Lithium Occurrence in Italy—An Overview
Abstract
:1. Introduction
2. Geological Background
3. Main Occurrences
3.1. Magmatic-Related Occurrences
3.2. Sediment-Hosted Occurrences
3.2.1. Mn Deposits
3.2.2. Bauxite
3.2.3. Jadar-Like Deposits
3.3. Continental Waters
3.3.1. High-to-Intermediate Enthalpy
3.3.2. Low-Enthalpy
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berzelius, J.J. Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys. 1817, 21, 44–48. [Google Scholar]
- Bibienne, T.; Magnan, J.-F.; Rupp, A.; Laroche, N. From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium. Elements 2020, 16, 265–270. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/statistics/452025/projected-total-demand-for-lithium-globally/ (accessed on 16 December 2021).
- Kesler, S.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Bowell, R.J.; Lagos, L.; de los Hoyos, C.R.; Declercq, J. Classification and characteristics of natural lithium resources. Elements 2020, 16, 259–264. [Google Scholar] [CrossRef]
- Dugamin, E.J.; Richard, A.; Cathelineau, M.; Boiron, M.C.; Despinois, F.; Brisset, A. Groundwater in sedimentary basins as potential lithium resource: A global prospective study. Sci. Rep. 2021, 11, 21091. [Google Scholar] [CrossRef]
- Toba, A.-L.; Nguyen, R.T.; Cole, C.; Neupane, G.; Paranthaman, M.P. U.S. lithium resources from geothermal and extraction feasibility. Resour. Conserv. Recycl. 2021, 169, 105514. [Google Scholar] [CrossRef]
- London, D. Pegmatites; The Canadian Mineralogist: Special Publication 10; Mineralogical Association of Canada: Quebec, QC, Canada, 2008; 347p. [Google Scholar]
- Pöllmann, H.; König, U. Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD). Minerals 2021, 11, 1058. [Google Scholar] [CrossRef]
- Gourcerol, B.; Gloaguen, E.; Melleton, J.; Tuduri, J.; Galiègue, X. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geol. Rev. 2019, 109, 494–519. [Google Scholar] [CrossRef] [Green Version]
- Stanley, C.J.; Jones, G.C.; Rumsey, M.S.; Blake, C.; Roberts, A.C.; Stirling, J.A.; Lepage, Y. Jadarite, LiNaSiB3O7(OH), a new mineral species from the Jadar Basin, Serbia. Eur. J. Mineral. 2007, 19, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Pezzotta, F. A history of tourmaline from the Island of Elba. Mineral. Rec. 2021, 52, 669–720. [Google Scholar]
- Carpi, P. Osservazioni naturali fatte all’Isola d’Elba e notizia sopra l’esistenza della litia nella lepidolite della stessa isola. Mem. Della Soc. Ital. Delle Sci. Modena 1827, 4, 20. (In Italian) [Google Scholar]
- FAAM. Available online: http://www.faam.com/eng/lithium-project (accessed on 16 December 2021).
- Greenstart. Available online: https://www.greenstart.it/italvolt-olivetti-scarmagno-pininfarina-comau-25759 (accessed on 4 July 2021). (In Italian).
- ACC. Available online: https://www.acc-emotion.com/newsroom/acc-announces-opening-3rd-gigafactory-termoli-italy (accessed on 20 April 2022).
- Thinkgeoenergy. Available online: https://www.thinkgeoenergy.com/research-permit-granted-on-geothermal-lithium-extraction-in-italy/ (accessed on 1 February 2022).
- Carminati, E.; Lustrino, M.; Doglioni, C. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics 2012, 579, 173–192. [Google Scholar] [CrossRef]
- Bigi, G.; Bonardi, G.; Castellarin, A.; Catalano, A.; Coli, M.; Cosentino, D.; Dal Piaz, G.V.; Parotto, M.; Sartori, R.; Scandone, P.; et al. Structural Model of Italy Scale 1:500.000—Consiglio Nazionale delle Ricerche—Progetto Finalizzato Geodinamica; SELCA: Firenze, Italy, 1992. [Google Scholar]
- Trumpy, E.; Manzella, A. Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 28–37. [Google Scholar] [CrossRef]
- Knoll, T.; Schuster, R.; Huet, B.; Mali, H.; Onuk, P.; Horschinegg, M.; Ertl, A.; Giester, G. Spodumene Pegmatites and Related Leucogranites from the AustroAlpine Unit (Eastern Alps, Central Europe): Field Relations, Petrography, Geochemistry, and Geochronology. Can. Mineral. 2018, 56, 489–528. [Google Scholar] [CrossRef]
- Marocchi, M.; Morelli, C.; Mair, V.K.L.; Tzli, U.; Bargossi, G.M. Evolution of large silicic magma systems: New U–Pb zircon data on the NW Permian Athesian Volcanic Group (Southern Alps, Italy). J. Geol. 2008, 116, 480–498. [Google Scholar] [CrossRef]
- Dini, A.; Gianelli, G.; Puxeddu, M.; Ruggieri, G. Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 2005, 81, 1–31. [Google Scholar] [CrossRef]
- Serri, G.; Innocenti, F.; Manetti, P. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 1993, 223, 117–147. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy—Petrology, Geochemistry, Geodynamics; Springer: Berlin/Heidelberg, Germany, 2005; 365p. [Google Scholar] [CrossRef]
- Conticelli, S.; Laurenzi, M.A.; Giordano, G.; Mattei, M.; Avanzinelli, R.; Melluso, L.; Tommasini, S.; Boari, E.; Cifelli, F.; Perini, G. Leucite-bearing (kamafugitic/leucititic) and –free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: Constraints on petrogenesis and geodynamics. J. Virtual Explor. 2010, 36, 20. [Google Scholar] [CrossRef]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005; 526p, Available online: http://weppi.gtk.fi/publ/foregsatlas/index.php (accessed on 5 May 2022).
