Precambrian Tectonic Affinity of Hainan and Its Evolution from Columbia to Rodinia
Abstract
:1. Introduction
2. Geological Setting and Sampling
3. Analytical Methods
4. Tectonostratigraphic Relationships between the Baoban Complex, the Shilu Group, and the Shihuiding Formation
5. Correlation to Sequences in the Cathaysia and Yangtze Blocks
6. Hainan and Precambrian Supercontinent Evolution
6.1. Reconstructing West Hainan–Yangtze in Columbia
6.2. Reconstructing West Hainan–Yangtze in Rodinia
7. Conclusions
- There are three Proterozoic units in Hainan, including the Mesoproterozoic Baoban Complex, the late Mesoproterozoic Shilu Group, and the Neoproterozoic Shihuiding Formation.
- Hainan was linked to the Yangtze Block rather than the Cathaysia Block in the late Mesoproterozoic–early Neoproterozoic.
- The connected Hainan–Yangtze blocks likely drifted from the core to the margin of the supercontinents in the Proterozoic.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greentree, M.R.; Li, Z.X.; Li, X.H.; Wu, H. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res. 2006, 151, 79–100. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Ye, M.F.; Li, X.H.; Li, W.X.; Liu, Y.; Li, Z.X. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res. 2007, 12, 144–156. [Google Scholar] [CrossRef]
- Shu, L.S.; Deng, P.; Yu, J.H.; Wang, Y.B.; Jiang, S.Y. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China. Sci. China (Ser. D) 2008, 51, 1053–1063. [Google Scholar] [CrossRef]
- Shu, L.S.; Wang, J.Q.; Yao, J.L. Tectonic evolution of the eastern Jiangnan region, South China: New findings and implications on the assembly of the Rodinia supercontinent. Precambrian Res. 2019, 322, 42–65. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Zhou, H.W.; Kinny, P.D. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 2002, 30, 163–166. [Google Scholar] [CrossRef]
- Li, X.H.; Qi, C.S.; Liu, Y.; Liang, X.R.; Tu, X.L.; Xie, L.W.; Yang, Y.H. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chin. Sci. Bull. 2005, 50, 2481–2486. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Li, W.X.; Ding, S.J. Was Cathaysia part of Proterozoic Laurentia?—New data from Hainan Island, south China. Terra Nova 2008, 20, 154–164. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Qiu, J.S.; Gao, J.F. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: Implications for the evolution of the western Jiangnan Orogen. Precambrian Res. 2004, 135, 79–103. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, A.M.; Cawood, P.A.; Fan, W.M.; Xu, J.F.; Zhang, G.W.; Zhang, Y.Z. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Res. 2013, 231, 343–371. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gan, C.S.; Tan, Q.L.; Zhang, Y.Z.; He, H.Y.; Qian, X.; Zhang, Y.H. Early Neoproterozoic (~840 Ma) slab window in South China: Key magmatic records in the Chencai Complex. Precambrian Res. 2018, 314, 434–451. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.H.; Zhou, M.F.; Pandit, M.K.; Zheng, J.P. Depositional age, provenance characteristics and tectonic setting of the Meso- and Neoproterozoic sequences in SE Yangtze Block, China: Implications on Proterozoic supercontinent reconstructions. Precambrian Res. 2018, 309, 231–247. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, M.F.; Zhao, X.F.; Chen, W.T.; Yan, D.P. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia–Northwest Laurentia connection in the Columbia supercontinent. Sediment. Geol. 2014, 309, 33–47. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, Y.Z.; Cawood, P.A.; Zhou, Y.Z.; Cui, X. Early neoproterozoic assembly and subsequent rifting in south china: Revealed from mafic and ultramafic rocks, central jiangnan orogen. Precambrian Res. 2019, 331, 105367. [Google Scholar] [CrossRef]
- Zhou, J.C.; Wang, X.L.; Qiu, J.S.; Gao, J.F. Geochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: Arc or plume magmatism? Geochem. J. 2004, 38, 139–152. [Google Scholar] [CrossRef]
- Zhou, M.F.; Ma, Y.; Yan, D.P.; Xia, X.; Zhao, J.H.; Sun, M. The Yanbian terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res. 2006, 144, 19–38. [Google Scholar] [CrossRef]
- Zhou, J.C.; Wang, X.L.; Qiu, J.S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Res. 2009, 170, 27–42. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zheng, Y.F.; Wu, Y.B.; Zhao, Z.F.; Gao, S.; Wu, F.Y. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Res. 2006, 151, 265–288. [Google Scholar] [CrossRef]
- Zhang, A.M.; Wang, Y.J.; Fan, W.M.; Zhang, Y.Z.; Yang, J. Earliest Neoproterozoic (ca. 1.0 Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Res. 2012, 220–221, 217–233. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhang, S.B.; Zhao, Z.F.; Wu, Y.B.; Li, X.H.; Li, Z.X.; Wu, F.Y. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos 2007, 96, 127–150. [Google Scholar] [CrossRef]
- Sun, M.; Chen, N.S.; Zhao, G.C.; Wilde, S.A.; Ye, K.; Guo, J.H.; Chen, Y.; Yuan, C. U-Pb Zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Dulu Belt, China: Implication for the Paleoproterozoic tectonic history of the Yangtze Craton. Am. J. Sci. 2008, 308, 469–483. [Google Scholar] [CrossRef]
