Evaluation of Portable X-ray Fluorescence Analysis and Its Applicability As a Tool in Geochemical Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Method
2.2. pXRF Analysis
2.3. Laboratory Analysis
3. Results
3.1. Usability Analysis of pXRF
3.2. Influence of Detection Time on Analytical Error
3.3. The Reliability and Stability of pXRF
4. Discussion
4.1. The Reliability of pXRF
4.2. The Geological Significance of the Result
4.3. The Implications for Further Work
5. Conclusions
- The pXRF can be used to qualitatively analyze rock samples directly for some elements, especially for elements with relatively high abundances in collected samples, but some results are unreliable when the pXRF is used in anisotropic rock samples. This study shows that the pXRF results are unreliable or doubtful when being used on rock samples if an element can only be reported in less than 30% of the total samples.
- Although the absolute precision of the analysis may not be sufficient to be used in conventional petrology, the general trends of the pXRF-derived results were consistent with those observed via laboratory analysis. The pXRF results for prepared samples were comparable to those obtained via laboratory analysis for many elements in the detectable pXRF range. Therefore, scholars and geologists are encouraged to include a pretreatment step (i.e., drying, sieving, and/or milling) to improve data analysis and extend the applicability of pXRF spectrometry.
- The stability of pXRF spectrometry was found to be excellent when it was applied to the elements with high abundance in prepared samples. For most of the elements in the detectable pXRF range, a longer detection time tended to improve the reliability of the results; however, the improvement was not significant for most of the elements when the pXRF detection time was increased beyond 80 s. Thus, an adequate pXRF detection time is suggested to range between 80 and 120 s for powder samples.
- pXRF spectrometry is a low-cost and efficient technology that can be used to detect the concentrations of dozens of elements in rock powder samples. Thus, pXRF is a practical piece of equipment for geochemical exploration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arne, D.C.; Mackie, R.A.; Jones, S.A. The use of property-scale portable X-ray fluorescence data in gold exploration: Advantages and limitations. Geochem. Explor. Environ. Anal. 2014, 14, 233–244. [Google Scholar] [CrossRef]
- Sarala, P. Comparison of different portable XRF methods for determining till geochemistry. Geochem. Explor. Environ. Anal. 2016, 16, 181–192. [Google Scholar] [CrossRef]
- Lemiere, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.G.; Shervais, J.W.; Li, Y.; Reagan, M.K.; Li, H.Y.; Heaton, D.; Godard, M.; Kirchenbaur, M.; Whattam, S.A.; Pearce, J.A.; et al. Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chem. Geol. 2017, 451, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Grunsky, E.C. The interpretation of geochemical survey data. Geochem. Explor. Environ. Anal. 2010, 10, 27–74. [Google Scholar] [CrossRef]
- Turner, A.; Solman, K.R. Analysis of the elemental composition of marine litter by field-portable-XRF. Talanta 2016, 159, 262–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, D.R.; Cohen, E.J.; Graham, I.T.; Soares, G.G.; Hand, S.J.; Archer, M. Geochemical exploration for vertebrate fossils using field portable XRF. J. Geochem. Explor. 2017, 181, 1–9. [Google Scholar] [CrossRef]
- Winterburn, P.A.; Noble, R.R.P.; Lawie, D. Advances in exploration geochemistry, 2007 to 2017 and beyond. Geochem. Explor. Environ. Anal. 2020, 20, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Vonopartis, L.C.; Booysen, R.; Nex, P.A.M.; Kinnaird, J.A.; Robb, L.J. Combined satellite and portable XRF exploration mapping of the Zaaiplaats tin field, South Africa. S. Afr. J. Geol. 2022, 125, 45–60. [Google Scholar] [CrossRef]
