Imputation of Gold Recovery Data from Low Grade Gold Ore Using Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Experimental Procedure
2.3. Self-Organizing Maps Technique
2.4. SOM Preparation and Training Criteria
3. Results and Discussion
3.1. Geological Database
3.2. Self-Organizing Maps Analysis
3.3. Correlation and Results Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konadu, K.J.; Huddy, R.J.; Harrison, S.T.L.; Osseo-Asare, K.; Sasaki, K. Sequential pretreatment of double refractory gold ore (DRGO) with a thermophilic iron oxidizing archeaon and fungal crude enzymes. Miner. Eng. 2019, 138, 86–94. [Google Scholar] [CrossRef]
- Lorenzen, L. Some guidelines to the design of a diagnostic leaching experiment. Miner. Eng. 1995, 8, 247–256. [Google Scholar] [CrossRef]
- Soltani, F.; Darabi, H.; Badri, R.; Zamankhan, P. Improved recovery of a low-grade refractory gold ore using flotation–preoxidation–cyanidation methods. Int. J. Min. Sci. Technol. 2014, 24, 537–542. [Google Scholar] [CrossRef]
- Dunne, R. Flotation of gold and gold-bearing ores. In Gold Ore Processing: Project Development and Operations, 1st ed.; Adams, M.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 315–338. [Google Scholar]
- Asamoah, R.K.; Skinner, W.; Addai-Mensah, J. Enhancing gold recovery from refractory bio-oxidised gold concentrates through high intensity milling. Miner. Proces. Extr. Metall. 2020, 129, 64–73. [Google Scholar] [CrossRef]
- Butcher, A.R. A practical guide to some aspects of mineralogy that affect flotation. In Flotation Plant Optimisation, 16th ed.; Greet, C.J., Ed.; Spectrum Series; Australasian Institute of Mining & Metallurgy: Perth, Australia, 2010; pp. 83–93. [Google Scholar]
- Chryssoulis, S.L. Using Mineralogy to Optimize Gold Recovery by Flotation. JOM 2001, 53, 48–50. [Google Scholar] [CrossRef]
- Gu, Y. Automated scanning electron microscope based mineral liberation analysis: An introduction to JKMRC/FEI mineral liberation analyser. J. Min. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar] [CrossRef]
- Goodall, W.R. Characterisation of mineralogy and gold deportment for complex tailings deposits using QEMSCAN. Miner. Eng. 2008, 21, 518–523. [Google Scholar] [CrossRef]
- Goodall, W.R.; Scales, P.J.; Butcher, A.R. The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores. Miner. Eng. 2005, 18, 877–886. [Google Scholar] [CrossRef]
- Coetzee, L.L.; Theron, S.J.; Martin, G.J.; Van Der Merwe, J.; Stanek, T.A. Modern gold deportments and its application to industry. Miner. Eng. 2011, 24, 565–575. [Google Scholar] [CrossRef]
- Maxwell, A.P.; Denby, B.; Pitts, W. The Application of Neural Networks to Size Analysis of Minerals on Conveyors. In Proceedings of the 25th International Symposium on the Application of Computers and Operations Research in the Minerals Industries (APCOM), Brisbane, Australia, 9–14 July 1995. [Google Scholar]
- Petersen, K.; Lorenzen, L.; Amandale, D. The use of neural network analysis of diagnostic leaching data in gold liberation modeling. J. S. Afr. Inst. Min. Metall. 2003, 103, 113–118. [Google Scholar]
- Bakarr, J.A.; Sasaki, K.; Yaguba, J.; Karim, B.A. Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation: A case study. Int. J. Min. Sci. Technol. 2016, 26, 581–585. [Google Scholar] [CrossRef]
