- Lahti, S.I. Zoning in columbite-tantalite crystals from the granitic pegmatites of the Erajarvi area, southern Finland. Geochim. Cosmochim. Acta 1987, 51, 509517. [Google Scholar] [CrossRef]
- Černý, P.; Novak, M.; Chapman, R. Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Marsikov, NorthernMoravia, Czechoslovakia. Can. Miner. 1992, 30, 699718. [Google Scholar]
- Norton, D.L.; Dutrow, B.L. Complex behavior of magma-hydrothermal rocesses: Role of supercritical fluid. Geochim. Cosmochim. Acta 2001, 65, 4009–4017. [Google Scholar] [CrossRef]
- Stepanov, S.; Mavrogenes, J.A.; Meffre, S.; Davidson, P. The key role of mica during igneous concentration of tantalum. Contrib. Mineral. Petr. 2014, 169, 1009. [Google Scholar] [CrossRef]
- Wark, D.A.; Miller, C.F. Accessory mineral behavior during differentiation of a granitic suite: Monazite, xenotime, and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A. Chem. Geol. 1993, 110, 49–67. [Google Scholar] [CrossRef]
- Linnen, R.L.; Cuney, M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Rare-Element Geochemistry and Mineral Deposits; Linnen, R.L., Samson, I.M., Eds.; Geological Association of Canada Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 2005; Volume 17, pp. 70–102. [Google Scholar]
- Bartels, A.; Vetere, F.; Holtz, F.; Behrens, H.; Linnen, R.L. Viscosity of flux-rich pegmatitic melts. Contrib. Mineral. Petrol. 2011, 162, 51–60. [Google Scholar] [CrossRef]
- London, D. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochim. Cosmochim. Acta 1987, 51, 403–420. [Google Scholar] [CrossRef]
- London, D.; George, B.M., VI; Babb, H.A.; Loomis, J.L. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O). Contrib. Mineral. Petr. 1993, 113, 450–465. [Google Scholar] [CrossRef]
- Anderson, A.J.; Mayanovic, R.A.; Lee, T. The Local Structure of Ta(v) Aqua ions in high temperature fluoride- and chloride-bearing solutions: Implications for Ta transport in granite-related postmagmatic fluids. Can. Mineral. 2019, 57, 843–851. [Google Scholar] [CrossRef]
- Timofeev, A.; Migdisov, A.A.; Williams-Jones, A.E. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim. Cosmochim. Acta 2017, 197, 294–304. [Google Scholar] [CrossRef]
- Zaraisky, G.P.; Korzhinskaya, V.; Kotova, N. Experimental studies of Ta2O5 and columbite–tantalite solubility in fluoride solutions from 300 to 550 °C and 50 to 100 MPa. Miner. and Petrol. 2010, 99, 287–300. [Google Scholar] [CrossRef]
Zone I | Zone II | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pcl-I | Pcl-II | Pcl-III | Pcl-IV | |||||||||||||
EPMA (wt%) | mean (n = 4) | max | min | mean (n = 71) | max | min | mean (n = 12) | max | min | mean (n = 12) | max | min | ||||
Na2O | 3.56 (0.19) | 3.81 | 3.38 | 4.85 (0.40) | 5.80 | 3.37 | 4.65 (0.26) | 5.02 | 4.23 | 5.90 (0.57) | 6.58 | 4.85 | ||||