- Sun, W.H.; Zhou, M.F.; Yan, D.P.; Li, J.W.; Ma, Y.X. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambrian Res. 2008, 167, 213–236. [Google Scholar] [CrossRef]
- Sun, W.H.; Zhou, M.F.; Gao, J.F.; Yang, Y.H.; Zhao, X.F.; Zhao, J.H. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Res. 2009, 172, 99–126. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F.; Gao, S.; Jiao, W.F.; Liu, Y.S. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 2008, 101, 308–322. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222, 13–54. [Google Scholar] [CrossRef]
- Zhu, W.G.; Zhong, H.; Li, Z.X.; Bai, Z.J.; Yang, Y.J. SIMS zircon U–Pb ages, geochemistry and Nd–Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance. Precambrian Res. 2016, 273, 67–89. [Google Scholar] [CrossRef]
- Cawood, P.A.; Wang, W.; Zhao, T.Y.; Xu, Y.J.; Mulder, J.A.; Pisarevsky, S.A.; Zhang, L.M.; Gan, C.S.; He, H.Y.; Liu, H.C.; et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth Sci. Rev. 2020, 204, 103169. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Cawood, P.A.; Zi, J.W.; Wang, K.; Feng, Q.L.; Tran, D.M.; Trinh, H.D.; Dang, C.M.; Nguyen, Q.M. Positioning the Yangtze Block within Nuna: Constraints from Paleoproterozoic granitoids in North Vietnam. Precambrian Res. 2023, 391, 107059. [Google Scholar] [CrossRef]
- Rogers, J.J.W.; Santosh, M. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res. 2002, 5, 5–22. [Google Scholar] [CrossRef]
- Torsvik, T.H. The Rodinia Jigsaw Puzzle. Science 2003, 300, 79–81. [Google Scholar] [CrossRef]
- Cawood, P.A.; Wang, Y.J.; Xu, Y.J.; Zhao, G.C. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere? Geology 2013, 41, 903–906. [Google Scholar] [CrossRef]
- Li, Z.X.; Liu, Y.B.; Ernst, R. A dynamic 2000—540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth Sci. Rev. 2023, 238, 104336. [Google Scholar] [CrossRef]
- Cawood, P.A.; Zhao, G.C.; Yao, J.L.; Wang, W.; Xu, Y.J.; Wang, Y.J. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Sci. Rev. 2018, 186, 173–194. [Google Scholar] [CrossRef]
- Evans, D.A.D. Reconstructing pre-Pangea supercontinents. Geol. Soc. Am. Bull. 2013, 125, 1735–1751. [Google Scholar] [CrossRef]
- Jing, X.; Evans, D.A.; Yang, Z.; Tong, Y.; Xu, Y.; Wang, H. Inverted South China: A novel configuration for Rodinia and its breakup. Geology 2020, 49, 463–467. [Google Scholar] [CrossRef]
- Jing, X.; Yang, Z.; Evans, D.A.; Tong, Y.; Xu, Y.; Wang, H. A pan-latitudinal Rodinia in the Tonian true polar wander frame. Earth Planet. Sci. Lett. 2020, 530, 115880. [Google Scholar] [CrossRef]
- Yao, W.H.; Li, Z.X.; Li, W.X.; Li, X.H. Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results. Precambrian Res. 2017, 290, 86–100. [Google Scholar] [CrossRef]
- Zhang, L.M.; Wang, Y.J.; Qian, X.; Zhang, Y.Z.; He, H.Y.; Zhang, A.M. Petrogenesis of Mesoproterozoic mafic rocks in Hainan (South China) and its implication on the Southwest Hainan-Laurentia-Australia connection. Precambrian Res. 2018, 313, 119–133. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhang, Y.Z.; Cui, X.; Cawood, P.A.; Wang, Y.J.; Zhang, A.M. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks. Precambrian Res. 2019, 325, 69–87. [Google Scholar] [CrossRef]
- Liu, H.C.; Zi, J.W.; Cawood, P.A.; Cui, X.; Zhang, L.M. Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents. Precambrian Res. 2020, 337, 72–95. [Google Scholar] [CrossRef]
- Xu, Y.J.; Cawood, P.A.; Zhang, H.C.; Zi, J.W.; Zhou, J.B.; Li, L.X.; Du, X.S. The Mesoproterozoic Baoban Complex, South China: A missing fragment of western Laurentian lithosphere. Geol. Soc. Am. Bull. 2020, 132, 1404–1418. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.; Li, Y.Q.; Ding, J. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Wang, X.L.; Shu, L.S.; Xing, G.F.; Zhou, J.C.; Tang, M.; Shu, X.J.; Qi, L.; Hu, Y.H. Post-orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800–760 Ma volcanic rocks. Precambrian Res. 2011, 222–223, 404–423. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Griffin, W.L.; Zhao, G.; Yu, J.H.; Qiu, J.S.; Zhang, Y.J.; Xing, G.F. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Res. 2014, 242, 154–171. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, Y.Z.; Fan, W.M.; Geng, H.Y.; Zou, H.P.; Bi, X.W. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological, Lu-Hf isotopic and geochemical evidence from granitoid gneisses. Precambrian Res. 2014, 249, 144–161. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.J. Early Neoproterozoic (~840 Ma) arc magmatism: Geochronological and geochemical constraints on the metabasites in the Central Jiangnan Orogen. Precambrian Res. 2016, 275, 1–17. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F.; Yan, D.P.; Zheng, J.P.; Li, J.W. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology 2011, 39, 299–302. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.J. Early Neoproterozoic continental arc system at the central Jiangnan Orogen, South China: Geochronological and geochemical constraints on the key igneous rock-association. Geol. Soc. Am. Bull. 2019, 132, 638–654. [Google Scholar] [CrossRef]