- Lishchuk, V.; Lund, C.; Ghorbani, Y. Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy. Miner. Eng. 2019, 34, 156–165. [Google Scholar] [CrossRef]
- Oliver, S.; Willingham, D. Maximise orebody value through the automation of resource model development using machine learning. In Proceedings of the Third AusIMM International Geometallurgy Conference, Perth, Australia, 15–16 June 2016; pp. 295–301. [Google Scholar]
- Lishchuk, V.; Koch, P.H.; Ghorbani, Y.; Butcher, A.R. Towards integrated geometallurgical approach: Critical review of current practices and future trends. Miner. Eng. 2020, 145, 2–16. [Google Scholar] [CrossRef]
- Lund, C.; Lamberg, P.; Linderberg, T. Practical way to quantify minerals from chemical assays at Malmberget iron ore operations. An important tool for the geometallurgical program. Miner. Eng. 2013, 49, 7–16. [Google Scholar] [CrossRef]
- Lamberg, P. Particles—the bridge between geology and metallurgy. In Proceedings of the Conference on Mineral Engineering, Luleå, Sweden, 7–9 February 2013; pp. 1–16. [Google Scholar]
- Lane, G.R.; Martin, C.; Pirard, E. Techniques and applications for predictive metallurgy and ore characterization using optical image analysis. Miner. Eng. 2008, 21, 568–577. [Google Scholar] [CrossRef]
- Henley, K.J. Ore-dressing mineralogy—A review of techniques, applications and recent developments. Geol. Soc. S. Afr. 1983, 7, 175–200. [Google Scholar]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 79, 1464–1480. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organizing Maps, 3rd ed.; Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo, Springer Series; Information Sciences: Berlin, Germany, 2001. [Google Scholar]
- Carneiro, C.C.; Silva Yanez, D.N.V.; Ulsen, C.; Fraser, J.S.; Antoniassi, J.L.; Paz, S.; Angélica, R.S.; Kahn, H. Imputation of Reactive Silica and Available Alumina in Bauxites by Self-Organizing Maps. In Proceedings of the 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization, Nancy, France, 28–30 June 2017; WSOM: Geneva, Switzerland, 2017. [Google Scholar]
- Malek, M.A.; Harun, A.; Shamsuddin, S.M.; Mohamad, I. Imputation of time series data via Kohonen Self-Organizing Maps in the presence of missing data. Proc. World Acedemy Sci. Eng. Technol. 2008, 31, 502–507. [Google Scholar]
- Fraser, S.J.; Dickson, B.L. A New Method for Data Integration and Integrated Data Interpretation: Self-Organising Maps. In Proceedings of the Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; Milkereit, B., Ed.; pp. 907–910. [Google Scholar]
- Carneiro, C.C.; Fraser, S.J.; Crósta, A.P.; Silva, A.M.; Barros, C.E.D.M. Semiautomated geologic mapping using self-organizing maps and airborne geophysics in the Brazilian Amazon. Geophysics 2012, 77, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ultsch, A.; Siemon, H.P. Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis. In Proceedings of the International Neural Network Conference, Paris, France, 9–13 July 1990; pp. 305–308. [Google Scholar]