- De Vivo, B.; Bove, M.; Lima, A.; Albanese, S.; Cicchella, D.; Grezzi, G.; Riccobono, F. Atlante Geochimico-Ambientale d’Italia-Environmental Geochemical Atlas of Italy; Aracne: Roma, Italy, 2009; 516p. [Google Scholar]
- Tourlière, B.; Pakyuz-Charrier, E.; Cassard, D.; Barbanson, L.; Gumiaux, C. Cell based associations: A procedure for considering scarce and mixed mineral occurrences in predictive mapping. Comput. Geosci. 2015, 78, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, G.; Sadeghi, M.; Gloaguen, E.; Tourlière, B.; Gautneb, H.; Törmänen, T.; de Oliveira, D. Mineral Prospectivity Mapping at European Scale of Energy Critical Elements (Lithium, Cobalt, Graphite). 2020. Available online: https://hal-brgm.archives-ouvertes.fr/hal-02452789 (accessed on 5 May 2022).
- Micheletti, F.; Barbey, P.; Fornelli, A.; Piccarreta, G.; Deloule, E. Latest precambrian to early cambrian U-Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes. Int. J. Earth Sci. 2007, 96, 843–860. [Google Scholar] [CrossRef]
- Von Raumer, J.F.; Stampfli, G.M. The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 2008, 461, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Gaggero, L.; Oggiano, G.; Funedda, A.; Buzzi, L. Rifting and arc-related early Paleozoic volcanism along the north Gondwana margin: Geochemical and geological evidence from Sardinia (Italy). J. Geol. 2012, 120, 273–292. [Google Scholar] [CrossRef] [Green Version]
- Edel, J.B.; Casini, L.; Oggiano, G.; Rossi, P.; Schulmann, K. Early Permian clockwise rotation of the Maures–Esté rel–Corsica–Sardinia block confirmed by new palaeomagnetic data and followed by a Triassic clockwise rotation. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust; Schulmann, K., Martinez Catalan, J.R., Lardeaux, J.M., Janousek, V., Oggiano, G., Eds.; Special Publications; Geological Society: London, UK, 2014; Volume 405, pp. 333–361. [Google Scholar] [CrossRef]
- Faure, M.; Ferrière, J. Reconstructing the Variscan Terranes in the Alpine Basement: Facts and Arguments for an Alpidic Orocline. Geosciences 2022, 12, 65. [Google Scholar] [CrossRef]
- Carmignani, L.; Carosi, R.; Di Pisa, A.; Gattiglio, M.; Musumeci, G.; Oggiano, G.; Pertusati, P.C. The hercynian chain in Sardinia (Italy). Geodyn. Acta 1994, 7, 31–47. [Google Scholar] [CrossRef]
- Boni, M.; Balassone, G.; Iannace, A. Base Metal Ores in the Lower Paleozoic of Southwestern Sardinia. In Carbonate-Hosted Lead-Zinc Deposits; Sangster, D.F., Ed.; Society of Economic Geologists: Special Publication 4; Society of Economic Geologists: Littleton, CO, USA, 1996; pp. 18–28. [Google Scholar]
- Casini, L.; Cuccuru, S.; Puccini, A.; Oggiano, G.; Rossi, P. Evolution of the Corsica–Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 2015, 646, 65–78. [Google Scholar] [CrossRef]
- Di Vincenzo, G.; Andriessen, P.A.M.; Ghezzo, C. Evidence of two different components in a Hercynian peraluminous cordierite-bearing granite: The San Basilio Intrusion (Central Sardinia, Italy). J. Petrol. 1996, 37, 1175–1206. [Google Scholar] [CrossRef] [Green Version]
- Naitza, S.; Conte, A.M.; Cuccuru, S.; Oggiano, G.; Secchi, F.; Tecce, F. A Late Variscan tin province associated to the ilmenite-series granites of the Sardinian Batholith (Italy): The Sn and Mo mineralisation around the Monte Linas ferroan granite. Ore Geol. Rev. 2017, 80, 1259–1278. [Google Scholar] [CrossRef]
- Conte, A.M.; Cuccuru, S.; D’Antonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust. Lithos 2017, 295, 263–282. [Google Scholar] [CrossRef]
- Tommasini, S.; Poli, G. Petrology of the late-Carboniferous Punta Falcone gabbroic complex, Northern Sardinia, Italy. Contrib. Mineral. Petrol. 1992, 110, 16–32. [Google Scholar] [CrossRef]