- Zhao, G.C.; Guo, J.H. Precambrian geology of China: Preface. Precambrian Res. 2012, 222–223, 1–12. [Google Scholar] [CrossRef]
- Guangdong BGMR (Bureau of Geology and Mineral Resources of Guangdong). Regional Geology of the Guangdong Province; Geological Publication House: Beijing, China, 1988; (In Chinese with English Abstract). [Google Scholar]
- Zhang, R.; Ma, G.; Jiang, D.; Feng, S.; Chen, M.; Xu, G.; Chen, R. Precambrian Geology of Hainan Island, South China; China University of Geosciences Press: Beijing, China, 1990; pp. 1–100. (In Chinese) [Google Scholar]
- Long, W.G.; Ding, S.J.; Ma, D.Q.; Lin, Y.H.; Zhou, J.B. Formation and evolution of the precambrian basement in hainan island. Diqiu Kexue-Zhongguo Dizhi Daxue Xuebao/Earth Sci.-J. China Univ. Geosci. 2005, 30, 421–429, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.J.; Cawood, P.A.; Du, Y.S.; Huang, H.W.; Wang, X.Y. Early Paleozoic orogenesis along Gondwana’s northern margin constrained by provenance data from South China. Tectonophysics 2014, 636, 40–51. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, Y.; Yang, S. Hainan Island—A Fragment of Gondwana. In Terrane Analysis of China and the Pacific Rim; Wiley, T.J., Howell, D.G., Wong, F.L., Eds.; Circum-Pacific Council for Energy and Mineral Resources Earth Science Series; Circum Pacific Council Publications: Houston, TX, USA, 1990; Volume 13, pp. 283–284. [Google Scholar]
- Yang, S.F.; Yu, Z.Y.; Guo, L.Z.; Shi, Y.S. The division and palaeomagnetism of the Hainan Island and plate tectonic significance. J. Nanjing Univ. (Earth Sci.) 1989, 1, 38–46, (In Chinese with English Abstract). [Google Scholar]
- Metcalfe, I. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes. J. S. Am. Earth Sci. 1994, 7, 333–347. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Aust. J. Earth Sci. 1996, 43, 605–623. [Google Scholar] [CrossRef]
- Chen, Z.P.; Zhong, S.Z.; He, S.H.; Chen, Y.C. Stratigraphy (Lithostratic) of Hainan Province China; University of Geosciences Press: Wuhan, China, 1997; pp. 48–52. (In Chinese) [Google Scholar]
- Ma, D.Q.; Huang, X.D.; Chen, Z.P.; Xiao, Z.F.; Zhang, W.C.; Zhong, S.Z. New advanced in the study of the Baoban Group in Hainan Province. Reg. Geol. China 1997, 16, 192, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.L.; Xu, D.R.; Hu, G.C.; Yu, L.L.; Wu, C.J.; Zhang, Z.C.; Cai, J.X.; Shan, Q.; Hou, M.Z.; Chen, H.Y. Detrital zircon U-Pb ages of the Proterozoic metaclastic-sedimentary rocks in Hainan Province of South China: New constraints on the depositional time, source area, and tectonic setting of the Shilu Fe–Co–Cu ore district. J. Asian Earth Sci. 2015, 113, 1143–1161. [Google Scholar] [CrossRef]
- Zou, S.H.; Yu, L.L.; Yu, D.S.; Xu, D.R.; Ye, T.W.; Wang, Z.L.; Cai, J.X.; Liu, M. Precambrian continental crust evolution of Hainan Island in South China: Constraints from detrital zircon Hf isotopes of metaclastic-sedimentary rocks in the Shilu Fe-Co-Cu ore district. Precambrian Res. 2017, 296, 195–207. [Google Scholar] [CrossRef]
- Wang, X.F.; Ma, D.Q.; Jiang, D.H. Geology of Hainan Island—Part 1: Stratigraphic Palaeontology; Geological Publishing House: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Xia, B.D.; Ren, Z.P. Stratigraphy and sedimentary construction of Shiliu and its outlying areas on Hainan Island. J. Nanjing Univ. 1979, 2, 43–55. [Google Scholar]
- Shan, H.Z. Study on the gold-bearing stratigraphic age in Baoban Region, Hainan province. Acta Scifntiarum Nat. Univ. Sunyaatseni 1990, 29, 71–77. [Google Scholar]
- Ye, B.D.; Zhu, J.P. The time of the baoban group and gold ore at Erjia, Dongfang, hainan provence, china. Contrib. Geol. Miner. Resour. Res. 1990, 5, 12–17, (In Chinese with English Abstract). [Google Scholar]
- Yu, S.J.; Xia, P.; Deng, T.Y.; Li, Q. Characteristics and U-Pb isotopic ages of zircons in the middle Proterozoic granitoids from Baoban area, Hainan province. Geochimica 1992, 3, 213–220, (In Chinese with English Abstract). [Google Scholar]
- Hou, W.; Chen, H.F.; Liang, X.Q.; Wang, K.F. The establishment of Precambrian strata and new recognition of the geotectonic evolution in Hainan island. J. Chang. Univ. Earth Sci. 1992, 22, 143–146, (In Chinese with English Abstract). [Google Scholar]
- Liang, X.Q. Sm-Nd ages of the Precambrian granitic-greenstone series in Hainan Island and their geological significance. Acta Petrol. Sin. 1995, 11, 71–76, (In Chinese with English Abstract). [Google Scholar]
- Xu, D.R.; Liang, X.Q.; Cheng, G.H.; Huang, Z.L.; Hu, H.D. Research on the geochemistry and genesis of Mesoproterozoic granites on Hainan Island. Geotecton. Metallog. 2001, 25, 420–433, (In Chinese with English Abstract). [Google Scholar]
- Xu, D.R.; Liang, X.Q.; Tang, H.F. Geochemical characteristics of metamorphic basic volcanics from the BaoBan Group, western Hainan and its tectonic implications. Geotecton. Metallog. 2000, 24, 303–313, (In Chinese with English Abstract). [Google Scholar]