- Friedel, M.J. Modeling hydrologic and geomorphologic responses across post-fire landscapes using a self-organizing map approach. Environ. Model. Softw. 2011, 26, 1660–1674. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, E. Clustering of the self organized map. IEEE Trans. Neural Netw. 2000, 1, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.R. Caracterização Tecnológica do Minério de Ouro da Mina Morro do Ouro—Paracatu, MG. Master’s Thesis, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil, 2016. [Google Scholar]
- Deschênes, G.; Rousseau, M.; Tardif, J.; Prud’homme, P.J.H. Effect of the composition of some minerals on cyanidation and use of lead nitrate and oxygen to alleviate their impact. Hydrometallurgy 1998, 50, 205–222. [Google Scholar] [CrossRef]
Exclusion % | E_0% | E_10% | E_20% | E_30% | E_40% | E_50% | Variables |
---|---|---|---|---|---|---|---|
Number of samples | 1397 | 140 | 279 | 419 | 559 | 699 | 7 |
Statistic | Au (g/t) | As (ppm) | S (%) | Al2O3 (%) | CaO (%) | K2O (%) | MgO (%) |
---|---|---|---|---|---|---|---|
N | 1397 | 1397 | 1390 | 1073 | 1174 | 1205 | 1168 |
Mean | 0.825 | 2204 | 0.956 | 4.603 | 0.306 | 0.181 | 0.463 |
Median | 0.771 | 2108 | 0.943 | 4.186 | 0.311 | 0.175 | 0.461 |
SD | 0.488 | 1005 | 0.258 | 2.150 | 0.074 | 0.031 | 0.065 |
Maximum | 1.99 | 6171 | 1.920 | 15.683 | 0.490 | 0.290 | 0.656 |
Minimum | 0.001 | 44 | 0.352 | 1.480 | 0.100 | 0.100 | 0.230 |
Exclusion | Rows | Columns | Te | Qe |
---|---|---|---|---|
E10% | 20 | 20 | 0.106 | 0.776 |
E20% | 20 | 20 | 0.092 | 0.769 |
E30% | 20 | 20 | 0.106 | 0.752 |
E40% | 20 | 20 | 0.109 | 0.739 |
E50% | 20 | 20 | 0.082 | 0.730 |
Rough Training | Fine Training | ||||
---|---|---|---|---|---|
Ir1 | Fr1 | TL1 | Ir2 | Fr2 | TL2 |
29 | 8 | 20 | 8 | 1 | 400 |
Data | Exclusion (%) | Samples | Minimum | Maximum | Mean | Median | SD | R2 | RMSE |
---|---|---|---|---|---|---|---|---|---|
Original | 10 | 140 | 15.30 | 93.29 | 76.04 | 84.15 | 17.85 | 0.93 | 4.42 |
BMU | 26.01 | 92.70 | 75.49 | 83.26 | 17.20 | ||||
Original | 20 | 279 | 10.36 | 93.56 | 73.54 | 81.74 | 18.94 | 0.90 | 4.79 |
BMU | 27.02 | 92.63 | 74.00 | 81.33 | 17.76 | ||||
Original | 30 | 419 | 10.36 | 93.56 | 80.74 | 86.20 | 15.09 | 0.89 | 4.83 |
BMU | 25.10 | 92.81 | 80.43 | 86.32 | 14.84 | ||||
Original | 40 | 559 | 9.48 | 93.40 | 78.92 | 85.06 | 15.62 | 0.86 | 4.96 |
BMU | 30.75 | 92.70 | 78.99 | 85.22 | 14.31 | ||||
Original | 50 | 699 | 8.58 | 93.40 | 77.71 | 83.64 | 15.92 | 0.85 | 5.89 |
BMU | 26.01 | 92.60 | 77.99 | 84.82 | 15.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, F.R.; Carneiro, C.d.C.; Ulsen, C. Imputation of Gold Recovery Data from Low Grade Gold Ore Using Artificial Neural Network. Minerals 2023, 13, 340. https://doi.org/10.3390/min13030340
Costa FR, Carneiro CdC, Ulsen C. Imputation of Gold Recovery Data from Low Grade Gold Ore Using Artificial Neural Network. Minerals. 2023; 13(3):340. https://doi.org/10.3390/min13030340
Chicago/Turabian StyleCosta, Fabrizzio Rodrigues, Cleyton de Carvalho Carneiro, and Carina Ulsen. 2023. "Imputation of Gold Recovery Data from Low Grade Gold Ore Using Artificial Neural Network" Minerals 13, no. 3: 340. https://doi.org/10.3390/min13030340
APA StyleCosta, F. R., Carneiro, C. d. C., & Ulsen, C. (2023). Imputation of Gold Recovery Data from Low Grade Gold Ore Using Artificial Neural Network. Minerals, 13(3), 340. https://doi.org/10.3390/min13030340