Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Procedures
2.2.1. Sampling and Samples Preparation
2.2.2. Analytical Techniques
- Mine waste rocks samples
- Soil samples
2.2.3. Acid Generation Potential of CMWR
2.3. Data Analysis
2.3.1. Descriptive Statistics for TEs Concentrations
2.3.2. Enrichment Factors
2.3.3. Geochemical Background
2.3.4. Geoaccumulation Index
2.3.5. Geochemical Mapping Based on Geostatistics
3. Results and Discussion
3.1. Coal Mine Waste Rocks Characterization
3.1.1. Mineralogical and Chemical Characterization
3.1.2. Environmental Behavior Characterization
3.2. Statistical Analysis of Soil Geochemical Data
3.3. Determination of the Soil Geochemical Background and Anomalous Values
3.4. Assessment of As, Pb, and Zn Contamination Using the Geoaccumulation Index
3.5. Geochemical Mapping Using GIS and Geostatistics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Shi, H.; Bai, Z.; Zhou, W.; Liu, K.; Wang, M.; He, Y. Heavy Metal Concentrations of Soils near the Large Opencast Coal Mine Pits in China. Chemosphere 2020, 244, 125360. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Gatica, J.; Selles, I.; Bravo, M.A.; Tessini, C.; Barros-Parada, W.; Novoselov, A.; Neaman, A. Global Issues in Setting Legal Limits on Soil Metal Contamination: A Case Study of Chile. Chemosphere 2022, 290, 133404. [Google Scholar] [CrossRef] [PubMed]
- MED. Plan d’action National Pour La Valorisation Des Rejets Miniers. Moroccan Environmental Department, 2021. Available online: https://mtedd.gov.ma/images/PUBLICATIONS/plan_national_dechets_miniers.pdf (accessed on 22 January 2023).
- Argane, R.; El Adnani, M.; Benzaazoua, M.; Bouzahzah, H.; Khalil, A.; Hakkou, R.; Taha, Y. Geochemical Behavior and Environmental Risks Related to the Use of Abandoned Base-Metal Tailings as Construction Material in the Upper-Moulouya District, Morocco. Environ. Sci. Pollut. Res. 2016, 23, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Hakkou, R.; Benzaazoua, M.; Bussière, B. Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 2. Mine Waste Geochemical Behavior. Mine Water Environ. 2008, 27, 160–170. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; Michelot, J.L.; Benkaddour, A.; Hanich, L.; Heddoun, O. Origin of Groundwater Salinity in the Draa Sfar Polymetallic Mine Area Using Conservative Elements (Morocco). Water 2023, 15, 82. [Google Scholar] [CrossRef]
- Mounia, B. Impact of Mining Wastes on Groundwater Quality in the Province Jerada (Eastern Morocco). Int. J. Eng. Sci. Technol. 2013, 5, 1601–1615. [Google Scholar]
- Khalil, A.; Hanich, L.; Bannari, A.; Zouhri, L.; Pourret, O.; Hakkou, R. Assessment of Soil Contamination around an Abandoned Mine in a Semi-Arid Environment Using Geochemistry and Geostatistics: Pre-Work of Geochemical Process Modeling with Numerical Models. J. Geochemical Explor. 2013, 125, 117–129. [Google Scholar] [CrossRef]
- Elyaziji, A.; Khalil, A.; Hakkou, R.; Benzaazoua, M.; Alansari, A. Bewertung von Spurenelementen in Böden Und Grubenwasser Eines Stillgelegten Manganbergwerks (Anti Atlas, Marokko). Mine Water Environ. 2016, 35, 486–496. [Google Scholar] [CrossRef]
- Golik, V.I.; Gashimova, Z.A.; Liskova, M.Y.; Kongar-Syuryun, C.B. To the Problem of Minimizing the Volume of Mobile Dust in the Development of Pits. Bezop. Tr. v Promyshlennosti 2021, 28–33. [Google Scholar] [CrossRef]
- Golik, V.I.; Stas, G.V.; Liskova, M.Y.; Kongar-Syuryun, C. Improvement of the Occupational Safety by Radical Isolation of Pollution Sources during Underground Ore Mining. Bezop. Tr. v Promyshlennosti 2021, 7, 7–12. [Google Scholar] [CrossRef]
