Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System
Abstract
1. Introduction
2. Geological and Geochemical Background
3. Sample Locations and Bulk Compositions
4. Analytical Methods
5. Petrography and Mineral Chemistry
6. Thermobarometry
6.1. Clinopyroxene Thermobarometry
6.2. Clinopyroxene-Bulk Thermobarometry
6.3. Whole Rock Thermobarometry
7. Primary Magma Modeling
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryan, S.E.; Ukstins Peate, I.; Peate, D.W.; Self, S.; Jerram, D.A.; Mawby, M.R.; Marsh, J.S.; Miller, J.A. The largest volcanic eruptions on Earth. Earth Sci. Rev. 2010, 102, 207–229. [Google Scholar] [CrossRef]
- Burchardt, S. (Ed.) Introduction to volcanic and igneous plumbing systems—Developing a discipline and common concepts. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–12. [Google Scholar]
- Ernst, R.E.; Liikane, D.A.; Jowitt, S.M.; Buchan, K.L.; Blanchard, J.A. A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. J. Volcanol. Geotherm. Res. 2019, 384, 75–84. [Google Scholar] [CrossRef]
- Tibaldi, A. Structure of volcano plumbing systems: A review of multi-parametric effects. J. Volcanol. Geotherm. Res. 2015, 298, 85–135. [Google Scholar] [CrossRef]
- Van Wyk de Vries, B.; van Wyk de Vries, M. Tectonics and volcanic and igneous plumbing systems. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Burchardt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 167–189. [Google Scholar]
- Burchardt, S.; Walter, T.R.; Tuffen, H. Growth of a volcanic edifice through plumbing system processes—Volcanic rift zones, magmatic sheet-intrusion swarms and long lived conduits. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Burchardt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 89–112. [Google Scholar]
- Galland, O.; Bertelsen, H.S.; Eide, C.H.; Guldstrand, F.; Haug, Ø.T.; Leanza, H.A.; Mair, K.; Palma, O.; Planke, S.; Rabbel, O.; et al. Storage and transport of magma in the layered crust—Formation of sills and related flat-lying intrusions. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust; Burchardt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–138. [Google Scholar]
- Mittal, T.; Richards, M.A. The magmatic architecture of continental flood basalts: 2. A new conceptual model. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021807. [Google Scholar] [CrossRef]
- Mittal, T.; Richards, M.A.; Fendley, I.M. The magmatic architecture of continental flood basalts 1: Observations from the Deccan Traps. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021808. [Google Scholar] [CrossRef]
- Storey, M.; Kent, R.W.; Saunders, A.D.; Hergt, J.; Salters, V.J.M.; Whitechurch, H.; Sevigny, J.H.; Thirlwall, N.F.; Leat, P.; Ghose, N.C.; et al. Lower Cretaceous rocks on continental margins and their relationship to the Kerguelen plateau. Proc. Ocean Drill. Prog. Sci. Res. 1992, 120, 33–53. [Google Scholar]