- Zhang, L.M.; Cawood, P.A.; Wang, Y.J.; Cui, X.; Zhang, Y.Z.; Qian, X.; Zhang, F.F. Provenance Record of Late Mesoproterozoic to Early Neoproterozoic Units, West Hainan, South China, and Implications for Rodinia Reconstruction. Tectonics 2020, 39, e2020TC006071. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Hu, S.H.; Dietiker, R.; Günther, D. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2008, 23, 1192–1203. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot/EX Version 3.00. A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; p. 71. [Google Scholar]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Xu, D.R.; Wang, Z.L.; Chen, H.Y.; Hollings, P.; Jansen, N.H.; Zhang, Z.C. Petrography and geochemistry of the shilu Fe–Co–Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system. Ore Geol. Rev. 2014, 57, 322–350. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basin. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geol. 1983, 91, 611–627. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R.; McGregor, V.R. Geochemistry of Archean metasedimentary rocks from west Greenland. Geochim. Cosmochim. Acta 1984, 48, 1–13. [Google Scholar] [CrossRef]
- Yao, H.Z.; Sheng, X.C.; Zhang, R.J. Neoproterozoic sedimentary environment of Shilu area, Hainan Island, South China. Gondwana Res. 1999, 2, 563–566. [Google Scholar]
- Yu, L.L.; Zou, S.H.; Cai, J.X.; Xu, D.R.; Zou, F.H.; Wang, Z.L.; Wu, C.J.; Liu, M. Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shihuiding Formation in the Shilu Fe-Co-Cu ore district, Hainan Province, South China. J. Asian Earth Sci. 2016, 119, 100–117. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Xu, M.; Zhuang, J.; Song, B.; Shi, Y.; Du, Y.L. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res. 2007, 12, 166–183. [Google Scholar] [CrossRef]
- Shu, L.S.; Faure, M.; Yu, J.H.; Jahn, B.M. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Res. 2011, 187, 263–276. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: Implications for Neoproterozoic collision-related assembly of the South China Craton. Am. J. Sci. 1999, 299, 309–339. [Google Scholar] [CrossRef]
- Yu, J.H.; O’Reilly, S.Y.; Zhou, M.F.; Griffin, W.L.; Wang, L.J. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Res. 2012, 222–223, 424–449. [Google Scholar] [CrossRef]
- Yu, J.H.; O’Reilly, Y.S.; Wang, L.J.; Griffin, W.L.; Zhou, M.F.; Zhang, M.; Shu, L.S. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Res. 2010, 181, 97–114. [Google Scholar] [CrossRef]
- Yu, J.H.; Wang, L.J.; O’Reilly, S.Y.; Griffin, W.L.; Zhang, M.; Li, C.Z.; Shu, L.S. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Res. 2009, 174, 347–363. [Google Scholar] [CrossRef]
- Yu, J.H.; Suzanne O’Reilly, S.Y.; Wang, L.; Griffin, W.L.; Shu, L.S. Where was south china in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Res. 2008, 164, 1–15. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X. Detrital zircon U–Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Res. 2014, 25, 1202–1215. [Google Scholar] [CrossRef]
- Li, H.K.; Zhang, C.L.; Yao, C.Y.; Xiang, Z.Q. U-Pb zircon age and Hf isotope compositions of mesoproterozoic sedimentary strata on the western margin of the Yangtze massif. Sci. China Earth Sci. 2013, 56, 628–639. [Google Scholar] [CrossRef]
- Wang, L.J.; Yu, J.H.; Griffin, W.; O’Reilly, S. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Res. 2012, 222–223, 368–385. [Google Scholar] [CrossRef]
- Cui, X.Z.; Lin, S.F.; Wang, J.; Ren, G.M.; Su, B.R.; Chen, F.L.; Deng, Q.; Pang, W.H. Latest mesoproterozoic provenance shift in the southwestern yangtze block, south china: Insights into tectonic evolution in the context of the supercontinent cycle. Gondwana Res. 2021, 99, 131–148. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.; Pandit, M.K.; Lu, G.M.; Xue, E.K.; Huang, B.; Zhang, Y.; Wei, J.; Tian, Y. Geochemical and detrital zircon age constraints on Meso- to Neoproterozoic sedimentary basins in the southern Yangtze Block: Implications on Proterozoic geodynamics of South China and Rodinia configuration. Precambrian Res. 2022, 378, 106779. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.; Lu, G.M.; Xue, E.K.; Huang, S.F.; Pandit, M.K.; Huang, B.; Tong, X.R.; Tian, Y.; Zhang, Y. Neoproterozoic geodynamics of south china and implications on the rodinia configuration: The Kunyang group revisited. Precambrian Res. 2021, 363, 106338. [Google Scholar] [CrossRef]
- Fan, H.P.; Zhu, W.G.; Li, Z.X.; Zhong, H.; Bai, Z.J.; He, D.F.; Chen, C.J.; Cao, C.Y. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos 2013, 168–169, 85–98. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhou, M.F.; Li, J.W.; Sun, M.; Gao, J.F.; Sun, W.H.; Yang, J.H. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Res. 2010, 182, 57–69. [Google Scholar] [CrossRef]