- Strugała-Wilczek, A.; Kapusta, K. Migration of Co, Cd, Cu, Pb to the Groundwater in the Area of Underground Coal Gasification Experiment in a Shallow Coal Seam in the Experimental Mine ‘Barbara’ in Poland. Fuel 2022, 317, 122831. [Google Scholar] [CrossRef]
- Li, H.; Ji, H. Chemical Speciation, Vertical Profile and Human Health Risk Assessment of Heavy Metals in Soils from Coal-Mine Brownfield, Beijing, China. J. Geochem. Explor. 2017, 183, 22–32. [Google Scholar] [CrossRef]
- Fatkulina, A.V.; Konokotin, D.N.; Koroleva, L.A.; Salov, S.M.; Samoylenko, D.V. Environmental Problems in the Coal Mining Industry in Russia. IOP Conf. Ser. Earth Environ. Sci. 2021, 867, 012087. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Shi, H.; Zhou, W.; Liu, X. Heavy Metal Pollution of Soils from Coal Mines in China. Nat. Hazards 2019, 99, 1163–1177. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste Management in the Mining Industry of Metals Ores, Coal, Oil and Natural Gas—A Review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef]
- Vo, T.L.; Nash, W.; Del Galdo, M.; Rezania, M.; Crane, R.; Mousavi Nezhad, M.; Ferrara, L. Coal Mining Wastes Valorization as Raw Geomaterials in Construction: A Review with New Perspectives. J. Clean. Prod. 2022, 336, 130213. [Google Scholar] [CrossRef]
- Pinetown, K.L.; Ward, C.R.; van der Westhuizen, W.A. Quantitative Evaluation of Minerals in Coal Deposits in the Witbank and Highveld Coalfields, and the Potential Impact on Acid Mine Drainage. Int. J. Coal Geol. 2007, 70, 166–183. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution Assessment of Heavy Metals in Soils of India and Ecological Risk Assessment: A State-of-the-Art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef]
- de Souza, M.R.; Garcia, A.L.H.; Dalberto, D.; Nicolau, C.; Gazzineu, A.L.; Grivicich, I.; Boaretto, F.; Picada, J.N.; de Souza, G.M.S.; Chytry, P.; et al. Evaluation of Soils under the Influence of Coal Mining and a Thermoelectric Plant in the City of Candiota and Vicinity, Brazil. Mutat. Res. Toxicol. Environ. Mutagen. 2021, 866, 503350. [Google Scholar] [CrossRef]
- Łupieżowiec, M.; Rybak, J.; Różański, Z.; Dobrzycki, P.; Jędrzejczyk, W. Design and Construction of Foundations for Industrial Facilities in the Areas of Former Post-Mining Waste Dumps. Energies 2022, 15, 5766. [Google Scholar] [CrossRef]
- Khayrutdinov, M.M.; Golik, V.I.; Aleksakhin, A.V.; Trushina, E.V.; Lazareva, N.V.; Aleksakhina, Y.V. Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining. Resources 2022, 11, 88. [Google Scholar] [CrossRef]
- Moulouya Hydraulic Basin Agency. Meteorological Data; Gafayt Meteorological Station: Gafayt, Morocco, 2020. [Google Scholar]
- Chellai, H.; Essamoud, R.; Rjimati, E.C. Les Principales Mines Du Maroc: Les Mines Du Moyen Atlas et Des Horsts, Le Bassin Houiller de Jerada (Chaîne Des Horsts, Maroc Oriental) / The Jerada Coal Basin (Horst Chain, Eastern Morocco). Nouv. Guid. Géologiques Min. Du Maroc 2011, 9, 331–335. [Google Scholar]
- Young, R. The Rietveld Method; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- EPA-1311 SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure; EPA: Washington, DC, USA, 1992.
- US-EPA. Hazardous Waste Characteristics. United States Environmental Protection Agency, 2009. Available online: https://www.epa.gov/hw/user-friendly-reference-document-hazardous-waste-characteristics (accessed on 22 January 2023).