- Rossi, P.; Cocherie, A. Genesis of a Variscan batholith: Field, petrological and mineralogical evidence from the Corsica-Sardinia batholith. Tectonophysics 1991, 195, 319–346. [Google Scholar] [CrossRef]
- Pani, E. I Tipi delle Pegmatiti Associate al Batolite Sardo: Studio, Caratterizzazione Classificazione. Ph.D. Thesis, University of Cagliari, Cagliari, Italy, 1994. (In Italian). [Google Scholar]
- Pani, E.; Rizzo, R.; Raudsepp, M. Manganoan-fayalite-bearing granitic pegmatite from Quirra, Sardinia; relation to host plutonic rocks and tectonic affiliation. Can. Mineral. 1997, 35, 119–133. [Google Scholar]
- Caredda, A.M.; Cruciani, G.; Franceschelli, M.; Puxeddu, M. Genetic link between pegmatites, granites and migmatites from NE Sardinia, Italy. In Mineral Deposits: Processes to Processing; Stanley, C.J., Ed.; Balkema: Rotterdam, The Netherlands, 1999; pp. 325–328. [Google Scholar]
- Bosi, F.; Naitza, S.; Secchi, F.; Conte, A.M.; Cuccuru, S.; Andreozzi, G.B.; Skogby, H.; Hålenius, U. Petrogenetic controls on the origin of tourmalinite veins from Mandrolisai igneous massif (central Sardinia, Italy): Insights from tourmaline crystal chemistry. Lithos 2019, 342–343, 333–344. [Google Scholar] [CrossRef]
- Bosi, F.; Naitza, S.; Skogby, H.; Secchi, F.; Conte, A.M.; Cuccuru, S.; Hålenius, U.; De La Rosa, N.; Kristiansson, P.; Nilsson, C.; et al. Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints. Lithos 2018, 308–309, 395–411. [Google Scholar] [CrossRef]
- Mindat. Available online: www.mindat.org (accessed on 8 May 2022).
- Fornelli, A.; Festa, V.; Micheletti, F.; Spiess, R.; Tursi, F. Building an Orogen: Review of U-Pb Zircon Ages from the Calabria–Peloritani Terrane to Constrain the Timing of the Southern Variscan Belt. Minerals 2020, 10, 944. [Google Scholar] [CrossRef]
- Fiannacca, P.; Cirrincione, R.; Bonanno, F.; Carciotto, M.M. Source-inherited compositional diversity in granite batholiths: The geochemical message of Late Paleozoic intrusive magmatism in central Calabria (southern Italy). Lithos 2015, 236, 123–140. [Google Scholar] [CrossRef]
- Fiannacca, P.; Williams, I.S.; Cirrincione, R.; Pezzino, A. Poly-orogenic melting of metasedimentary crust from a granite geochemistry and inherited zircon perspective (Southern Calabria-Peloritani Orogen, Italy). Front. Earth Sci. 2019, 7, 119. [Google Scholar] [CrossRef]
- Fiannacca, P.; Basei, M.A.; Cirrincione, R.; Pezzino, A.; Russo, D. Water-Assisted Production of Late-Orogenic Trondhjemites at Magmatic and Subsolidus Conditions; Special Publications; Geological Society: London, UK, 2020; Volume 491, pp. 147–178. [Google Scholar] [CrossRef]
- Liotta, D.; Festa, V.; Caggianelli, A.; Prosser, G.; Pascazio, A. Mid-crustal shear zone evolution in a syn-tectonic late Hercynian granitoid (Sila Massif, Calabria, southern Italy). Int. J. Earth. Sci. 2004, 93, 400–413. [Google Scholar] [CrossRef]
- Saccà, C.; Saccà, D.; Nucera, P. Le Mineralizzazioni dei Monti Peloritani; Aracne: Roma, Italy, 2009; 300p. (In Italian) [Google Scholar]
- Bonin, B.; Brandlein, P.; Bussy, F.; Desmons, J.; Eggenberger, U.; Finger, F.; Graf, K.; Marro, C.; Mercolli, I.; Oberhansli, R.; et al. Late Variscan Magmatic Evolution of the Alpine Basement. In Pre-Mesozoic Geology in the Alps; Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 171–201. [Google Scholar] [CrossRef]
- Schaltegger, U.; Brack, P. Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. Int. J. Earth. Sci. 2007, 96, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Tavazzani, L.; Peres, S.; Sinigoi, S.; Demarchic, G.; Musumeci, G. Structure and petrography of the Valle Mosso pluton, Sesia Magmatic System, Southern Alps. J. Maps 2017, 13, 684–697. [Google Scholar] [CrossRef] [Green Version]
- Pezzotta, F.; Diella, V.; Guastoni, A. Chemical and paragenetic data on gadolinite-group minerals from Baveno and Cuasso al Monte, southern Alps, Italy. Am. Mineral. 1999, 84, 782–789. [Google Scholar] [CrossRef]
