Secondary Minerals from Minothem Environments in Fragnè Mine (Turin, Italy): Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, C.; Forti, P. Cave Minerals of the World, 2nd ed.; National Speleological Society: Hunsville, AL, USA, 1997; 463p. [Google Scholar]
- Moore, G.W. Speleothem—A new cave term. Natl. Speleol. Soc. News 1952, 10, 2. [Google Scholar]
- Onac, B.P.; Forti, P. State of the art and challenges in cave minerals studies. Studia UBB Geol. 2011, 56, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Carbone, C.; Dinelli, E.; De Waele, J. Characterization of minothems at Libiola (NW Italy): Morphological, mineralogical, and geochemical study. Int. J. Speleol. 2016, 45, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Alpers, C.N.; Jambor, J.L.; Nordstrom, D.K. (Eds.) Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance; Reviews in Mineralogy & Geochemistry; Mineralogical Society of America: Washington, DC, USA, 2000; Volume 40, pp. 1–602. [Google Scholar]
- Buckby, T.; Black, S.; Coleman, M.L.; Hodson, M.E. Fe-sulphate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Mineral. Mag. 2003, 67, 263–278. [Google Scholar] [CrossRef]
- Carbone, C.; Di Benedetto, F.; Marescotti, P.; Martinelli, A.; Sangregorio, C.; Cipriani, C.; Lucchetti, G.; Romanelli, M. Genetic evolution of nanocrystalline Fe oxide and oxyhydroxide assemblages from the Libiola Mine (Eastern Liguria, Italy): Structural and microstructural investigations. Eur. J. Mineral. 2005, 17, 785–795. [Google Scholar] [CrossRef]
- Caso, F.; Nerone, S.; Petroccia, A.; Bonasera, M. Geology of the southern Gran Paradiso Massif and Lower Piedmont Zone contact area (Middle Ala Valley, Western Alps, Italy). J. Maps 2021, 17, 237–246. [Google Scholar] [CrossRef]
- Jönsson, J.; Persson, P.; Sjöberg, S.; Lövgren, L. Schwertmannite precipitated from acid mine drainage: Phase transformation, sulphate release and surface properties. Appl. Geochem. 2005, 20, 179–191. [Google Scholar] [CrossRef]
- Schwertmann, U.; Carlson, L. The pH-dependent transformation of schwertmannite to goethite at 25 degrees C. Clay Miner. 2005, 40, 63–66. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Torrento, C.; Nieto, J.M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochem. Cosmochim. Acta 2006, 70, 4130–4139. [Google Scholar] [CrossRef]
- Burton, E.D.; Bush, R.T.; Sullivan, L.A.; Mitchell, D.R.G. Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron–sulfide formation. Geochem. Cosmochim. Acta 2008, 72, 4551–4564. [Google Scholar] [CrossRef]
- Pulišová, P.; Máša, B.; Michalková, E.; Večerníková, E.; Maříková, M.; Bezdička, P.; Murafa, N.; Šubrt, J. Thermal behaviour of natural and synthetic iron precipitates from mine drainage. J. Therm. Anal. Calorim. 2014, 116, 625–632. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, C.; Lu, G.; Yi, X.; Wang, H.; Dang, Z. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Sci. Total Environ. 2018, 616, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Miyata, N.; Takahashi, A.; Fujii, T.; Hashimoto, H.; Takada, J. Biosynthesis of Schwertmannite and Goethite in a Bioreactor with Acidophilic Fe(II)-Oxidizing Betaproteobacterium Strain GJ-E10. Minerals 2018, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Parafiniuk, J.; Siuda, R. Schwertmannite precipitated from acid mine drainage in the Western Sudetes (SW Poland) and its arsenate sorption capacity. Geol. Q. 2006, 50, 475–486. [Google Scholar]