- Plante, B.; Bussière, B.; Benzaazoua, M. Static Tests Response on 5 Canadian Hard Rock Mine Tailings with Low Net Acid-Generating Potentials. J. Geochem. Explor. 2012, 114, 57–69. [Google Scholar] [CrossRef]
- Beygi, M.; Jalali, M. Background Levels of Some Trace Elements in Calcareous Soils of the Hamedan Province, Iran. CATENA 2018, 162, 303–316. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the Trace Elementcomposition of Sedimentary Rocks and Uppercontinental Crust. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef]
- Martínez, J.; Llamas, J.; de Miguel, E.; Rey, J.; Hidalgo, M.C. Determination of the Geochemical Background in a Metal Mining Site: Example of the Mining District of Linares (South Spain). J. Geochem. Explor. 2007, 94, 19–29. [Google Scholar] [CrossRef]
- Li, X.; Feng, L. Multivariate and Geostatistical Analyzes of Metals in Urban Soil of Weinan Industrial Areas, Northwest of China. Atmos. Environ. 2012, 47, 58–65. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; da Silva, J.B.; dos Santos, I.F.; de Oliveira, O.M.C.; Cerda, V.; Queiroz, A.F.S. Use of Pollution Indices and Ecological Risk in the Assessment of Contamination from Chemical Elements in Soils and Sediments—Practical Aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E.S. Multivariate Analysis of Heavy Metal Contamination in Urban Dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- Lu, X.; Li, L.Y.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination Assessment of Mercury and Arsenic in Roadway Dust from Baoji, China. Atmos. Environ. 2009, 43, 2489–2496. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination Assessment of Copper, Lead, Zinc, Manganese and Nickel in Street Dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- CHESTER, R.; STONER, J.H. Pb in Particulates from the Lower Atmosphere of the Eastern Atlantic. Nature 1973, 245, 27–28. [Google Scholar] [CrossRef]
- Zoller, W.H.; Gladney, E.S.; Duce, R.A. Atmospheric Concentrations and Sources of Trace Metals at the South Pole. Science 1974, 183, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Imin, B.; Abliz, A.; Shi, Q.; Liu, S.; Hao, L. Quantitatively Assessing the Risks and Possible Sources of Toxic Metals in Soil from an Arid, Coal-Dependent Industrial Region in NW China. J. Geochem. Explor. 2020, 212, 106505. [Google Scholar] [CrossRef]
- Hawkes, H.; Webb, J.S. Geochemistry in Mineral Exploration; Harper Row Publ.: New York, NY, USA, 1962. [Google Scholar]
- Zhou, X.; Xia, B. Defining and Modeling the Soil Geochemical Background of Heavy Metals from the Hengshi River Watershed (Southern China): Integrating EDA, Stochastic Simulation and Magnetic Parameters. J. Hazard. Mater. 2010, 180, 542–551. [Google Scholar] [CrossRef]
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Müller, G. Die Schwermetallbelastung Der Sedimente Des Neckars Und Seiner Nebenflusse. Chem. Zeitung 1981, 105, 157–164. [Google Scholar]
- ESRI Environmental Systems Research Institute Inc. Available online: https://www.esri.com/en-us/arcgis (accessed on 15 January 2023).
- Zhen, J.; Pei, T.; Xie, S. Kriging Methods with Auxiliary Nighttime Lights Data to Detect Potentially Toxic Metals Concentrations in Soil. Sci. Total Environ. 2019, 659, 363–371. [Google Scholar] [CrossRef]
- Li, H.; Lin, Z.-H.; Liu, S.X. Application of Kriging Technique in Estimating Soil Moisture in China. Geogr. Res. 2001, 20, 446–452. [Google Scholar]
- Taha, Y.; Benzaazoua, M.; Hakkou, R.; Mansori, M. Coal Mine Wastes Recycling for Coal Recovery and Eco-Friendly Bricks Production. Miner. Eng. 2017, 107, 123–138. [Google Scholar] [CrossRef]
- Taha, Y.; Elghali, A.; Derhy, M.; Amrani, M.; Hakkou, R.; Benzaazoua, M. Towards an Integrated Approach for Zero Coal Mine Waste Storage: Solutions Based on Materials Circularity and Sustainable Resource Governance. Miner. Process. Extr. Metall. Rev. 2022, 43, 1–14. [Google Scholar] [CrossRef]
- Zhang, C.; Fay, D.; McGrath, D.; Grennan, E.; Carton, O.T. Statistical Analyses of Geochemical Variables in Soils of Ireland. Geoderma 2008, 146, 378–390. [Google Scholar] [CrossRef]
- CCME. Canadian Soil Quality Guidelines for the Protection of Environment and Human Health. Canadian Council of Ministers of the Environment. 2006. Available online: https://ccme.ca/en/resources (accessed on 22 January 2023).