CaO | 14.74 (0.23) | 14.87 | 14.39 | 13.89 (1.26) | 15.90 | 10.40 | 16.65 (0.35) | 17.15 | 16.27 | 15.04 (0.65) | 16.02 | 14.17 | ||||
PbO | 0.73 (0.06) | 0.82 | 0.69 | 0.51 (0.18) | 0.84 | 0.21 | 0.31 (0.06) | 0.37 | bdl | 0.31 (0.05) | 0.37 | bdl | ||||
BaO | bdl | bdl | bdl | bdl | bdl | bdl | bdl) | bdl | bdl | bdl | bdl | bdl | ||||
UO2 | 15.12 (1.62) | 17.40 | 13.92 | 8.34 (5.78) | 18.45 | bdl | 0.51 (0.66) | 2.55 | bdl | 1.19 (0.66) | 2.32 | bdl | ||||
ThO2 | 1.05 (0.15) | 1.18 | 0.83 | 1.87 (1.05) | 4.60 | 0.59 | 4.12 (0.65) | 5.18 | 2.56 | 2.51 (1.40) | 5.04 | 0.64 | ||||
Y2O3 | 0.19 (0.06) | 0.27 | bdl | 0.27 (0.08) | 0.54 | 0.16 | 0.20 (0.05) | 0.27 | bdl | 0.22 (0.22) | 0.67 | bdl | ||||
La2O3 | 0.36 (0.13) | 0.48 | 0.24 | 0.81 (0.20) | 1.15 | 0.39 | 0.85 (0.13) | 1.09 | 0.64 | 0.71 (0.23) | 1.15 | 0.45 | ||||
Ce2O3 | 2.95 (0.13) | 3.08 | 2.79 | 4.20 (0.42) | 5.47 | 3.21 | 3.84 (0.19) | 4.08 | 3.46 | 3.20 (0.80) | 4.91 | 2.22 | ||||
Pr2O3 | 0.27 (0.24) | 0.51 | bdl | 0.56 (0.20) | 1.16 | bdl | 0.39 (0.21) | 0.82 | bdl | 0.39 (0.14) | 0.72 | 0.23 | ||||
Nd2O3 | 0.85 (0.07) | 0.90 | 0.75 | 1.20 (0.31) | 1.87 | 0.57 | 0.73 (0.10) | 0.86 | 0.51 | 0.56 (0.19) | 0.84 | 0.25 | ||||
Sm2O3 | 0.21 (0.07) | 0.31 | bdl | bdl | 0.33 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | ||||
TiO2 | 12.82 (0.94) | 14.11 | 12.02 | 11.10 (1.56) | 15.13 | 9.00 | 9.29 (0.18) | 9.55 | 9.01 | 6.51 (1.86) | 9.90 | 4.58 | ||||
ZrO2 | bdl | bdl | bdl | 0.21 (0.11) | 0.68 | bdl | bdl | 0.19 | bdl | bdl | bdl | bdl | ||||
Nb2O5 | 41.54 (2.08) | 43.16 | 38.77 | 46.88 (4.38) | 53.99 | 37.68 | 53.42 (0.72) | 54.55 | 52.09 | 58.11 (3.58) | 62.43 | 51.13 | ||||
Ta2O5 | 3.69 (0.31) | 4.06 | 3.31 | 3.41 (0.86) | 4.64 | 1.24 | 1.98 (0.45) | 3.07 | 1.54 | 2.61 (1.03) | 3.87 | 0.99 | ||||
MnO | 0.06 (0.04) | 0.09 | bdl | 0.11 (0.07) | 0.30 | bdl | bdl | 0.14 | bdl | 0.09 (0.05) | 0.17 | bdl | ||||
FeO | 0.34 (0.11) | 0.51 | 0.28 | 0.14 (0.09) | 0.55 | bdl | 0.12 (0.10) | 0.31 | bdl | 0.19 (0.10) | 0.39 | 0.09 | ||||
F | 1.60 (0.13) | 1.72 | 1.42 | 2.68 (0.66) | 3.72 | 1.37 | 3.34 (0.18) | 3.59 | 2.97 | 3.51 (0.30) | 3.96 | 2.99 | ||||
Total | 99.56 (0.36) | 99.96 | 99.25 | 100.08 (1.81) | 102.50 | 93.47 | 99.32 (0.50) | 100.15 | 98.39 | 99.69 (0.74) | 100.79 | 98.31 | ||||
based on ΣB = 2 | ||||||||||||||||
Na | 0.43 (0.02) | 0.46 | 0.41 | 0.57 (0.04) | 0.67 | 0.41 | 0.54 (0.03) | 0.58 | 0.48 | 0.69 (0.07) | 0.77 | 0.55 | ||||
Ca | 0.98 (0.01) | 0.99 | 0.96 | 0.91 (0.07) | 1.02 | 0.73 | 1.06 (0.02) | 1.09 | 1.03 | 0.97 (0.04) | 1.03 | 0.92 | ||||
Pb | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | bdl | 0.01 | 0.01 | bdl | 0.01 | 0.01 | bdl | ||||
Ba | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | ||||
