Frequency Response Method for Diffusivity Characterization of Propane in HZSM-5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material and Its Characterization
2.2. Propane Adsorption Isotherm
2.3. Frequency Response (FR)
3. Results
3.1. Sample Characterization
3.2. Propane Adsorption Isotherm
3.3. Uptake Curves from Frequency Response Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deisler, P.F.; Wilhelm, R.H. Diffusion in Beds of Porous Solids. Measurement by Frequency Response Techniques. Ind. Eng. Chem. 1953, 45, 1219–1227. [Google Scholar] [CrossRef]
- Naphtali, L.M.; Polinski, L.M. A Novel Technique for Characterization of Adsorption Rates on Heterogeneous Surfaces. J. Phys. Chem. 1963, 67, 369–375. [Google Scholar] [CrossRef]
- Yasuda, Y. Frequency Response Method for Study of the Kinetic Behavior of a Gas-Surface System. 1. Theoretical Treatment. J. Phys. Chem. 1976, 80, 1867–1869. [Google Scholar] [CrossRef]
- Yasuda, Y.; Suzuki, Y.; Fukada, H. Kinetic Details of a Gas/Porous Adsorbent System by the Frequency Response Method. J. Phys. Chem. 1991, 95, 2486–2492. [Google Scholar] [CrossRef]
- Rees, L.V.C.; Shen, D. Characterization of Microporous Sorbents by Frequency-Response Methods. Gas Sep. Purif. 1993, 7, 83–89. [Google Scholar] [CrossRef]
- Reyes, S.C.; Iglesia, E. Frequency Response Techniques for the Characterization of Porous Catalytic Solids. In Catalysis; Spivey, J.J., Agarwal, S.K., Eds.; Royal Society of Chemistry: Cambridge, UK, 1994; Volume 11, ISBN 978-0-85186-654-3. [Google Scholar]
- Song, L.; Rees, L.V.C. Frequency Response Measurements of Diffusion in Microporous Materials. In Adsorption and Diffusion; Karge, H.G., Weitkamp, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 7, ISBN 978-3-540-73965-4. [Google Scholar]
- Reyes, S.C.; Sinfelt, J.H.; DeMartin, G.J.; Ernst, R.H.; Iglesia, E. Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids1. J. Phys. Chem. B 1997, 101, 614–622. [Google Scholar]
- Sun, L.M.; Bourdin, V. Measurement of Intracrystalline Diffusion by the Frequency Response Method: Analysis and Interpretation of Bimodal Response Curves. Chem. Eng. Sci. 1993, 48, 3783–3793. [Google Scholar] [CrossRef]
- Shen, D.; Rees, L.V.C. Frequency Response Study of Mixture Diffusion of Benzene and Xylene Isomers in Silicalite-1. Stud. Surf. Sci. Catal. 1995, 97, 235–242. [Google Scholar] [CrossRef]
- Song, L.; Rees, L.V.C. Adsorption and Transport of n -Hexane in Silicalite-1 by the Frequency Response Technique. J. Chem. Soc. Faraday Trans. 1997, 93, 649–657. [Google Scholar] [CrossRef]
- Valyon, J.; Onyestyák, G.; Rees, L.V.C. A Frequency-Response Study of the Diffusion and Sorption Dynamics of Ammonia in Zeolites. Langmuir 2000, 16, 1331–1336. [Google Scholar] [CrossRef]
- Ashton, A.G.; Batmanian, S.; Dwyer, J.; Elliott, I.S.; Fitch, F.R. The Catalytic Properties of Modified Pentasil Zeolites. J. Mol. Catal. 1986, 34, 73–83. [Google Scholar] [CrossRef]
- Sendoda, Y.; Ono, Y. Effect of the Pretreatment Temperature on the Catalytic Activity of ZSM-5 Zeolites. Zeolites 1988, 8, 101–105. [Google Scholar] [CrossRef]