CMWR | |||
---|---|---|---|
Mineralogical composition (%) | Quartz | SiO2 | 42 |
Chlorite | (Mg,Fe)5Al(Si3Al)O10(OH)8 | 12 | |
Muscovite | KAl2(Si3Al)O10(OH)2 | 37 | |
Albite | NaAlSi3O8 | 4 | |
Pyrite | FeS2 | 1 | |
Ankerite | Ca(Fe,Mg,Mn)(CO3)2 | 2 | |
Anatase | TiO2 | 2 | |
Trace elements (mg/Kg) | As | <5 | |
Pb | 164 | ||
Zn | <55 | ||
Cu | 34 | ||
Cd | <5 | ||
Mo | 33 | ||
Cr | 198 | ||
Co | 29 | ||
Ni | 92 | ||
Ba | 399 | ||
Metal leaching (TCLP) (µg/L) | As | 2000 * | 30 |
Pb | 5000 * | 90 | |
Zn | 2000 * | 536 | |
Cu | 5000 * | 87 | |
Cd | 5000 * | 1.5 | |
Mo | - | 4.5 | |
Cr | - | 7 | |
Ba | 1000 * | 51 |
Elements | Min | Max | Mean | Median | SD | Skewness | Kurtosis | Clarke Values a | Enrichment Factor |
---|---|---|---|---|---|---|---|---|---|
Ba | 270.81 | 755.25 | 466.62 | 449.16 | 94.24 | 1.09 | 2.04 | 550 | 1.15 |
As | 3.50 | 59.41 | 24.21 | 21.42 | 10.97 | 1.18 | 2.51 | 2 | 21.89 |
Pb | 16.70 | 163.80 | 60.64 | 55.08 | 32.14 | 1.93 | 4.78 | 17 | 4.84 |
Zn | 37.17 | 371.95 | 144.27 | 130.98 | 56.45 | 2.05 | 7.49 | 71 | 2.76 |
Cu | 7.10 | 145.60 | 32.57 | 26.56 | 27.85 | 2.38 | 7.52 | 25 | 1.77 |
Fe | 15,337.91 | 78,705.33 | 48,037.92 | 47,666.21 | 10,697.85 | 0.05 | 3.53 | 35,000 | 1.86 |
Mn | 148.50 | 2158.32 | 851.69 | 757.02 | 485.93 | 1.58 | 2.39 | 600 | 1.90 |
Ti | 2138.32 | 5406.20 | 3846.46 | 3881.35 | 672.53 | −0.13 | 0.56 | 4500 | 1.16 |
Al | 30,617.08 | 77,279.14 | 59,291.52 | 60,379.77 | 10,375.55 | −0.58 | 0.44 | 80,400 | 1 |
S | 388.95 | 9780.53 | 2184.13 | 1488.35 | 1853.72 | 2.44 | 7.80 | ND | ND |
Element | Nugget | Number of Lags | Root-Mean-Square | Average Standardized Errors | Mean Standardized | RMSE |
---|---|---|---|---|---|---|
Pb | 811.11 | 12 | 28.8830 | 33.6668 | 0.0641 | 0.8708 |
Zn | 1931.01 | 12 | 52.7402 | 63.6056 | 0.03363 | 0.8413 |
As | 102.56 | 12 | 10.2492 | 11.5844 | 0.07443 | 0.89060 |
Elements | Jerada Soils | Geochemical Background of Soils (1st Population) | Anomalous Content (2nd and 3rd Populations) | Net Anomalous Values | Canadian Soils Quality Guidelines *a | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | Median | N | Mean (a) | Median | N | Mean (b) | Median | (b−a) | ||
As | 34 | 24.21 | 21.42 | 27 | 20.01 | 19.66 | 7 | 40.42 | 40.79 | 20.41 | 12 |
Pb | 34 | 60.64 | 55.08 | 28 | 49.62 | 48.41 | 6 | 112.01 | 93.67 | 62.39 | 70 |
Zn | 34 | 144.27 | 130.98 | 31 | 131.86 | 126.02 | 3 | 272.46 | 253.89 | 140.6 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, A.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco. Minerals 2023, 13, 181. https://doi.org/10.3390/min13020181
Khalil A, Taha Y, Benzaazoua M, Hakkou R. Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco. Minerals. 2023; 13(2):181. https://doi.org/10.3390/min13020181
Chicago/Turabian StyleKhalil, Abdessamad, Yassine Taha, Mostafa Benzaazoua, and Rachid Hakkou. 2023. "Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco" Minerals 13, no. 2: 181. https://doi.org/10.3390/min13020181