- Zhou, M.F.; Zhao, X.F.; Chen, W.T.; Li, X.C.; Wang, W.; Yan, D.P.; Qiu, H.N. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam. Earth Sci. Rev. 2014, 139, 59–82. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Wilde, S.A.; Sun, M. Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 2002, 59, 125–162. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth Sci. Rev. 2004, 67, 91–123. [Google Scholar] [CrossRef]
- Evans, D.A.D.; Mitchell, R.N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 2011, 39, 443–446. [Google Scholar] [CrossRef]
- Ross, G.M.; Parrish, R.R.; Winston, D. Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): Implications for age of deposition and pre-Panthalassa plate reconstructions. Earth Planet. Sci. Lett. 1992, 113, 57–76. [Google Scholar] [CrossRef]
- Evans, K.; Aleinikoff, J.N.; Obradovich, J.D.; Fanning, C.M. SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: Evidence for rapid deposition of sedimentary strata. Can. J. Earth Sci. 2000, 37, 1287–1300. [Google Scholar] [CrossRef]
- Ross, G.M.; Villeneuve, M. Provenance of the Mesoproterozoic (1.45 Ga) Belt basin (western North America): Another piece in the pre-Rodinia paleogeographic puzzle. Geol. Soc. Am. Bull. 2003, 115, 1191–1217. [Google Scholar] [CrossRef]
- Stewart, E.D.; Link, P.K.; Fanning, C.M.; Frost, C.D.; McCurry, M. Paleogeographic implications of non-North American sediment in the Mesoproterozoic upper Belt Supergroup and Lemhi Group, Idaho and Montana, USA. Geology 2010, 38, 927–930. [Google Scholar] [CrossRef]
- Doe, M.F.; Jones, J.V.; Karlstrom, K.E.; Dixon, B.; Gehrels, G.; Pecha, M. Using detrital zircon ages and Hf isotopes to identify 1.48–1.45 Ga sedimentary basins and fingerprint sources of exotic 1.6–1.5 Ga grains in southwestern Laurentia. Precambrian Res. 2013, 231, 409–421. [Google Scholar] [CrossRef]
- Doe, M.F.; Jones, J.V.; Karlstrom, K.E.; Thrane, K.; Frei, D.; Gehrels, G.; Pecha, M. Basin formation near the end of the 1.60–1.45 Ga tectonic gap in southern Laurentia: Mesoproterozoic Hess Canyon Group of Arizona and implications for ca. 1.5 Ga supercontinent configurations. Lithosphere 2012, 4, 77–88. [Google Scholar] [CrossRef]
- Rämö, O.T.; McLemore, T.; Hamilton, M.A.; Kosunen, P.J.; Heizler, M.; Haapala, I. Intermittent 1630–1220 Ma magmatism in central Mazatzal province: New geochronologic piercing points and some tectonic implications. Geology 2003, 31, 335–338. [Google Scholar] [CrossRef]
- Medig, K.P.R.; Thorkelson, D.J.; Davis, W.J.; Rainbird, R.H.; Gibson, H.D.; Turner, E.C.; Marshall, D.D. Pinning northeastern Australia to northwestern Laurentia in the Mesoproterozoic. Precambrian Res. 2014, 249, 88–99. [Google Scholar] [CrossRef]
- Link, P.K.; Fanning, C.M.; Lund, K.I.; Aleinikoff, J.N. Detrital zircons, correlation and provenance of Mesoproterozoic Belt Supergroup and correlative strata of eastcentral Idaho and southwest Montana. Proterozoic Geol. West. N. Am. Sib. Spec. Publ. 2007, 86, 101–128. [Google Scholar]
- Fanning, C.M.; Reid, A.; Teale, G.S. A geochronological framework for the Gawler Craton, South Australia. S. Aust. Geol. Surv. Bull. 2007, 55, 258. [Google Scholar]
- Hand, M.; Reid, A.; Jagodzinski, E. Tectonic framework and evolution of the Gawler Craton, southern Australia. Econ. Geol. 2007, 102, 1377–1395. [Google Scholar] [CrossRef]
- Reid, A.; Hand, M.; Jagodzinski, E.; Kelsey, D.; Pearson, N. Paleoproterozoic orogenesis in the southeastern Gawler Craton, South Australia. J. Geol. Soc. Aust. 2008, 55, 449–471. [Google Scholar] [CrossRef]
- Belousova, E.A.; Reid, A.J.; Griffin, W.L.; O’Reilly, S.Y. Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U-Pb and Hf isotopes in detrital zircon. Lithos 2009, 113, 570–582. [Google Scholar] [CrossRef]
- Howard, K.E.; Hand, M.; Barovich, K.M.; Belousova, E. Provenance of late Paleoproterozoic cover sequences in the central Gawler Craton: Exploring stratigraphic correlations in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data. J. Geol. Soc. Aust. 2011, 58, 475–500. [Google Scholar] [CrossRef]
- Reid, A.J.; Payne, J.L. Magmatic zircon Lu-Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia. Lithos 2017, 292–293, 294–306. [Google Scholar] [CrossRef]
- Peucat, J.J.; Capdevila, R.; Fanning, C.M.; MéNot, R.P.; PéCora, L.; Testut, L. 1.60 Ga felsic volcanic blocks in themoraines of the Terre Adélie Craton, Antarctica: Comparisons with the Gawler range volcanics, South Australia. J. Geol. Soc. Aust. 2002, 49, 831–845. [Google Scholar]
- Goodge, J.W.; Fanning, C.M.; Brecke, D.M.; Licht, K.J.; Palmer, E.F. Continuation of the Laurentian Grenville province in western East Antarctica. J. Geol. 2010, 118, 601–619. [Google Scholar] [CrossRef]
- Goodge, J.W.; Fanning, C.M.; Fisher, C.M.; Vervoort, J.D. Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia. Precambrian Res. 2017, 299, 151–176. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhao, Y.; Chen, H.; Song, B. New zircon U–Pb and Hf–Nd isotopic constraints on the timing of magmatism, sedimentation and metamorphism in the northern Prince Charles Mountains, East Antarctica. Precambrian Res. 2017, 299, 15–33. [Google Scholar] [CrossRef]