- Degnan, T.F.; Chitnis, G.K.; Schipper, P.H. History of ZSM-5 Fluid Catalytic Cracking Additive Development at Mobil. Microporous Mesoporous Mater. 2000, 35–36, 245–252. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, B.; Wu, G.; Ma, F.; Liu, C. Effect of the Si/Al Ratio on the Performance of Hierarchical ZSM-5 Zeolites for Methanol Aromatization. RSC Adv. 2016, 6, 83581–83588. [Google Scholar] [CrossRef]
- Weitkamp, J.; Ernst, S.; Dauns, H.; Gallei, E. Formselektive Katalyse in Zeolithen. Chem. Ing. Tech. 1986, 58, 623–632. [Google Scholar] [CrossRef]
- Lukyanov, D.B.; Gnep, N.S.; Guisnet, M.R. Kinetic Modeling of Propane Aromatization Reaction over HZSM-5 and GaHZSM-5. Ind. Eng. Chem. Res. 1995, 34, 516–523. [Google Scholar] [CrossRef]
- Raddi de Araujo, L.R.; Schmal, M. The Calcination Effects on Pt/HZSM-5 Catalysts in the Aromatization of Propane. Appl. Catal. Gen. 2000, 203, 275–284. [Google Scholar] [CrossRef]
- Li, J.; Hu, C.; Tong, K.; Xiang, H.; Zhu, Z.; Hu, Z. CO2 Atmosphere-Enhanced Methanol Aromatization over the NiO-HZSM-5 Catalyst. RSC Adv. 2014, 4, 44377–44385. [Google Scholar] [CrossRef]
- Kokotailo, G.T.; Lawton, S.L.; Olson, D.H.; Meier, W.M. Structure of Synthetic Zeolite ZSM-5. Nature 1978, 272, 437–438. [Google Scholar] [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.; Meier, W.M. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-444-53064-6. [Google Scholar]
- Grün, R.; Pan, F.; Grau Turuelo, C.; Breitkopf, C. Transient Studies of Gas Transport in Porous Solids Using Frequency Response Method—A Conceptual Study. Catal. Today 2023, 417, 113838. [Google Scholar] [CrossRef]
- Kitagawa, H.; Sendoda, Y.; Ono, Y. Transformation of Propane into Aromatic Hydrocarbons over ZSM-5 Zeolites. J. Catal. 1986, 101, 12–18. [Google Scholar] [CrossRef]
- Luzgin, M.V.; Stepanov, A.G.; Sassi, A.; Sommer, J. Formation of Carboxylic Acids from Small Alkanes in Zeolite H-ZSM-5. Chem. Eur. J. 2000, 6, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Mangano, E.; Brandani, S.; Ruthven, D.M. A Review of Common Practices in Gravimetric and Volumetric Adsorption Kinetic Experiments. Adsorption 2021, 27, 295–318. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; ISBN 978-0-19-853344-3. [Google Scholar]
- Kärger, J.; Ruthven, D.M. Diffusion in Zeolites and Other Microporous Solids; Wiley: New York, NY, USA, 1992; ISBN 978-0-471-50907-3. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Bülow, M.; Micke, A. Determination of Transport Coefficients in Microporous Solids. Adsorption 1995, 1, 29–48. [Google Scholar] [CrossRef]
- Bülow, M.; Schlodder, H.; Rees, L.V.C.; Richards, R.E. Molecular Mobility of Hydrocarbon ZSM5/Silicalite Systems Studied by Sorption Uptake and Frequency Response Methods. Stud. Surf. Sci. Catal. 1986, 28, 579–586. [Google Scholar] [CrossRef]
- Van-Den-Begin, N.G.; Rees, L.V.C. Diffusion of Hydrocarbons in Silicalite Using a Frequency-Response Method. In Zeolites: Facts, Figures, Future; Jacobs, P.A., van Santen, R.A., Eds.; Studies in Surface Science and Catalysis; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1989; ISBN 0-444-87466-6. [Google Scholar]
- Van-Den-Begin, N.; Rees, L.V.C.; Caro, J.; Bülow, M. Fast Adsorption-Desorption Kinetics of Hydrocarbons in Silicalite-1 by the Single-Step Frequency Response Method. Zeolites 1989, 9, 287–292. [Google Scholar] [CrossRef]