- Conti, P.; Di Pisa, A.; Gattiglio, M.; Meccheri, M. The pre-Alpine basement in the Alpi Apuane (Northern Apennines, Italy). In Pre-Mesozoic Geology in the Alps; Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 609–621. [Google Scholar] [CrossRef]
- Schuster, R.; Stüwe, K. Permian metamorphic event in the Alps. Geology 2008, 36, 603–606. [Google Scholar] [CrossRef]
- Göd, R. The spodumene deposit at “Weinebene”, Koralpe, Austria. Miner. Depos. 1989, 24, 270–278. [Google Scholar] [CrossRef]
- Melcher, F.; Graupner, T.; Gäbler, H.E.; Sitnikova, M.; Oberthür, T.; Gerdes, A.; Chudy, T. Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: Worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geol. Rev. 2017, 89, 946–987. [Google Scholar] [CrossRef]
- European Lithium. Available online: https://europeanlithium.com/wolfsberg-lithium-project/ (accessed on 18 February 2022).
- Sassi, F.P. Petrogenesi dei corpi pegmatoidi di Val Racines (Alto Adige). Mem. Mus. Trident. Sci. Nat. 1968, 17, 1–60. [Google Scholar]
- Grisotto, M.; Grisotto, L. Dravit und Spodumen aus Pegmatiten im Ratschingstal, Südtirol. Lapis 2016, 41, 18–21. (In German) [Google Scholar]
- Sanders, C.A.E.; Bertotti, G.; Tomasini, S.; Davis, G.R.; Wijbrans, J.R. Triassic pegmatites in the Mesozoic middle crust of the Southern Alps (Italy): Fluid inclusions, radiometric dating and tectonic implications. Eclogae Geol. Helv. 1996, 89, 505–525. [Google Scholar]
- Vignola, P.; Diella, V.; Oppizzi, P.; Tiepolo, M.; Weiss, S. Phosphate assemblage from the Brissago granitic pegmatite, western Southern Alps, Switzerland. Can. Mineral. 2008, 46, 635–650. [Google Scholar] [CrossRef]
- Vignola, P.; Zucali, M.; Rotiroti, N.; Marotta, G.; Risplendente, A.; Pavese, A.; Boscardin, M.; Mattioli, V.; Bertoldi, G. The chrysoberyl- and phoshate-bearing albite pegmatite of Malga Garbella, Val di Rabbi, Trento Province, Italy. Can. Mineral. 2018, 56, 411–424. [Google Scholar] [CrossRef]
- Bonazzi, M.; Langone, A.; Tumiati, S.; Dellarole, E.; Mazzucchelli, M.; Giovanardi, T.; Zanetti, A. Mantle-derived corundum-bearing felsic dykes may survive only within the lower (refractory/inert) crust: Evidence from zircon geochemistry and geochronology (Ivrea-Verbano Zone, Southern Alps, Italy). Geosciences 2020, 10, 281. [Google Scholar] [CrossRef]
- Boscardin, M.; Mattioli, V.; Bertoldi, G.; Appiani, R.; Vignola, P. I minerali della pegmatite di Malga Garbella, Val di Rabbi (Trento). Micro 2019, 17, 88–109. (In Italian) [Google Scholar]
- Vignola, P.; Diella, V. Phosphates from Piona granitic pegmatites (Central Southern Alps, Italy). In Granitic Pegmatites: The State of the Art; Martins, T., Vieira, R., Eds.; Departamento de Geologia, Universidade do Porto: Porto, Portugal, 2007; pp. 102–103. [Google Scholar]
- Vignola, P.; Diella, V.; Ferrari, E.S.; Fransolet, A.-M. Complex mechanisms of alteration in a graftonite + sarcopside + triphylite association from the Luna pegmatite, Piona, Lecco Province, Italy. Can. Mineral. 2011, 49, 765–776. [Google Scholar] [CrossRef]
- Vignola, P.; Hatert, F.; Fransolet, A.-M.; Medenbach, O.; Diella, V.; Andò, S. Karenwebberite, Na(Fe2+,Mn2+)PO4, a new member of the triphylite group from the Malpensata pegmatite, Lecco Province, Italy. Am. Mineral. 2013, 98, 767–772. [Google Scholar] [CrossRef]
- Vezzoni, S.; Biagioni, C.; D’Orazio, M.; Pieruccioni, D.; Galanti, Y.; Petrelli, M.; Molli, G. Evidence of Permian magmatism in the Alpi Apuane metamorphic complex (Northern Apennines, Italy): New hints for the geological evolution of the basement of the Adria plate. Lithos 2018, 318, 104–123. [Google Scholar] [CrossRef] [Green Version]