- Mahoney, J.J.; Jones, W.B.; Frey, F.A.; Salters, V.J.M.; Pyle, D.G.; Davies, H.L. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean. Chem. Geol. 1995, 120, 315–345. [Google Scholar] [CrossRef]
- Frey, F.A.; Coffin, M.F.; Wallace, P.J.; Weis, D.; Zhao, X.; Wise, S.W. Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet. Sci. Lett. 2000, 176, 73–89. [Google Scholar] [CrossRef]
- Frey, F.A.; McNaughton, N.J.; Nelson, D.R.; Delaeter, J.R.; Duncan, R.A. Petrogenesis of the Bunbury basalt, western Australia: Interaction between the Kerguelen plume and Gondwana lithosphere? Earth Planet. Sci. Lett. 1996, 144, 163–183. [Google Scholar] [CrossRef]
- Weis, D.; Frey, F.A. Isotope geochemistry of Ninetyeast Ridge basement basalts: Sr, Nd and Pb evidence for the involvement of the Kerguelen hotspot. Proc. Ocean Drill. Prog. Sci. Res. 1991, 121, 591–610. [Google Scholar]
- Coffin, M.F.; Pringle, M.S.; Duncan, R.A.; Gladczenko, T.P.; Storey, R.D.; Müller, R.D.; Gahagan, L.A. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 2002, 43, 1121–1140. [Google Scholar] [CrossRef]
- Srivastava, R.K. Early Cretaceous Greater Kerguelen large igneous province and its plumbing systems: A contemplation on concurrent magmatic records of the eastern Indian Shield and adjoining regions. Geol. J. 2022, 57, 681–693. [Google Scholar] [CrossRef]
- Talukdar, S.C.; Murthy, M.V.N. The Sylhet traps, their tectonic history and their bearing on problems of Indian flood basalt provinces. Bull. Volcanol. 1970, 35, 602–618. [Google Scholar] [CrossRef]
- Baksi, A.K. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, Northern India. Chem. Geol. 1995, 121, 73–90. [Google Scholar] [CrossRef]
- Baksi, A.K.; Barman, T.R.; Paul, D.K.; Ferar, E. Widespread early Cretaceous flood basal volcanism in eastern India: Geochemical data from the Rajmahal-Bengal-Sylhet traps. Chem. Geol. 1987, 63, 133–141. [Google Scholar] [CrossRef]
- Kent, R.W.; Saunders, A.D.; Storey, M.; Ghose, N.C. Petrology of the Early Cretaceous flood basalts and dykes along the rifted volcanic margin of eastern India. J. Southeast Asian Earth Sci. 1996, 13, 95–111. [Google Scholar] [CrossRef]
- Kent, R.W.; Saunders, A.D.; Kempton, P.D.; Ghose, N.C. Rajmahal basalts, Eastern India: Mantle sources and melt distribution at a volcanic rifted margin. In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; Mahoney, J.J., Coffin, M.F., Eds.; American Geophysical Union: Washington, DC, USA, 1997; Volume 100, pp. 145–182. [Google Scholar]
- Kent, R.W.; Pringle, M.S.; Muller, R.D.; Saunders, A.D.; Ghose, N.C. 40Ar/39Ar geochronology of the Rajmahal basalts, India and their relationship to the Kerguelen Plateau. J. Petrol. 2002, 43, 1141–1153. [Google Scholar] [CrossRef]
- Ghose, N.C.; Kent, R.W. The Rajmahal basalts: A review of their geology, composition and petrogenesis. Geol. Soc. India Mem. 2003, 53, 167–196. [Google Scholar]