U | 0.21 (0.02) | 0.24 | 0.19 | 0.11 (0.08) | 0.25 | bdl | 0.01 (0.01) | 0.03 | bdl | 0.02 (0.01) | 0.03 | bdl | ||||
Th | 0.02 | 0.02 | 0.01 | 0.03 (0.01) | 0.06 | 0.01 | 0.06 (0.01) | 0.07 | 0.04 | 0.03 (0.02) | 0.07 | 0.01 | ||||
Y | 0.01 | 0.01 | bdl | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | bdl | 0.01 (0.01) | 0.02 | bdl | ||||
La | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 (0.01) | 0.03 | 0.01 | ||||
Ce | 0.07 | 0.07 | 0.06 | 0.09 (0.01) | 0.12 | 0.07 | 0.08 | 0.09 | 0.08 | 0.07 (0.02) | 0.11 | 0.05 | ||||
Pr | 0.01 (0.01) | 0.01 | bdl | 0.01 (0.01) | 0.03 | bdl | 0.01 (0.01) | 0.02 | bdl | 0.01 | 0.02 | 0.01 | ||||
Nd | 0.02 | 0.02 | 0.02 | 0.03 (0.01) | 0.04 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | ||||
Sm | bdl | 0.01 | bdl | bdl | 0.01 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | ||||
ΣA | 1.76 (0.02) | 1.79 | 1.74 | 1.79 (0.03) | 1.86 | 1.67 | 1.80 (0.02) | 1.83 | 1.76 | 1.83 (0.04) | 1.89 | 1.76 | ||||
Ti | 0.75 (0.06) | 0.83 | 0.70 | 0.64 (0.10) | 0.88 | 0.51 | 0.52 (0.01) | 0.53 | 0.51 | 0.37 (0.10) | 0.55 | 0.26 | ||||
Zr | bdl | bdl | bdl | 0.01 | 0.02 | bdl | bdl | 0.01 | bdl | bdl | bdl | bdl | ||||
Nb | 1.166 (0.06) | 1.21 | 1.09 | 1.29 (0.10) | 1.45 | 1.05 | 1.44 (0.02) | 1.46 | 1.41 | 1.58 (0.10) | 1.68 | 1.37 | ||||
Ta | 0.06 (0.01) | 0.07 | 0.06 | 0.06 (0.01) | 0.08 | 0.02 | 0.03 (0.01) | 0.05 | 0.03 | 0.04 (0.02) | 0.06 | 0.02 | ||||
Mn | bdl | 0.01 | bdl | 0.01 | 0.02 | bdl | bdl | 0.01 | bdl | 0.01 | 0.01 | bdl | ||||
Fe | 0.02 (0.01) | 0.03 | 0.02 | 0.01 (0.01) | 0.03 | bdl | 0.01 (0.01) | 0.02 | bdl | 0.01 (0.01) | 0.02 | 0.01 | ||||
ΣB | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ||||
F | 0.31 (0.03) | 0.34 | 0.28 | 0.51 (0.12) | 0.71 | 0.27 | 0.63 (0.03) | 0.67 | 0.56 | 0.67 (0.06) | 0.74 | 0.56 | ||||
O | 6.42 (0.03) | 6.44 | 6.38 | 6.39 (0.04) | 6.46 | 6.32 | 6.39 (0.02) | 6.41 | 6.35 | 6.38 (0.04) | 6.44 | 6.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, R.; Sun, X.; Wang, S.; Wu, B. Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China. Minerals 2024, 14, 13. https://doi.org/10.3390/min14010013
Yin R, Sun X, Wang S, Wu B. Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China. Minerals. 2024; 14(1):13. https://doi.org/10.3390/min14010013
Chicago/Turabian StyleYin, Rong, Xiaoming Sun, Shengwei Wang, and Bin Wu. 2024. "Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China" Minerals 14, no. 1: 13. https://doi.org/10.3390/min14010013
APA StyleYin, R., Sun, X., Wang, S., & Wu, B. (2024). Mineral Chemistry of Pyrochlore Supergroup Minerals as Records of Nb Mineralization Processes in NYF-Type Pegmatites: A Case Study of the Emeishan Large Igneous Province, SW China. Minerals, 14(1), 13. https://doi.org/10.3390/min14010013