- Vezzoni, S.; Pieruccioni, D.; Galanti, Y.; Biagioni, C.; Dini, A. Permian Hydrothermal Alteration Preserved in Polymetamorphic Basement and Constraints for Ore-genesis (Alpi Apuane, Italy). Geosciences 2020, 10, 399. [Google Scholar] [CrossRef]
- Lattanzi, P.; Benvenuti, M.; Costagliola, P.; Tanelli, G. An overview on recent research on the metallogeny of Tuscany, with special reference to Apuane Alps. Mem. Soc. Geol. Ital. 1994, 48, 605–617. [Google Scholar]
- Benvenuti, M.; Lattanzi, P.; Tanelli, G. Tourmalinite-associated Pb-Zn-Ag mineralization at Bottino, Apuane Alps, Italy; geologic setting, mineral textures, and sulfide chemistry. Econ. Geol. 1989, 84, 1277–1292. [Google Scholar] [CrossRef]
- Duchi, G.; Franzini, M.; Giamello, M.; Orlandi, P.; Riccobono, F. The iron-rich beryls of Alpi Apuane. Mineralogy, chemistry and fluid inclusion. Neues Jahrb Miner. Mon. 1993, 5, 193–207. [Google Scholar]
- De Capitani, L.; Moroni, M.; Rodeghiero, F. Geological and geochemical characteristics of Permian tourmalinization at Val Trompia (Southern Alps, Northern Italy) and relationship with the Orobic tourmalinites. Period Miner. 1999, 68, 185–212. [Google Scholar]
- Ji, W.Q.; Malusà, M.G.; Tiepolo, M.; Langone, A.; Zhao, L.; Wu, F.Y. Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova 2019, 31, 120–128. [Google Scholar] [CrossRef]
- Pezzotta, F.; Guastoni, A. Adamello: La pegmatite miarolitica LCT della Valle Adamé. Parte 1: Scoperta, programmazione della ricerca, fasi, metodologie e criteri di campionamento. Riv. Mineral. Ital. 2002, 26, 126–142. (In Italian) [Google Scholar]
- Diella, V.; Pezzotta, F.; Bocchio, R.; Marinoni, N.; Cámara, F.; Langone, A.; Lanzafame, G. Gem-Quality Tourmaline from LCT Pegmatite in Adamello Massif, Central Southern Alps, Italy: An Investigation of Its Mineralogy, Crystallography and 3D Inclusions. Minerals 2018, 8, 593. [Google Scholar] [CrossRef] [Green Version]
- Magnani, L.; Farina, F.; Pezzotta, F.; Dini, A.; Mayne, M.J.; Bartoli, O. Role of Aqueous Fluids during Low Pressure Partial Melting of Pelites in the Adamello Pluton Contact Aureole (Italy). SSRN 2022. preprint. [Google Scholar] [CrossRef]
- Guastoni, A.; Pennacchioni, G.; Pozzi, G.; Fioretti, A.M.; Walter, J.M. Tertiary pegmatite dikes of the Central Alps. Can. Mineral. 2014, 52, 191–219. [Google Scholar] [CrossRef] [Green Version]
- Burri, T.; Berger, A.; Engi, M. Tertiary migmatites in the Central Alps: Regional distribution, field relations, conditions of formation, and tectonic implications. Schweiz. Miner. Petrogr. Mitt. 2005, 85, 215–232. [Google Scholar]
- Guastoni, A.; Nestola, F.; Mazzoleni, G.; Vignola, P. Mn-rich graftonite, ferrisicklerite, staněkite and Mn-rich vivianite in a granitic pegmatite at Soè Valley, central Alps, Italy. Mineral. Mag. 2007, 71, 579–585. [Google Scholar] [CrossRef]
- Farina, F.; Stevens, G.; Dini, A.; Rocchi, S. Peritectic phase entrainment and magma mixing in the late Miocene Elba Island laccolith–pluton–dyke complex (Italy). Lithos 2012, 153, 243–260. [Google Scholar] [CrossRef]
- Bertani, R.; Büsing, H.; Buske, S.; Dini, A.; Hjelstuen, M.; Luchini, M.; Manzella, M.; Nybo, R.; Rabbel, W.; Serniotti, L.; et al. The First Results of the DESCRAMBLE Project. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering Stanford University, SGP-TR-213, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Gianelli, G.; Puxeddu, M.; Ruggieri, G. Contents of F, Cl, Li and B in the granite intrusions of Larderello, Italy. In Proceedings of the 10th International Symposium Water Rock Interaction, WRI-10, Villasimius, Italy, 10–15 July 2001; Volume 2, pp. 839–842. [Google Scholar]
- Dini, A.; Innocenti, F.; Rocchi, S.; Tonarini, S.; Westerman, D.S. The magmatic evolution of the late Miocene laccolith–pluton–dyke granitic complex of Elba Island, Italy. Geol. Mag. 2002, 139, 257–279. [Google Scholar] [CrossRef]