- Brunet, R.D.; Bustillo, M.A. Exceptional silica speleothems in a volcanic cave: A unique example of silicification and sub-aquatic opaline stromatolite formation (Terceira, Azores). Sedimentology 2014, 61, 2113–2135. [Google Scholar] [CrossRef]
- Provencio, P.; Polyak, V.J. Iron oxide-rich filaments: Possible fossil bacteria in Lechuguilla Cave, New Mexico. Geomicrobiol. J. 2001, 18, 297–309. [Google Scholar] [CrossRef]
- Lenart, J.; Schuchová, K.; Kašing, M.; Falteisek, L.; Cimalová, Š.; Bílá, J.; Ličbinská, M.; Kupka, J. The abandoned underground mine as a semi-natural ecosystem: The story of Flaschar’s Mine (Czechia). Catena 2022, 213, 106178. [Google Scholar] [CrossRef]
- Tămaș, T.; Ungureanu, R. Mineralogy of speleothems from four caves in the Purcăreţ-Boiu Mare Plateau and the Baia Mare Depression (NW Romania). Studia UBB Geol. 2010, 55, 43–49. [Google Scholar] [CrossRef] [Green Version]
Sample Id Code | Level | Minothem | Minerals | Figure | |
---|---|---|---|---|---|
Liv1_01 | Sobrero | Stalactite | Goethite, jarosite | 003-0249 010-0443 | 2A |
Liv1_02 | Sobrero | Jellystone | Not detected | 2H | |
Liv1_03 | Sobrero | Soda straw | Schwertmannite, poorly crystalline goethite | 047-1775 003-0249 | 2G |
Liv1_04 | Sobrero | Column | Schwertmannite, poorly crystalline goethite | 047-1775 003-0249 | 2B |
Liv1_05 | Sobrero | Warclub | Schwertmannite, poorly crystalline goethite | 047-1775 003-0249 | 2K |
Liv1_06 | Sobrero | Jelly stalactite | Schwertmannite, poorly crystalline goethite | 047-1775 003-0249 | 2I |
Liv1_07 | Sobrero | Blister | Schwertmannite | 047-1775 | 2C |
Liv1_07p | Sobrero | Crystals on blister | Gypsum | 008-0467 | |
Liv1_08 | Sobrero | Crust | Gypsum | 008-0467 | 2P |
Liv3_01 | Santa Barbara | Jelly stalactite | Allophane | 002-0039 | 2L |
Liv3_02 | Santa Barbara | Soda straw | Schwertmannite | 047-1775 | 2J |
Liv3_04 | Santa Barbara | Hair | Epsomite, hexahydrite | 008-0467 001-0354 | 2M |
Liv3_05b | Santa Barbara | Crust | Melanterite | 001-0255 | 2E |
Liv3_07 | Santa Barbara | Pancake stalagmite | Poorly crystalline goethite | 003-0249 | 2D |
Liv3_08a | Santa Barbara | Crust | Chlorite, amphibole, quartz, jarosite | 002-0028 01-073-1135 001-0649 010-0443 | |
Liv3_08a | Santa Barbara | Crust | Albite, jarosite | 002-0515 010-0443 | |
Liv3_08b | Santa Barbara | Crust | Gypsum | 008-0467 | 2N |
Liv3_09 | Santa Barbara | Crust | Gypsum | 008-0467 | 2O |
Liv3_10a | Santa Barbara | Crust | Gypsum, amphibole, pyrite, quartz, ktenasite | 008-0467 01-073-1135 003-0822 001-0649 029-0591 | 2F |
Liv3_10b | Santa Barbara | Crust | Gypsum, amphibole, albite, jarosite | 008-0467 01-073-1135 002-0515 010-0443 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galliano, Y.; Carbone, C.; Balestra, V.; Belmonte, D.; De Waele, J. Secondary Minerals from Minothem Environments in Fragnè Mine (Turin, Italy): Preliminary Results. Minerals 2022, 12, 966. https://doi.org/10.3390/min12080966
Galliano Y, Carbone C, Balestra V, Belmonte D, De Waele J. Secondary Minerals from Minothem Environments in Fragnè Mine (Turin, Italy): Preliminary Results. Minerals. 2022; 12(8):966. https://doi.org/10.3390/min12080966
Chicago/Turabian StyleGalliano, Yuri, Cristina Carbone, Valentina Balestra, Donato Belmonte, and Jo De Waele. 2022. "Secondary Minerals from Minothem Environments in Fragnè Mine (Turin, Italy): Preliminary Results" Minerals 12, no. 8: 966. https://doi.org/10.3390/min12080966