- Chen, Z.; Williams, P.N.; Zhang, H. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF. Environ. Sci.-Process Impacts 2013, 15, 1768–1774. [Google Scholar] [CrossRef]
- Parsons, C.; Margui Grabulosa, E.; Pili, E.; Floor, G.H.; Roman-Ross, G.; Charlet, L. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. J. Hazard. Mater. 2013, 262, 1213–1222. [Google Scholar] [CrossRef]
- Schneider, A.R.; Cances, B.; Breton, C.; Ponthieu, M.; Morvan, X.; Conreux, A.; Marin, B. Comparison of field portable XRF and aqua regia/ICPAES soil analysis and evaluation of soil moisture influence on FPXRF results. J. Soils Sediments 2016, 16, 438–448. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Background and threshold: Critical comparison of methods of determination. Sci. Total Environ. 2005, 346, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.E.; McClenaghan, M.B.; Pagé, L. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada. Geochem. Explor. Environ. Anal. 2016, 16, 62–84. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, M.; Wang, X.; Nie, L.; Liu, H.; Wang, W.; Yan, T. Spatial distributions and the identification of ore-related anomalies of Cu across the boundary area of China and Mongolia. J. Geochem. Explor. 2019, 197, 37–47. [Google Scholar] [CrossRef]
- Asare, M.O.; Hejcman, M. Effect of tree species on the elemental composition of wood ashes and their fertilizer values on agricultural soils. GCB Bioenergy 2022, 14, 1321–1335. [Google Scholar] [CrossRef]
- Zhou, S.; Weindorf, D.C.; Cheng, Q.; Yang, B.; Yuan, Z.; Chakraborty, S. Elemental assessment of vegetation via portable X-ray fluorescence: Sample preparation and methodological considerations. Spectroc. Acta Pt. B Atom. Spectr. 2020, 174, 105999. [Google Scholar] [CrossRef]
- McGladdery, C.; Weindorf, D.C.; Chakraborty, S.; Li, B.; Paulette, L.; Podar, D.; Pearson, D.; Kusi, N.Y.O.; Duda, B. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. J. Environ. Manag. 2018, 210, 210–225. [Google Scholar] [CrossRef]
- McLaren, T.I.; Guppy, C.N.; Tighe, M.K. A Rapid and Nondestructive Plant Nutrient Analysis using Portable X-Ray Fluorescence. Soil Sci. Soc. Am. J. 2012, 76, 1446–1453. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Q.; Fan, M.; Chai, G.; Li, G. Identification of heavy metal pollutants and their sources in farmland: An integrated approach of risk assessment and X-ray fluorescence spectrometry. Sci. Rep. 2022, 12, 12196. [Google Scholar] [CrossRef] [PubMed]
- Gozukara, G.; Zhang, Y.; Hartemink, A.E. Using pXRF and vis-NIR spectra for predicting properties of soils developed in loess. Pedosphere 2022, 32, 602–615. [Google Scholar] [CrossRef]
- Xue, S.; Korna, R.; Fan, J.; Ke, W.; Lou, W.; Wang, J.; Zhu, F. Spatial distribution, environmental risks, and sources of potentially toxic elements in soils from a typical abandoned antimony smelting site. J. Environ. Sci. 2023, 127, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Nawar, S.; Richard, F.; Kassim, A.M.; Tekin, Y.; Mouazen, A.M. Fusion of Gamma-rays and portable X-ray fluorescence spectral data to measure extractable potassium in soils. Soil Tillage Res. 2022, 223, 105472. [Google Scholar] [CrossRef]
- Andrew, T.; Taylor, A. On site determination of trace metals in estuarine sediments by field-portable-XRF. Talanta 2018, 190, 498–506. [Google Scholar]
- Hu, B.; Chen, S.; Hu, J.; Xia, F.; Xu, J.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.S.; Bourke, A.; Fresia, B. Improving lithological discrimination in exploration drill-cores using portable X-ray fluorescence measurements: (1) testing three Olympus Innov-X analysers on unprepared cores. Geochem. Explor. Environ. Anal. 2014, 14, 171–185. [Google Scholar] [CrossRef]