- Liu, X.C.; Wang, W.; Zhao, Y.; Liu, J.; Chen, H.; Cui, Y.C.; Song, B. Early Mesoproterozoic arc magmatism followed by early Neoproterozoic granulite facies metamorphism with a near-isobaric cooling path at Mount Brown, Princess Elizabeth Land, East Antarctica. Precambrian Res. 2016, 284, 30–48. [Google Scholar] [CrossRef]
- Paulsen, T.; Deering, C.; Sliwinski, J.; Bachmann, O.; Guillong, M. New detrital zircon age and trace element evidence for 1450 Ma igneous zircon sources in East Antarctica. Precambrian Res. 2017, 300, 53–58. [Google Scholar] [CrossRef]
- Anderson, H.E.; Davis, D.W. U-Pb geochronology of the Moyie sills, Purcell Supergroup, southeastern British Columbia: Implications for the Mesoproterozoic geological history of the Purcell (Belt) basin. Can. J. Earth Sci. 1995, 32, 1180–1193. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. Reduced rapakivi-type granites: The tholeiite connection. Geology 1997, 25, 647–650. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R.; Bell, J.M.; Chamberlain, K.R. The relationship between A-type granites and residual magmas from Anorthosite: Evidence from the northern Sherman batholith, Laramie mountains, Wyoming, USA. Precambrian Res. 2002, 119, 45–71. [Google Scholar] [CrossRef]
- Goodge, J.W.; Vervoort, J.D. Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. Earth Planet. Sci. Lett. 2006, 243, 711–731. [Google Scholar] [CrossRef]
- Link, P.K.; Stewart, E.D.; Steel, T.; Sherwin, J.-A.; Hess, L.T.; McDonald, C. Detrital zircons in the Mesoproterozoic upper Belt Supergroup in the Pioneer, Beaverhead and Lemhi Ranges, Montana and Idaho: The Big White arc. Geol. Soc. Am. Spec. Pap. 2016, 522, 163–183. [Google Scholar]
- Mulder, J.A.; Karlstrom, K.E.; Fletcher, K.; Heizler, M.T.; Timmons, J.M.; Crossey, L.J.; Gehrels, G.E.; Pecha, M. The syn-orogenic sedimentary record of the Grenville Orogeny in southwest Laurentia. Precambrian Res. 2017, 294, 33–52. [Google Scholar] [CrossRef]
- Malone, D.H.; Craddock, J.P.; Link, P.K.; Foreman, B.Z.; Scroggins, M.A.; Rappe, J. Detrital zircon geochronology of quartzite clasts, northwest Wyoming: Implications for Cordilleran Neoproterozoic stratigraphy and depositional patterns. Precambrian Res. 2017, 289, 116–128. [Google Scholar] [CrossRef]
- Wang, W.; Cawood, P.A.; Pandit, M.K.; Xia, X.P.; Zhao, J.H. Coupled precambrian crustal evolution and supercontinent cycles: Insights from in-situ U-Pb, O- and Hf-isotopes in detrital zircon, NW India. Am. J. Sci. 2018, 318, 989–1017. [Google Scholar] [CrossRef]
- McKenzie, N.R.; Hughes, N.C.; Myrow, P.M.; Xiao, S.; Sharma, M. Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet. Sci. Lett. 2011, 312, 471–483. [Google Scholar] [CrossRef]
- McKenzie, N.R.; Hughes, N.C.; Myrow, P.M.; Banerjee, D.M.; Deb, M.; Planavsky, N.J. New age constraints for the Proterozoic Aravalli-Delhi successions of India and their implications. Precambrian Res. 2013, 238, 120–128. [Google Scholar] [CrossRef]
- Malone, S.J.; Meert, J.G.; Banerjee, D.M.; Pandit, M.K.; Tamrat, E.; Kamenov, G.D.; Pradhan, V.R.; Sohl, L.E. Paleomagnetism and detrital zircon geochronology of the upper Vindhyan sequence, Son Valley and Rajasthan, India: A ca 1000 Ma closure age for the Purana basins? Precambrian Res. 2008, 164, 137–159. [Google Scholar] [CrossRef]
- Turner, C.C.; Meert, J.G.; Pandit, M.K.; Kamenov, G.D. A detrital zircon U–Pb and Hf isotopic transect across the son valley sector of the vindhyan basin, india: Implications for basin evolution and paleogeography. Gondwana Res. 2014, 26, 348–364. [Google Scholar] [CrossRef]
- Ahäll, K.I.; Connelly, J. Intermittent 1.53–1.13 Ga magmatism in western Baltica; age constraints and correlations within a postulated supercontinent. Precambrian Res. 1998, 92, 1–20. [Google Scholar] [CrossRef]
- Condie, K.C.; Belousova, E.; Griffin, W.; Sircombe, K.N. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res. 2009, 15, 228–242. [Google Scholar] [CrossRef]
- Condie, K.C.; O’Neill, C.; Aster, R.C. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet. Sci. Lett. 2009, 282, 294–298. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y.; Liu, X.C.; Liu, Y.S.; Hou, K.J.; Li, C.F.; Ye, H. U–Pb geochronology and geochemistry of the bedrocks and moraine sediments from the Windmill Islands: Implications for Proterozoic evolution of East Antarctica. Precambrian Res. 2012, 206–207, 52–71. [Google Scholar] [CrossRef]
- Stark, J.C.; Wang, X.C.; Li, Z.X.; Rasmussen, B.; Sheppard, S.; Zi, J.W.; Clark, C.; Hand, M.; Li, W.X. In situ U-Pb geochronology and geochemistry of a 1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Res. 2018, 310, 76–92. [Google Scholar] [CrossRef]
- Gaál, G.; Gorbatschev, R. An outline of the Precambrian Evolution of the Baltic Shield. Precambrian Res. 1987, 35, 15–52. [Google Scholar] [CrossRef]
- Bogdanova, S.; Gorbatschev, R.; Skridlaite, G.; Soesoo, A.; Taran, L.; Kurlovich, D. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Res. 2015, 259, 5–33. [Google Scholar] [CrossRef]