- Ray, J.S.; Pattanayak, S.K.; Pande, K. Rapid emplacement of the Kerguelen plume-related Sylhet Traps, eastern India: Evidence from 40Ar-39Ar geochronology. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Ghatak, A.; Basu, A.R. The Sylhet Traps: Vestiges of the Kerguelen plume in northeastern India. Earth Planet. Sci. Lett. 2011, 308, 52–64. [Google Scholar]
- Ghatak, A.; Basu, A.R. Isotopic and trace element geochemistry of alkalic–mafic–ultramafic–carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume. Geochim. Cosmochim. Acta 2013, 115, 46–72. [Google Scholar] [CrossRef]
- Sengupta, S. Geological and geophysical studies in western part of Bengal basin, India. Amer. Assoc. Petrol. Geol. Bull. 1966, 50, 1001–1017. [Google Scholar]
- Srivastava, R.K.; Wang, F.; Shi, W.; Ernst, R.E. Early Cretaceous mafic dykes from the Chhota Nagpur Gneissic Terrane, eastern India: Evidence of multiple magma pulses for the main stage of the Greater Kerguelen mantle plume. J. Asian Earth Sci. 2023, 241, 105464. [Google Scholar] [CrossRef]
- Agrawal, J.K.; Rama, F.A. Chronology of Mesozoic volcanic of India. Proc. Indian Acad. Sci. 1976, 84A, 157–179. [Google Scholar] [CrossRef]
- Acharya, S.K. Chemical Behavior of the Volcanic Rocks of South Rajmahal, Bihar. Ph.D. Thesis, Patna University, Patna, India, 1988. [Google Scholar]
- Mahoney, J.J.; Macdougall, J.D.; Lugmair, G.W.; Gopalan, K. Kerguelen hotspot source for Rajmahal and Ninetyeast Ridge? Nature 1983, 303, 385–389. [Google Scholar] [CrossRef]
- Ghose, N.C.; Chatterjee, N.; Windley, B.F. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite. Geosci. Front. 2017, 8, 809–822. [Google Scholar] [CrossRef]
- NGRI. Gravity Maps of India Scale 1:5,000,000. NGRI/GPH-1 to 5; National Geophysical Research Institute (NGRI): Hyderabad, India, 1978. [Google Scholar]
- Kaila, K.L.; Reddy, P.R.; Mall, D.M.; Venkateswarlu, N.; Krishna, V.G.; Prasad, A.S.S.S.R.S. Crustal structure of the West Bengal basin, India, from deep seismic sounding investigations. Geophys. J. Int. 1992, 111, 45–66. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Verma, R.K.; Ashraf, M.H. Gravity field and structures of the Rajmahal Hills: Examples of the Paleo-Mesozoic continental margin in eastern India. Tectonophysics 1986, 131, 353–367. [Google Scholar] [CrossRef]
- Singh, A.P.; Kumar, N.; Singh, B. Magmatic underplating beneath the Rajmahal Trap: Gravity signature and derived 3D configuration. Proc. Indian Acad. Sci. 2004, 113, 759–769. [Google Scholar] [CrossRef]
- Ghose, N.C. Geology, tectonics and evolution of the Chhotanagpur granite gneiss complex, eastern India. In Recent Research in Geology 10; Hindustan Publish. Co.: Delhi, India, 1983; pp. 211–247. [Google Scholar]
- Chatterjee, N.; Ghose, N.C. Extensive Early Neoproterozoic high-grade metamorphism in north Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gond. Res. 2011, 20, 362–379. [Google Scholar] [CrossRef]
- Raja Rao, R.C.S.; Purushottam, A. Pitchstone flows in the Rajmahal Hills, Santhal Paraganas, Bihar. Geol. Surv. India Rec. 1963, 91, 341–348. [Google Scholar]