- Gray, C.A.; Van Rythoven, A.D. A Comparative Study of Porphyry-Type Copper Deposit Mineralogies by Portable X-ray Fluorescence and Optical Petrography. Minerals 2020, 10, 431. [Google Scholar] [CrossRef]
- Roxburgh, M.A.; Heeren, S.; Huisman, D.J.; Van Os, B.J.H. Non-Destructive Survey of Early Roman Copper-Alloy Brooches using Portable X-ray Fluorescence Spectrometry. Archaeometry 2019, 61, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Uemoto, M. On-site Analysis and Identification of Aluminum Alloys with a Handheld X-ray Fluorescence Spectrometer for Closed-loop Recycling. Bunseki Kagaku 2019, 68, 457–464. [Google Scholar] [CrossRef]
- Mao, Q.; Yu, M.; Xiao, W.; Windley, B.F.; Li, Y.; Wei, X.; Zhu, J.; Lu, X. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt. J. Asian Earth Sci. 2018, 153, 365–378. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Wang, Y.; Long, L.; Mao, Q.; Yu, M. Ages and origins of granitoids from the Kalatag Cu cluster in Eastern Tianshan, NW China: Constraints on Ordovician-Devonian arc evolution and porphyry Cu fertility in the Southern Central Asian orogenic belt. Lithos 2019, 330, 55–73. [Google Scholar] [CrossRef]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, E.L.; Evans, M.G.; Hutchinson, S.M.; Rothwell, J.J. Assessment of Lead Contamination in Peatlands Using Field Portable XRF. Water Air Soil Pollut. 2014, 225, 1844. [Google Scholar] [CrossRef]
- Yang, G.; Shang, Z.; Li, L.; Ni, X.; Zhang, M. Application of portable-XRF spectrometry for rapid determination of common heavy metals in soil (in Chinese with English abstract). Appl. Chem. Ind. 2016, 45, 1586–1591. [Google Scholar]
- Kilbride, C.; Poole, J.; Hutchings, T.R. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environ. Pollut. 2006, 143, 16–23. [Google Scholar] [CrossRef]
- Hall, G.E.M.; Bonham-Carter, G.F.; Buchar, A. Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials. Geochem. Explor. Environ. Anal. 2014, 14, 99–123. [Google Scholar] [CrossRef]
- Seyedrahimi-Niaraq, M.; Mahdiyanfar, H. Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry 2021, 81, 125830. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust—A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Li, T. Element Abundances of China’s Continental Crust and Its Sedimentary Layer and Upper Continental Crust. Acta Geochim. 1995, 14, 16–32. [Google Scholar]
Element | Analytical method |
---|---|
Cd, Co, Cu, Mo, Ni, Pb, Zn | ICP-MS (a) |
As, Hg, Sb, Ti | AFS (b) |
Ag, Sn | ICP-OES (c) |
S | TF (d) |
Element | The Mean Analytical Error of Each Element | ||||||
---|---|---|---|---|---|---|---|
Time | Al | Si | Fe | Cu | Pb | Zn | |
40 s | 2710.91 | 3772.4 | 648.32 | 31.4 | 9.96 | 16.49 | |
80 s | 866.82 | 1445.5 | 434.67 | 14.85 | 5.4 | 9.45 | |
120 s | 623.23 | 1010.56 | 340.11 | 14.45 | 4.77 | 8.38 | |
200 s | 456.99 | 733.31 | 257.27 | 10.52 | 3.35 | 6.26 | |
time(x)-error(y) equation | y =2495.8x−1.277 R2 = 0.9768 | y = 3601.9x−1.174 R2 = 0.9909 | y = 663.13x−0.648 R2 = 0.988 | y = 29.483x−0.745 R2 = 0.932 | y = 9.7808x−0.745 R2 = 0.9714 | y = 16.146x−0.666 R2 = 0.9752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Wang, J.; Wang, W.; Liao, S. Evaluation of Portable X-ray Fluorescence Analysis and Its Applicability As a Tool in Geochemical Exploration. Minerals 2023, 13, 166. https://doi.org/10.3390/min13020166
Zhou S, Wang J, Wang W, Liao S. Evaluation of Portable X-ray Fluorescence Analysis and Its Applicability As a Tool in Geochemical Exploration. Minerals. 2023; 13(2):166. https://doi.org/10.3390/min13020166
Chicago/Turabian StyleZhou, Shuguang, Jinlin Wang, Wei Wang, and Shibin Liao. 2023. "Evaluation of Portable X-ray Fluorescence Analysis and Its Applicability As a Tool in Geochemical Exploration" Minerals 13, no. 2: 166. https://doi.org/10.3390/min13020166