- Morrissey, L.J.; Payne, J.L.; Hand, M.; Clark, C.; Taylor, R.; Kirkland, C.L.; Kylander-Clark, A. Linking the windmill islands, East Antarctica and the Albany–Fraser Orogen: Insights from U–Pb zircon geochronology and Hf isotopes. Precambrian Res. 2017, 293, 131–149. [Google Scholar] [CrossRef]
Spots | Th/U | Isotopic Ratios | Apparent Age (Ma) | Conc. (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |||
14HN08A-01 | 0.13 | 0.110391 | 0.003417 | 4.888821 | 0.186053 | 0.316883 | 0.008564 | 1806 | 28 | 1800 | 16 | 1774 | 21 | 98 |
14HN08A-02 | 0.60 | 0.091579 | 0.002202 | 3.064874 | 0.078118 | 0.239100 | 0.003460 | 1459 | 23 | 1424 | 10 | 1382 | 9 | 97 |
14HN08A-03 | 0.21 | 0.104282 | 0.002610 | 4.442245 | 0.122251 | 0.304680 | 0.004636 | 1702 | 23 | 1720 | 12 | 1714 | 12 | 99 |
14HN08A-04 | 0.18 | 0.092747 | 0.002259 | 3.271280 | 0.081521 | 0.252133 | 0.003487 | 1483 | 23 | 1474 | 10 | 1449 | 9 | 98 |
14HN08A-05 | 0.28 | 0.148786 | 0.003995 | 8.802123 | 0.265802 | 0.422676 | 0.008113 | 2332 | 23 | 2318 | 14 | 2273 | 19 | 98 |
14HN08A-06 | 0.20 | 0.105382 | 0.002955 | 4.247538 | 0.126591 | 0.288213 | 0.004859 | 1721 | 26 | 1683 | 12 | 1633 | 12 | 96 |
14HN08A-07 | 0.45 | 0.126045 | 0.003178 | 6.450614 | 0.208443 | 0.364465 | 0.007476 | 2044 | 22 | 2039 | 14 | 2003 | 18 | 98 |
14HN08A-08 | 0.12 | 0.099923 | 0.002337 | 3.899537 | 0.092149 | 0.279211 | 0.003796 | 1633 | 19 | 1614 | 10 | 1587 | 10 | 98 |
14HN08A-09 | 0.13 | 0.098673 | 0.002679 | 2.868054 | 0.082726 | 0.207514 | 0.003271 | 1599 | 26 | 1374 | 11 | 1216 | 9 | 87 |
14HN08A-10 | 0.33 | 0.110066 | 0.002968 | 4.566179 | 0.120221 | 0.298004 | 0.004774 | 1811 | 25 | 1743 | 11 | 1681 | 12 | 96 |
14HN08A-11 | 0.49 | 0.166655 | 0.003879 | 9.461348 | 0.237984 | 0.406913 | 0.007591 | 2524 | 20 | 2384 | 12 | 2201 | 18 | 92 |
14HN08A-12 | 0.18 | 0.108933 | 0.002681 | 4.637195 | 0.124589 | 0.305042 | 0.005320 | 1783 | 23 | 1756 | 11 | 1716 | 13 | 97 |
14HN08A-13 | 0.12 | 0.110998 | 0.002852 | 4.870599 | 0.135393 | 0.314555 | 0.005656 | 1817 | 24 | 1797 | 12 | 1763 | 14 | 98 |
14HN08A-14 | 0.26 | 0.112970 | 0.003315 | 4.893483 | 0.149539 | 0.310367 | 0.005311 | 1848 | 27 | 1801 | 13 | 1743 | 13 | 96 |
14HN08A-15 | 0.35 | 0.107964 | 0.003262 | 4.561516 | 0.141800 | 0.303948 | 0.005987 | 1765 | 28 | 1742 | 13 | 1711 | 15 | 98 |
14HN08A-16 | 0.27 | 0.173166 | 0.004628 | 11.209902 | 0.299045 | 0.465195 | 0.008037 | 2589 | 23 | 2541 | 13 | 2462 | 18 | 96 |
14HN08A-17 | 0.13 | 0.089327 | 0.002206 | 2.934309 | 0.076850 | 0.235910 | 0.003791 | 1413 | 23 | 1391 | 10 | 1365 | 10 | 98 |
14HN08A-18 | 0.17 | 0.112775 | 0.003111 | 5.004778 | 0.136219 | 0.320324 | 0.005907 | 1856 | 25 | 1820 | 12 | 1791 | 15 | 98 |
14HN08A-19 | 0.65 | 0.107003 | 0.002866 | 4.559442 | 0.135397 | 0.305526 | 0.005769 | 1750 | 25 | 1742 | 13 | 1719 | 14 | 98 |
14HN08A-20 | 0.39 | 0.106852 | 0.002959 | 4.003608 | 0.108747 | 0.269608 | 0.003949 | 1747 | 26 | 1635 | 11 | 1539 | 10 | 93 |
14HN08A-21 | 1.10 | 0.100558 | 0.003423 | 3.995998 | 0.148806 | 0.286657 | 0.005684 | 1635 | 32 | 1633 | 15 | 1625 | 14 | 99 |
14HN08A-22 | 0.29 | 0.101781 | 0.002537 | 4.081697 | 0.106479 | 0.288315 | 0.004457 | 1657 | 23 | 1651 | 11 | 1633 | 11 | 98 |
14HN08A-23 | 0.46 | 0.112227 | 0.003025 | 4.848394 | 0.150569 | 0.309636 | 0.005495 | 1836 | 24 | 1793 | 13 | 1739 | 14 | 96 |
14HN08A-24 | 0.62 | 0.100131 | 0.002855 | 3.950613 | 0.106366 | 0.286253 | 0.005692 | 1628 | 27 | 1624 | 11 | 1623 | 15 | 99 |
14HN08A-25 | 0.35 | 0.106548 | 0.003003 | 4.497571 | 0.130471 | 0.305009 | 0.005366 | 1743 | 26 | 1731 | 12 | 1716 | 14 | 99 |
14HN08A-26 | 0.36 | 0.113004 | 0.002613 | 5.053766 | 0.124571 | 0.322390 | 0.005333 | 1850 | 24 | 1828 | 11 | 1801 | 13 | 98 |
14HN08A-27 | 0.23 | 0.131412 | 0.003188 | 6.851896 | 0.215336 | 0.373391 | 0.007570 | 2117 | 22 | 2092 | 14 | 2045 | 18 | 97 |
14HN08A-28 | 0.73 | 0.131544 | 0.003451 | 6.776983 | 0.209066 | 0.370571 | 0.006873 | 2120 | 23 | 2083 | 14 | 2032 | 16 | 97 |
14HN08A-29 | 0.12 | 0.125223 | 0.003926 | 5.065787 | 0.163586 | 0.290387 | 0.004981 | 2032 | 28 | 1830 | 14 | 1643 | 13 | 89 |
14HN08A-30 | 0.63 | 0.119689 | 0.002980 | 5.569381 | 0.137450 | 0.334355 | 0.004528 | 1952 | 22 | 1911 | 11 | 1859 | 11 | 97 |
14HN08A-31 | 0.43 | 0.110923 | 0.002637 | 4.573429 | 0.105940 | 0.296187 | 0.004072 | 1815 | 22 | 1744 | 10 | 1672 | 10 | 95 |
14HN08A-32 | 0.21 | 0.136012 | 0.003810 | 5.514224 | 0.183067 | 0.290779 | 0.006322 | 2177 | 25 | 1903 | 15 | 1645 | 16 | 85 |
14HN08A-33 | 0.29 | 0.112868 | 0.003773 | 4.690151 | 0.129880 | 0.299203 | 0.006614 | 1846 | 30 | 1765 | 12 | 1687 | 17 | 95 |
14HN08A-34 | 0.03 | 0.099340 | 0.002705 | 3.364121 | 0.088623 | 0.243083 | 0.003422 | 1613 | 25 | 1496 | 11 | 1403 | 9 | 93 |
14HN08A-35 | 0.17 | 0.110126 | 0.002834 | 4.484906 | 0.112308 | 0.292395 | 0.004251 | 1811 | 24 | 1728 | 11 | 1653 | 11 | 95 |
14HN08A-36 | 0.55 | 0.106390 | 0.002635 | 4.521962 | 0.111496 | 0.305329 | 0.004385 | 1739 | 23 | 1735 | 11 | 1718 | 11 | 98 |