- Sarbadhikari, T.K. Petrology of the northeastern portion of the Rajmahal Traps. Quar. J. Geol. Min. Met. Soc. India 1968, 60, 151–171. [Google Scholar]
- Ghose, N.C.; Singh, S.P.; Singh, R.N.; Mukherjee, D. Flow stratigraphy of a selected sections of Rajmahal basalts, eastern India. J. Southeast Asian Earth Sci. 1996, 13, 83–93. [Google Scholar] [CrossRef]
- Deshmukh, S.S. Geology of the area around Taljhari and Berhait, Rajmahal hills, Santhal Paraganas, Bihar. Rep. 22nd Intern. Geol. Cong. 1964, 7, 61–84. [Google Scholar]
- Ghose, N.C. Pyroclastic rocks of India in space and time. In Proceedings of the Indian Geological Congress (IGC); Indian Geological Congress: Roorkee, India, 2000. [Google Scholar]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Chatterjee, N. An assembly of the Indian Shield at c. 1.0 Ga and shearing at c. 876-784 Ma in Eastern India: Insights from contrasting P-T paths, and burial and exhumation rates of metapelitic granulites. Precamb. Res. 2018, 317, 117–136. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nicolaysen, K. An intercontinental correlation of the mid-Neoproterozoic Eastern Indian Tectonic Zone: Evidence from the gneissic clasts in Elan Bank conglomerate, Kerguelen Plateau. Contrib. Mineral. Petrol. 2012, 163, 789–806. [Google Scholar] [CrossRef]
- Chatterjee, N.; Banerjee, M.; Bhattacharya, A.; Maji, A.K. Monazite chronology, metamorphism–anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precamb. Res. 2010, 179, 99–120. [Google Scholar] [CrossRef]
- Biswas, S.K. Mesozoic volcanism in the east coast basins of India. Ind. J. Geol. 1996, 68, 237–254. [Google Scholar]
- Desa, M.A.; Ramana, M.V.; Ramprasad, T.; Anuradha, M.; Lall, M.V.; Kumar, B.J.P. Geophysical signatures over and around the northern segment of the 85oE Ridge, Mahanadi offshore, eastern continental margin of India and their tectonic implications. J. Asian Earth Sci. 2013, 73, 460–472. [Google Scholar] [CrossRef]
- Ratheesh-Kumar, R.T.; Windley, B.F.; Sajeev, K. Tectonic inheritance of the Indian Shield: New insights from its elastic thickness structure. Tectonophysics 2014, 615–616, 40–52. [Google Scholar] [CrossRef]
- Armstrong, J.T. CITZAF—A package for correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films and particles. Microbeam Anal. 1995, 4, 177–200. [Google Scholar]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, L.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Mineral. Mag. 1988, 52, 535–550. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. Mineral. Soc. Amer. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Higgins, O.; Sheldrake, T.; Caricchi, L. Machine learning thermobarometry and chemometry using amphibole and clinopyroxene: A window into the roots of an arc volcano (Mount Liamuiga, Saint Kitts). Contrib. Mineral. Petrol. 2022, 177, 10. [Google Scholar] [CrossRef]