- Zhang, C.; Ng, K.L.A.; Yan, L.; Feng, X.; Jiang, B.; Liao, Z.; Wang, J.; Yang, Y. Kinetic Perspective on Methanol to Propylene Process via HZSM-5 Catalyst: Balancing between Reaction and Diffusion. Ind. Eng. Chem. Res. 2022, 61, 2055–2067. [Google Scholar] [CrossRef]
- Grau Turuelo, C.; Grün, R.; Breitkopf, C. Simulation of the Frequency Response Analysis of Gas Diffusion in Zeolites by Means of Computational Fluid Dynamics. Minerals 2023, 13, 1238. [Google Scholar]
- Ruthven, D.M.; Lee, L.-K. Kinetics of Nonisothermal Sorption: Systems with Bed Diffusion Control. AIChE J. 1981, 27, 654–663. [Google Scholar] [CrossRef]
- Haul, R.; Stremming, H. Nonisothermal Sorption Kinetics in Porous Adsorbents. J. Colloid Interface Sci. 1984, 97, 348–355. [Google Scholar] [CrossRef]
- Sun, L.M.; Meunier, F.; Kärger, J. On the Heat Effect in Measurements of Sorption Kinetics by the Frequency Response Method. Chem. Eng. Sci. 1993, 48, 715–722. [Google Scholar] [CrossRef]
- Sun, L.M.; Meunier, F.; Grenier, P.; Ruthven, D.M. Frequency Response for Nonisothermal Adsorption in Biporous Pellets. Chem. Eng. Sci. 1994, 49, 373–381. [Google Scholar] [CrossRef]
- Ahn, H.; Moon, J.-H.; Hyun, S.-H.; Lee, C.-H. Diffusion Mechanism of Carbon Dioxide in Zeolite 4A and CaX Pellets. Adsorption 2004, 10, 111–128. [Google Scholar] [CrossRef]
- Möller, A.; Pessoa Guimaraes, A.; Gläser, R.; Staudt, R. Uptake-Curves for the Determination of Diffusion Coefficients and Sorption Equilibria for n-Alkanes on Zeolites. Microporous Mesoporous Mater. 2009, 125, 23–29. [Google Scholar] [CrossRef]
Sample Name | p/Pa | T/K | Bed Depth l/mm |
---|---|---|---|
Z5-9 | 2660 | 308 | 9 |
Z5-15 | 2900 | 308 | 15 |
Z5-19 | 2540 | 308 | 19 |
System | Type of Diffusion Coefficient | Model | Reference |
---|---|---|---|
“Constant volume/variable pressure” | intracrystalline | (1) from characteristic FR functions: identical spheres (monodisperse) | [32] |
“Constant volume/variable pressure” | intracrystalline | (2) from the uptake curve: statistical moments theory, corrected by the Darken equation | [32] |
VSFR | self-diffusion | from characteristic FR functions: “diffusion of a single diffusate in an isotropic sphere”, corrected by the Darken equation | [33] |
Single step VSFR | intracrystalline | “diffusion by a sphere in a stirred solution of limited volume”, corrected by the Darken equation | [34] |
Gravimetric, commercial | effective | Equation (1) | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grün, R.; Grau Turuelo, C.; Ehrling, S.; Breitkopf, C. Frequency Response Method for Diffusivity Characterization of Propane in HZSM-5. Minerals 2023, 13, 1244. https://doi.org/10.3390/min13101244
Grün R, Grau Turuelo C, Ehrling S, Breitkopf C. Frequency Response Method for Diffusivity Characterization of Propane in HZSM-5. Minerals. 2023; 13(10):1244. https://doi.org/10.3390/min13101244
Chicago/Turabian StyleGrün, Rebecca, Constantino Grau Turuelo, Sebastian Ehrling, and Cornelia Breitkopf. 2023. "Frequency Response Method for Diffusivity Characterization of Propane in HZSM-5" Minerals 13, no. 10: 1244. https://doi.org/10.3390/min13101244
APA StyleGrün, R., Grau Turuelo, C., Ehrling, S., & Breitkopf, C. (2023). Frequency Response Method for Diffusivity Characterization of Propane in HZSM-5. Minerals, 13(10), 1244. https://doi.org/10.3390/min13101244