14HN08A-37 | 0.45 | 0.107477 | 0.005215 | 3.843943 | 0.171592 | 0.258438 | 0.006129 | 1767 | 45 | 1602 | 18 | 1482 | 16 | 92 |
14HN08A-38 | 0.19 | 0.107828 | 0.002885 | 4.582684 | 0.159219 | 0.305804 | 0.008336 | 1765 | 25 | 1746 | 15 | 1720 | 21 | 98 |
14HN08A-39 | 0.31 | 0.183243 | 0.004152 | 12.982508 | 0.299290 | 0.509513 | 0.007207 | 2682 | 16 | 2678 | 11 | 2655 | 16 | 99 |
14HN08A-40 | 0.27 | 0.108819 | 0.002699 | 4.777753 | 0.122425 | 0.315847 | 0.005072 | 1780 | 21 | 1781 | 11 | 1769 | 13 | 99 |
14HN08A-41 | 0.11 | 0.114172 | 0.002934 | 5.210490 | 0.140242 | 0.329053 | 0.005448 | 1933 | 26 | 1854 | 12 | 1834 | 13 | 98 |
14HN08A-42 | 0.17 | 0.155685 | 0.004101 | 8.727132 | 0.245992 | 0.402439 | 0.006795 | 2410 | 22 | 2310 | 13 | 2180 | 16 | 94 |
14HN08A-43 | 0.51 | 0.110577 | 0.003643 | 4.538345 | 0.159670 | 0.294868 | 0.005607 | 1809 | 47 | 1738 | 15 | 1666 | 14 | 95 |
14HN08A-44 | 0.58 | 0.156180 | 0.003856 | 9.294805 | 0.237775 | 0.427330 | 0.006664 | 2415 | 22 | 2368 | 12 | 2294 | 15 | 96 |
14HN08A-45 | 0.40 | 0.104995 | 0.002961 | 3.730374 | 0.104457 | 0.255377 | 0.004195 | 1715 | 26 | 1578 | 11 | 1466 | 11 | 92 |
14HN08A-46 | 0.08 | 0.103778 | 0.002531 | 4.083607 | 0.099698 | 0.282370 | 0.003960 | 1694 | 23 | 1651 | 10 | 1603 | 10 | 97 |
14HN08A-47 | 0.47 | 0.110789 | 0.003502 | 4.966813 | 0.173641 | 0.320902 | 0.006119 | 1813 | 29 | 1814 | 15 | 1794 | 15 | 98 |
14HN08A-48 | 0.27 | 0.106560 | 0.002957 | 4.422248 | 0.119308 | 0.297691 | 0.004234 | 1743 | 23 | 1717 | 11 | 1680 | 11 | 97 |
14HN08A-49 | 0.41 | 0.113163 | 0.002972 | 5.041648 | 0.129648 | 0.319438 | 0.004455 | 1851 | 24 | 1826 | 11 | 1787 | 11 | 97 |
14HN08A-50 | 0.17 | 0.109477 | 0.003147 | 4.637338 | 0.134825 | 0.303623 | 0.004570 | 1790 | 26 | 1756 | 12 | 1709 | 12 | 97 |
14HN08A-51 | 0.50 | 0.113354 | 0.003396 | 5.099284 | 0.159473 | 0.323458 | 0.006079 | 1854 | 27 | 1836 | 14 | 1807 | 15 | 98 |
14HN08A-52 | 0.64 | 0.112721 | 0.003963 | 4.980168 | 0.166349 | 0.318353 | 0.005520 | 1844 | 29 | 1816 | 14 | 1782 | 14 | 98 |
14HN08A-53 | 0.12 | 0.099337 | 0.005568 | 3.890536 | 0.219526 | 0.278324 | 0.004306 | 1613 | 55 | 1612 | 23 | 1583 | 11 | 98 |
14HN08A-54 | 0.29 | 0.098160 | 0.003715 | 2.231728 | 0.079910 | 0.164172 | 0.002972 | 1591 | 36 | 1191 | 13 | 980 | 8 | 80 |
14HN08A-55 | 0.06 | 0.082548 | 0.003387 | 2.047297 | 0.091364 | 0.178475 | 0.002845 | 1258 | 40 | 1131 | 15 | 1059 | 8 | 93 |
14HN08A-56 | 0.52 | 0.097660 | 0.003726 | 3.793526 | 0.170664 | 0.278265 | 0.004975 | 1580 | 36 | 1591 | 18 | 1583 | 13 | 99 |
14HN08A-57 | 0.06 | 0.096737 | 0.002572 | 2.697794 | 0.076371 | 0.201170 | 0.002555 | 1562 | 23 | 1328 | 11 | 1182 | 7 | 88 |
14HN08A-58 | 0.23 | 0.097502 | 0.002552 | 3.153452 | 0.086808 | 0.233258 | 0.002930 | 1577 | 25 | 1446 | 11 | 1352 | 8 | 93 |
14HN08A-59 | 0.44 | 0.182704 | 0.005057 | 12.891229 | 0.371990 | 0.509445 | 0.007258 | 2677 | 23 | 2672 | 14 | 2654 | 16 | 99 |
14HN08A-60 | 0.26 | 0.108618 | 0.003001 | 4.725210 | 0.140880 | 0.313722 | 0.004891 | 1776 | 26 | 1772 | 13 | 1759 | 12 | 99 |
14HN08A-61 | 0.46 | 0.150141 | 0.004260 | 9.001626 | 0.263426 | 0.432850 | 0.006199 | 2347 | 24 | 2338 | 14 | 2319 | 14 | 99 |
14HN08A-62 | 0.16 | 0.118484 | 0.002726 | 5.065077 | 0.121935 | 0.308195 | 0.003661 | 1944 | 21 | 1830 | 10 | 1732 | 9 | 94 |
14HN08A-63 | 0.10 | 0.148682 | 0.003490 | 7.223811 | 0.172720 | 0.350679 | 0.005234 | 2331 | 18 | 2139 | 11 | 1938 | 13 | 90 |
14HN08A-64 | 0.43 | 0.104232 | 0.003002 | 3.868091 | 0.127274 | 0.267781 | 0.005228 | 1702 | 27 | 1607 | 14 | 1530 | 14 | 95 |
14HN08A-65 | 0.45 | 0.091060 | 0.001917 | 2.652901 | 0.060476 | 0.210483 | 0.002736 | 1448 | 20 | 1315 | 9 | 1231 | 8 | 93 |
14HN08A-66 | 0.19 | 0.099074 | 0.002159 | 3.868075 | 0.115254 | 0.279004 | 0.005294 | 1606 | 20 | 1607 | 12 | 1586 | 14 | 98 |
14HN08A-67 | 0.48 | 0.098061 | 0.002095 | 3.739914 | 0.118831 | 0.274032 | 0.005730 | 1587 | 20 | 1580 | 13 | 1561 | 15 | 98 |
14HN08A-68 | 0.12 | 0.141732 | 0.003810 | 7.229319 | 0.217186 | 0.368827 | 0.005864 | 2250 | 23 | 2140 | 14 | 2024 | 14 | 94 |
14HN08A-69 | 0.13 | 0.099061 | 0.002180 | 3.729650 | 0.089068 | 0.272095 | 0.003338 | 1606 | 21 | 1578 | 10 | 1551 | 9 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Cui, X.; Yang, Y.; Chen, S.; Zhao, B.; Deng, X. Precambrian Tectonic Affinity of Hainan and Its Evolution from Columbia to Rodinia. Minerals 2023, 13, 1237. https://doi.org/10.3390/min13101237
Zhang L, Cui X, Yang Y, Chen S, Zhao B, Deng X. Precambrian Tectonic Affinity of Hainan and Its Evolution from Columbia to Rodinia. Minerals. 2023; 13(10):1237. https://doi.org/10.3390/min13101237
Chicago/Turabian StyleZhang, Limin, Xiang Cui, Yong Yang, Si Chen, Bin Zhao, and Xiguang Deng. 2023. "Precambrian Tectonic Affinity of Hainan and Its Evolution from Columbia to Rodinia" Minerals 13, no. 10: 1237. https://doi.org/10.3390/min13101237
APA StyleZhang, L., Cui, X., Yang, Y., Chen, S., Zhao, B., & Deng, X. (2023). Precambrian Tectonic Affinity of Hainan and Its Evolution from Columbia to Rodinia. Minerals, 13(10), 1237. https://doi.org/10.3390/min13101237