- Jorgenson, C.; Higgins, O.; Petrelli, M.; Bégué, F.; Caricchi, L. A machine learning-based approach to clinopyroxene thermobarometry: Model optimization and distribution for use in Earth sciences. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022904. [Google Scholar] [CrossRef] [PubMed]
- Putirka, K.D.; Johnson, M.; Kinzler, R.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Blundy, J.; Melekhova, E.; Ziberna, L.; Humphreys, M.C.S.; Cerantola, V.; Brooker, R.A.; McCammon, C.A.; Pichavant, M.; Ulmer, P. Effect of redox on Fe-Mg-Mn exchange between olivine and melt and an oxybarometer for basalts. Contrib. Mineral. Petrol. 2020, 175, 103. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. Internally consistent solution models for Fe-Mg-Mn-Ti spinels: Fe-Ti oxides. Amer. Mineral. 1988, 73, 714–726. [Google Scholar]
- Putirka, K.D. Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. Amer. Mineral. 2016, 101, 819–840. [Google Scholar] [CrossRef]
- Kinzler, R.J.; Grove, T.L. Primary magmas of mid-ocean ridge basalts.1. Experiments and methods. J. Geophys. Res. 1992, 97, 6885–6906. [Google Scholar] [CrossRef]
- Yang, H.J.; Kinzler, R.J.; Grove, T.L. Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib. Mineral. Petrol. 1996, 124, 1–18. [Google Scholar] [CrossRef]
- Tormey, D.R.; Grove, T.L.; Bryan, W.B. Experimental petrology of normal MORB near the Kane Fracture Zone: 22–25° N, mid-Atlantic Ridge. Contrib. Mineral. Petrol. 1987, 96, 121–139. [Google Scholar] [CrossRef]
- Grove, T.L. Corrections to expressions for calculating mineral components in “Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing” and “Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25° N, mid-Atlantic ridge”. Contrib. Mineral. Petrol. 1993, 114, 422–424. [Google Scholar]
- Grove, T.L.; Kinzler, R.; Bryan, W. Fractionation of mid-ocean ridge basalt (MORB). In Mantle Flow and Melt Generation at Mid-Ocean Ridges; Phipps Morgan, J., Blackman, D., Sinton, J., Eds.; Geophysical Monograph 71; American Geophysical Union: Washington, DC, USA, 1992; pp. 281–310. [Google Scholar]
- Till, C.B.; Grove, T.L.; Krawczynski, M.J. A melting model for variably metasomatized plagioclase and spinel lherzolite. J. Geophys. Res. 2012, 117, B06206. [Google Scholar] [CrossRef]
- Chatterjee, N.; Sheth, H. Origin of the Powai ankaramite, and the composition, P-T conditions of equilibration and evolution of the primary magmas of the Deccan tholeiites. Contrib. Mineral. Petrol. 2015, 169, 32. [Google Scholar] [CrossRef]
- Till, C.B. A review and update of mantle thermobarometry for primitive arc magmas. Amer. Mineral. 2017, 102, 931–947. [Google Scholar]
- Krein, S.B.; Molitor, Z.J.; Grove, T.L. ReversePetrogen: A Multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glasses. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021292. [Google Scholar]
- Roeder, P.L.; Emslie, R.F. Olivine liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Thompson, R.N.; Gibson, S.A. Subcontinental mantle plumes, hotspots and preexisting thinspots. J. Geol. Soc. Lond. 1991, 148, 973–977. [Google Scholar] [CrossRef]