- Dini, A.; Corretti, A.; Innocenti, F.; Rocchi, S.; Westerman, D.S. Sooty sweat stains or tourmaline spots? The Argonauts on the Island of Elba (Tuscany) and the spread of Greek trading in the Mediterranean Sea. In Myth and Geology; Piccardi, L., Masse, W.B., Eds.; Special Publications; Geological Society: London, UK, 2007; Volume 273, pp. 227–243. [Google Scholar] [CrossRef]
- Dini, A.; Caricchi, L.; Farina, F.; Kouzmanov, K.; Pezzotta, F. Peraluminous magmas and the LCT pegmatitic Li paradox. In Proceedings of the Goldschmidt 2021 Conference, Virtual. Lyon, France, 4–9 July 2021. [Google Scholar] [CrossRef]
- Bulle, F.; Rubatto, D.; Ruggieri, G.; Lusier, C.; Villa, I.M.; Baumgartner, L. Episodic hydrothermal alteration recorded by microscale oxygen isotope analysis of white mica in the Larderello-Travale Geothermal Field, Italy. Chem. Geol. 2020, 532, 119288. [Google Scholar] [CrossRef]
- Pandeli, E.; Bartolini, C.; Dini, A.; Antolini, E. New data on the paleogeography of Southern Tuscany (Italy) since Late Miocene time. Int. J. Earth. Sci. 2010, 99, 1357–1381. [Google Scholar] [CrossRef]
- Vaselli, O.; Conticelli, S. Boron, cesium and lithium distribution in some alkaline potassic volcanics from central Italy. Mineral. Petrogr. Acta 1990, 33, 189–204. [Google Scholar]
- Calderoni, G.; Ferrini, V.; Masi, U. Li, Pb and Tl abundances in the K-alkaline rocks from the Middle Latina Valley volcanoes (southern Latium, Italy) and their petrological significance. Bull. Volcanol. 1984, 47, 413–419. [Google Scholar] [CrossRef]
- Paone, A. Fractional crystallization models and B–Be–Li systematics at Mt Somma-Vesuvius volcano (Southern Italy). Int. J. Earth. Sci. 2008, 97, 635–650. [Google Scholar] [CrossRef]
- Calderoni, G.; Ferrini, V.; Giannetti, B.; Masi, U. Distribution and behavior of lithium in the K-alkaline rocks from the Roccamonfina volcano (Campania, southern Italy). Chem. Geol. 1984, 43, 222–232. [Google Scholar] [CrossRef]
- Sharygin, V.V. Boron-rich glasses in melilitolite from Pian di Celle, Umbria, Italy. Terra Nostra 1999, 99, 268–270. [Google Scholar]
- Benson, T.R.; Coble, M.A.; Rytuba, J.J.; Mahood, G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun. 2017, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Coulon, C.; Dostal, J.; Dupuy, C. Petrology and geochemistry of the ignimbrites and associated lava domes from NW Sardinia. Contrib. Mineral. Petrol. 1978, 68, 89–98. [Google Scholar] [CrossRef]
- Coradossi, N.; Martini, M. Fluorine, chlorine and lithium distribution in igneous rocks of Lipari and Vulcano (Aeolian Islands, Italy). Bull. Volcanol. 1981, 44, 565–571. [Google Scholar] [CrossRef]
- Zamboni, D.; Gazel, E.; Ryan, J.G.; Cannatelli, C.; Lucchi, F.; Atlas, Z.D.; Trela, J.; Mazza, S.E.; De Vivo, B. Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction systems. Geochem. Geophys. Geosyst. 2016, 17, 2034–2053. [Google Scholar] [CrossRef] [Green Version]
- Tonarini, S.; Pennisi, M.; Adorni-Braccesi, A.; Dini, A.; Ferrara, G.; Gonfiantini, R.; Wiedenbeck, M.; Gröning, M. Intercomparison of Boron Isotope and Concentration Measurements. Part I: Selection, Preparation and Homogeneity Tests of the Intercomparison Materials. Geostand. Newsl. 2003, 27, 21–39. [Google Scholar] [CrossRef]
- Liu, Y.H.; Huang, K.F.; Lee, D.C. Precise and accurate boron and lithium isotope determinations for small sample-size geological materials by MC-ICP-MS. J. Anal. At. Spectrom. 2018, 33, 846–855. [Google Scholar] [CrossRef]
- Chen, C.; Lee, C.T.; Tang, M.; Biddle, K.; Sun, W. Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment. Nat. Commun. 2020, 11, 5313. [Google Scholar] [CrossRef]
- Maineri, C.; Benvenuti, M.; Costagliola, P.; Dini, A.; Lattanzi, P.; Ruggieri, G.; Villa, I.M. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy): Interplay between magmatism, tectonics and hydrothermal activity. Miner. Depos. 2003, 38, 67–86. [Google Scholar] [CrossRef]