- Ebinger, C.J.; Sleep, N.H. Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 1998, 395, 788–791. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.A.; Hauff, F.; Kluegel, A.; Bouabdellah, M.; Thirlwall, M.F. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 2009, 37, 283–286. [Google Scholar] [CrossRef]
- Begg, G.C.; Hronsky, J.A.M.; Arndt, N.T.; Griffin, W.L.; O’Reilly, S.Y.; Hayward, N. Lithospheric, cratonic, and geodynamic setting of Ni–Cu–PGE sulfide deposits. Econ. Geol. 2010, 105, 1057–1070. [Google Scholar] [CrossRef]
- Begg, G.C.; Hronsky, J.M.A.; Griffin, W.L.; O’Reilly, S.Y. Global- to deposit-scale controls on orthomagmatic Ni-Cu(-PGE) and PGE reef ore formation. In Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time; Mondal, S., Griffin, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Royer, J.-Y.; Coffin, M.F. Jurassic to Eocene plate tectonic reconstructions in the Kerguelen Plateau region. Proc. Ocean Drill. Prog. Sci. Res. 1992, 120, 917–928. [Google Scholar]
- Marshall, J.F.; Lee, C.S. Basin framework and resource potential of the Abrolhos sub-basin. In Geophysical Yearbook 1988–1989; Wolf, K.H., Paine, A.G.L., Eds.; Australian Bureau of Mineral Resources: Canberra, Australia, 1989; pp. 63–67. [Google Scholar]
Region | Location | Aug | Pgt | Pl | Hem | Ilm | Other | |
---|---|---|---|---|---|---|---|---|
Northeast | ||||||||
Sahebganj | RB88-12 | mph | mph | phen | gm | |||
Moti Jharna | RB88-19 | phen | phen | gm | ||||
Maharajpur | RB88-16 | phen | mph | phen | gm | gm | ||
RB88-17 | phen | phen | gm | gm | ||||
RB88-18 | phen | phen | gm | gm | ||||
Taljhari | EB89-154 | phen | phen | |||||
RB88-24 | phen | phen | gm | gm | ||||
Tinpahar | RB88-31 | phen | phen | gm | Mgh | |||
RB88-32 | phen | phen | gm | gm | ||||
RB88-39 | mph | phen | Ol | |||||
RB88-35 | mph | phen | gm | gm | Cumm | |||
Kherwa | EB89-112 | mph | mph | phen | gm | Zeol | ||
EB89-117 | mph | mph | phen | gm | gm | Zeol | ||
EB89-118 | mph | mph | phen | gm | ||||
Berhait | EB89-121 | phen | mph | phen | gm | gm | ||
EB89-123 | mph | phen | gm | |||||
EB89-127 | mph | mph | gm | |||||
EB89-128 | mph | mph | phen | gm | gm | |||
Northwest | ||||||||
Dariyachak | DAR-2GB | phen | phen | gm | Mgh | |||
DAR-5YL | phen | mph | phen | gm | gm | |||
DAR10-90 | phen | phen | gm | gm | ||||
Central | ||||||||
Litipara-Amrapara Rd. | LA1 | phen | phen | gm | gm | |||
LA2 | phen | phen | gm | gm | ||||
LA4 | phen | phen | gm | gm | ||||
LA5 | phen | phen | gm | gm | ||||
LA6 | phen | phen | gm | gm | ||||
Litipara-Simlong Rd. | TT1 | phen | phen | gm | gm | |||
TT2 | phen | phen | gm | |||||
TT3 | phen | mph | phen | gm | gm | |||
TT4 | phen | phen | gm | gm | ||||
Litipara-Hiranpur Rd. | LH1 | phen | phen | gm | gm | |||
Amrapara | BL1 | phen | phen | gm | gm | Kfs, Zeol | ||
BL3 | phen | phen | gm | gm | Kfs, Zeol | |||
Kundpahar | KP1 | phen | phen | gm | gm | |||
KP2 | mph | phen | gm | gm | Kfs, Zeol | |||
KP3 | mph | phen | gm | gm | ||||
KP4 | mph | phen | ||||||
KP5 | phen | phen | gm | gm | ||||
KP6 | phen | phen | gm | gm | ||||
KP7 | phen | phen | gm | gm |
A. Augite and Plagioclase | ||||||
Sector | Northeast | Northwest | Central | |||
core | rim | core | rim | core | rim | |
Augite | ||||||
En | 45–56 | 49–52 | 48–54 | 49–50 | 47–54 | 49–54 |
Fs | 8–21 | 10–15 | 9–12 | 11–15 | 7–15 | 7–19 |
Wo | 29–39 | 34–39 | 36–40 | 37–40 | 36–41 | 31–41 |
Mg# | 68–87 | 76–83 | 80–85 | 77–82 | 76–89 | 73–88 |
Plagioclase | ||||||
An | 57–82 | 58–75 | 61–71 | 45–66 | 60–81 | 51–77 |
Ab | 18–42 | 25–41 | 28–38 | 34–54 | 19–39 | 22–48 |
Or | 0–4 | 0–3 | 0–1 | 0–1 | 0–1 | 0–1 |
B. Other minerals | ||||||
All sectors | ||||||
Ilmenite | Hematite | Pigeonite | Olivine | |||
Hem | 0–7 | 43–92 | En | 42–74 | Fo | 71–76 |
Ilm | 85–97 | 6–53 | Fs | 18–46 | Fa | 24–30 |
Pph | 1–1 | 0–12 | Wo | 4–12 | ||
Gk | 1–9 | 0–6 | Mg# | 48–81 |
Location | Sample | P | T | P | T | P | T | P | T |
---|---|---|---|---|---|---|---|---|---|
kbar | °C | kbar | °C | kbar | °C | kbar | °C | ||
Avg | Avg | ||||||||
Equations (32a) and (32d) [54] | [55] | [56] | |||||||
Northeast sector | |||||||||
Sahibganj | RB88-12 | 0.3 | 1156 | 0.3 | 1156 | 2.0 ± 1.0 | 1138 ± 44 | 0.0 ± 0.0 | 1139 ± 21 |
Moti Jharna | RB88-19 | 3.2 | 1180 | 3.2 | 1180 | 4.6 ± 2.0 | 1151 ± 19 | 0.0 ± 2.3 | 1157 ± 25 |
Maharajpur | RB88-16 | 0.001 | 1119 | 1.6 | 1145 | 2.0 ± 0.7 | 1133 ± 46 | 0.0 ± 0.1 | 1125 ± 23 |
RB88-18 | 3.2 | 1172 | |||||||
Taljhari | EB89-154 | 0.001 | 1147 | 0.001 | 1147 | 2.0 ± 0.5 | 1137 ± 52 | 0.0 ± 0.2 | 1141 ± 23 |
RB88-24 | 0.001 | 1147 | |||||||
Tinpahar | RB88-31 | 4.6 | 1209 | 5.4 | 1195 | 4.5 ± 2.2 | 1127 ± 43 | 1.8 ± 4.5 | 1147 ± 33 |
RB88-32 | 4.4 | 1196 | |||||||
RB88-39 | 7.5 | 1218 | |||||||
RB88-35 | 5.0 | 1156 | |||||||
Kherwa | EB89-112 | 0.001 | 1111 | 1.3 | 1136 | 3.7 ± 2.1 | 1099 ± 62 | 0.0 ± 0.7 | 1119 ± 43 |
EB89-117 | 2.7 | 1160 | |||||||
Berhait | EB89-121 | 6.6 | 1213 | 1.8 | 1160 | 3.3 ± 2.6 | 1148 ± 32 | 0.4 ± 1.0 | 1134 ± 34 |
EB89-123 | 0.001 | 1127 | |||||||
EB89-127 | 0.1 | 1147 | |||||||
EB89-128 | 0.5 | 1152 | |||||||
Northwest sector | |||||||||
Dariachak | DAR-2GB | 2.0 | 1170 | 0.7 | 1134 | 2.0 ± 0.8 | 1093 ± 42 | 0.1 ± 0.3 | 1137 ± 28 |
DAR-5YL | 0.001 | 1100 | |||||||
DAR10-90 | 0.001 | 1131 | |||||||
Central sector | |||||||||
Litipara-Amrapara | LA1 | 2.2 | 1160 | 1.5 | 1160 | 2.0 ± 0.6 | 1137 ± 50 | 0.0 ± 0.6 | 1139 ± 29 |
LA2 | 3.0 | 1177 | |||||||
LA4 | 0.8 | 1155 | |||||||
LA5 | 0.6 | 1156 | |||||||
LA6 | 0.8 | 1154 | |||||||
Litipara-Simlong | TT1 | 2.8 | 1185 | 1.1 | 1163 | 3.1 ± 1.9 | 1141 ± 32 | 0.0 ± 0.5 | 1149 ± 25 |
TT2 | 0.04 | 1162 | |||||||
TT3 | 1.7 | 1166 | |||||||
TT4 | 0.001 | 1138 | |||||||
Litipara-Hiranpur | LH1 | 0.1 | 1155 | 0.1 | 1155 | 4.1 ± 2.6 | 1150 ± 27 | 0.0 ± 1.0 | 1149 ± 28 |
Amrapara | BL1 | 2.3 | 1188 | 1.9 | 1182 | 3.8 ± 2.4 | 1096 ± 51 | 0.0 ± 1.2 | 1152 ± 48 |