- Rocchi, S.; Westerman, D.S.; Dini, A.; Farina, F. Intrusive sheets and sheeted intrusions at Elba Island (Italy). Geosphere 2010, 6, 225–236. [Google Scholar] [CrossRef]
- Cathelineau, M.; Marignac, C.; Boiron, M.C.; Gianelli, G.; Puxeddu, M. Evidence for Li-rich brines and early magmatic fluid–rock interaction in the Larderello geothermal system. Geochim. Cosmochim. Acta 1994, 58, 1083–1099. [Google Scholar] [CrossRef]
- Boiron, M.C.; Cathelineau, M.; Ruggieri, G.; Jeanningros, A.; Gianelli, G.; Banks, D.A. Active contact metamorphism and CO2–CH4 fluid production in the Larderello geothermal field (Italy) at depths between 2.3 and 4 km. Chem. Geol. 2007, 237, 303–328. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P.; Appel, K. The enhanced element enrichment in the supercritical states of granite–pegmatite systems. Acta Geochim. 2019, 38, 335–349. [Google Scholar] [CrossRef]
- Ellis, B.S.; Szymanowski, D.; Harris, C.; Tollan, P.M.E.; Neukampf, J.; Guillong, M.; Bachmann, O. Evaluating the Potential of Rhyolitic Glass as a Lithium Source for Brine Deposits. Econ. Geol. 2022, 117, 91–105. [Google Scholar] [CrossRef]
- Hofstra, A.H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: Implications for the origin of lithium-rich brines. Econ. Geol. 2013, 108, 1691–1701. [Google Scholar] [CrossRef]
- Cabella, R.; Lucchetti, G.; Marescotti, P. Mn-ores from Eastern Ligurian ophiolitic sequences (“Diaspri di Monte Alpe” Formation, Northern Apennines, Italy). Trends Mineral. 1998, 2, 1–17. [Google Scholar]
- Lepore, G.O.; Bindi, L.; Zanetti, A.; Ciriotti, M.E.; Medenbach, O.; Bonazzi, P. Balestraite, KLi2VSi4O10O2, the first member of the mica group with octahedral V5+. Am. Min. 2015, 100, 608–614. [Google Scholar] [CrossRef]
- Kolitsch, U.; Merlino, S.; Belmonte, D.; Carbone, C.; Cabella, R.; Lucchetti, G.; Ciriotti, M.E. Lavinskyite-1 M, K(LiCu)Cu6 (Si4O11)2(OH)4, the monoclinic MDO equivalent of lavinskyite-2 O (formerly lavinskyite), from the Cerchiara manganese mine, Liguria, Italy. Eur. J. Mineral. 2018, 30, 811–820. [Google Scholar] [CrossRef]
- Nagashima, M.; Fukuda, C.; Matsumoto, T.; Imaoka, T.; Odicino, G.; Armellino, G. Aluminosugilite, KNa2Al2Li3Si12O30, an Al analogue of sugilite, from the Cerchiara mine, Liguria, Italy. Eur. J. Mineral. 2020, 32, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Abbate, E.; Fanucci, F.; Benvenuti, M.; Bruni, P.; Chiari, M.; Cipriani, N.; Falorni, P.; Fazzuoli, M.; Finocchiaro, F.; Morelli, D.; et al. Note illustrative della Carta Geologica d’ Italia alla scala 1:50.000, Foglio n. 248 (La Spezia); APAT—Dipartimento Difesa del Suolo—Servizio Geologico d’ Italia: Roma, Italy; Stampato da S.EL.CA.: Firenze, Italy, 2005. (In Italian) [Google Scholar]
- Perchiazzi, N.; Biagioni, C. Sugilite e serandite dei Diaspri Auctt. di Vagli (Alpi Apuane). Atti Soc. Toscana Sci. Nat. Mem. Ser. A 2005, 110, 67–71. [Google Scholar]
- Mongelli, G.; Sinisi, R.; Mameli, P.; Oggiano, G. Ce anomalies and trace element distribution in Sardinian lithiophorite-rich Mn concretions. J. Geochem. Explor. 2015, 153, 88–96. [Google Scholar] [CrossRef]
- Mongelli, G.; Boni, M.; Oggiano, G.; Mameli, P.; Sinisi, R.; Buccione, R.; Mondillo, N. Critical metals distribution in Tethyan karst bauxite: The cretaceous Italian ores. Ore Geol. Rev. 2017, 86, 526–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wu, L.; Tan, L.; Xie, F.; Cheng, J. Extraction of lithium and aluminium from bauxite mine tailings by mixed acid treatment without roasting. J. Hazard. Mater. 2021, 404, 124044. [Google Scholar] [CrossRef] [PubMed]
- Bardossy, G. Karst Bauxites; Developments in economic geology 14; Elsevier: Amsterdam, The Netherlands, 1982; 441p. [Google Scholar]