BL3 | 1.6 | 1175 | |||||||
Kundpahar | KP1 | 3.6 | 1192 | 1.9 | 1162 | 2.3 ± 1.1 | 1123 ± 52 | 0.0 ± 0.5 | 1136 ± 27 |
KP2 | 3.3 | 1190 | |||||||
KP3 | 2.0 | 1157 | |||||||
KP4 | 0.7 | 1156 | |||||||
KP5 | 2.5 | 1161 | |||||||
KP6 | 0.001 | 1125 | |||||||
KP7 | 1.3 | 1153 |
Location | Sample | P (kbar) | T (°C) | KD a | Pl (%) b |
---|---|---|---|---|---|
Equations (P1) and (T1) [57]: | |||||
Central sector | |||||
Litipara-Amrapara | LA2 | 4.6 | 1185 | 0.29 | |
Litipara-Simlong | TT3 | 1.6 | 1166 | 0.32 | |
Litipara-Hiranpur | LH1 | 0.001 | 1137 | 0.31 | |
[61], and Equation (16) [54]: | |||||
Northeast sector | |||||
Moti Jharna | 88-21 | 4 | 1188 | 4 | |
Tinpahar | 88-30 | 2 | 1168 | 7 | |
88-42 | 3.5 | 1183 | 4 | ||
Northwest sector | |||||
S of Dariachak c | RJ1-25-1 | 1 | 1168 | 6 | |
S of Dariachak d | RJ1-26-7 | 0.001 | 1147 | 4 | |
Central sector | |||||
Litipara-Simlong | TT3 | 2 | 1169 | 5 | |
Litipara-Hiranpur | LH1 | 0.001 | 1158 | 10.5 | |
W of Pakur e | RJ1-30-3 | 0.001 | 1158 | 3.5 | |
RJ1-30-4 | 0.001 | 1156 | 3.5 | ||
Kundpahar | KP6 | 0.001 | 1157 | 10 |
Crystallization | Stage 1 a | Stage 2 a | Primary Magma b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P (kbar) | T (°C) | F% | Ol | Pl | Cpx | F% | Ol | Pl | P (kbar) | T (°C) | |
Northeast sector | |||||||||||
88-21 | 4 | 1188 | 60.7 | 13.7 | 52.4 | 33.9 | 12.2 | 28.6 | 71.4 | 9 | 1286 |
88-30 | 2 | 1168 | 60.3 | 13.0 | 52.6 | 34.4 | 19.8 | 30.2 | 69.8 | 9 | 1284 |
88-42 | 3.5 | 1183 | 57.8 | 13.0 | 53.4 | 33.6 | 14.8 | 30.2 | 69.8 | 9 | 1284 |
Northwest sector | |||||||||||
RJ1-25-1 | 1 | 1168 | 46.8 | 12.2 | 53.1 | 34.7 | 22.9 | 30.2 | 69.8 | 9 | 1280 |
RJ1-26-7 | 0.001 | 1147 | 57.8 | 10.9 | 52.6 | 36.4 | 30.3 | 30.2 | 69.8 | 9 | 1280 |
Central sector | |||||||||||
TT3 | 2 | 1169 | 53.8 | 12.5 | 53.6 | 33.9 | 19.8 | 29.4 | 70.6 | 8 | 1268 |
LH1 | 0.001 | 1158 | 54.2 | 13.0 | 51.9 | 35.2 | 26.0 | 28.6 | 71.4 | 8.5 | 1275 |
RJ1-30-3 | 0.001 | 1158 | 55.6 | 12.1 | 50.2 | 37.7 | 29.6 | 30.2 | 69.8 | 9 | 1281 |
RJ1-30-4 | 0.001 | 1156 | 56.5 | 10.9 | 52.6 | 36.4 | 29.6 | 30.2 | 69.8 | 9 | 1281 |
KP6 | 0.001 | 1157 | 54.2 | 11.8 | 51.6 | 36.6 | 28.1 | 30.2 | 69.8 | 9 | 1282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, N.; Ghose, N.C. Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System. Minerals 2023, 13, 426. https://doi.org/10.3390/min13030426
Chatterjee N, Ghose NC. Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System. Minerals. 2023; 13(3):426. https://doi.org/10.3390/min13030426
Chicago/Turabian StyleChatterjee, Nilanjan, and Naresh C. Ghose. 2023. "Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System" Minerals 13, no. 3: 426. https://doi.org/10.3390/min13030426
APA StyleChatterjee, N., & Ghose, N. C. (2023). Thermobarometry of the Rajmahal Continental Flood Basalts and Their Primary Magmas: Implications for the Magmatic Plumbing System. Minerals, 13(3), 426. https://doi.org/10.3390/min13030426