- Mongelli, G.; Mameli, P.; Sinisi, R.; Buccione, R.; Oggiano, G. REEs and other critical raw materials in Cretaceous Mediterranean-type bauxite: The case of the Sardinian ore (Italy). Ore Geol. Rev. 2021, 139, 104559. [Google Scholar] [CrossRef]
- Goffé, B. Le faciès à carpholite-chloritoïde dans la couverture briançonnaise des Alpes Ligures: Un témoin de l’histoire tectono-métamorphique régionale. Mem. Soc. Geol. Ital. 1984, 28, 461–479. (In French) [Google Scholar]
- Franceschelli, M.; Puxeddu, M.; Memmi, I. Li, B-rich Rhaetian metabauxite, Tuscany, Italy: Reworking of older bauxites and igneous rocks. Chem. Geol. 1998, 144, 221–242. [Google Scholar] [CrossRef]
- Cassinis, G.; Perotti, C.R.; Ronchi, A. Permian continental basins in the Southern Alps (Italy) and peri-mediterranean correlations. Int. J. Earth Sci. 2012, 101, 129–157. [Google Scholar] [CrossRef]
- Martin, S.; Toffolo, L.; Moroni, M.; Montorfano, C.; Secco, L.; Agnini, C.; Nimis, P.; Tumiati, S. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps. Lithos 2017, 284–285, 276–295. [Google Scholar] [CrossRef]
- Cabella, R.; Cortesogno, L.; Lucchetti, G. Danburite-bearing mineralizations in metapelites of Permian age (Ligurian Brianconnais, Maritime Alps, Italy). Neues Jahrb Miner. Mon. 1987, 7, 289–294. [Google Scholar]
- Muffler, L.J.P.; Cataldi, R. Methods for Regional Assessment of Geothermal Resources. Geothermics 1978, 7, 53–89. [Google Scholar] [CrossRef] [Green Version]
- Alagna, K.E.; Peccerillo, A.; Martin, S. Tertiary to present evolution of orogenic magmatism in Italy. J. Virtual Explor. 2010, 36, 18. [Google Scholar] [CrossRef]
- Bertini, G.; Cappetti, G.; Fiordalisi, A. Characteristics of geothermal fields in Italy. G. Geol. Appl. 2005, 1, 247–254. [Google Scholar] [CrossRef]
- Bertini, G.; Casini, M.; Gianelli, G.; Pandeli, E. Geological structure of a long-living geothermal system, Larderello, Italy. Terra Nova 2006, 18, 163–169. [Google Scholar] [CrossRef]
- Romagnoli, P.; Arias, A.; Barelli, A.; Cei, M.; Casini, M. An updated numerical model of the Larderello-Travale geothermal system, Italy. Geothermics 2010, 39, 292–313. [Google Scholar] [CrossRef]
- Duchi, V.; Minissale, A.; Manganelli, M. Chemical composition of natural deep and shallow hydrothermal fluids in the Larderello geothermal field. J. Volcanol. Geotherm. Res. 1992, 49, 313–328. [Google Scholar] [CrossRef]
- Ferrari, L.; Conticelli, S.; Burlamacchi, L.; Manetti, P. Volcanological evolution of the Monte Amiata, southern Tuscany: New geological and petrochemical data. Acta Vulcanol. 1996, 8, 41–56. [Google Scholar]
- Vitolo, S.; Cialdella, M.L. Silica separation from reinjection brines at Monte Amiata geothermal plants, Italy. Geothermics 1994, 23, 257–266. [Google Scholar] [CrossRef]
- Vitolo, S.; Cialdella, M.L. Silica separation from reinjection brines having different composition at Monte Amiata geothermal plant. In Proceedings of the World Geothermal Congress. International Geothermal Association, Florence, Italy, 18–31 May 1995; pp. 2463–2466. [Google Scholar]
- Università degli Studi di Siena. Studio Geostrutturale, Idrogeologico e Geochimico Ambientale dell’Area Amiatina; Regione Toscana, Incarico di Ricerca, Relazione Finale, Università degli Studi di Siena: Siena, Italy, 2008; 368p. [Google Scholar]
- Buonasorte, G.; Cameli, G.M.; Fiordilesi, A.; Parotto, M.; Perticone, I. Results of geothermal exploration in Central Italy (Latium-Campania). In Proceedings of the World Geothermal Congress, International Geothermal Association, Florence, Italy, 18–31 May 1995; pp. 1293–1298. [Google Scholar]
- Funiciello, R.; Mariotti, G.; Parotto, M.; Preite-Martinez, M.; Tecce, F.; Toneatti, R.; Turi, B. Geology, mineralogy and stable isotope geochemistry of the Cesano geothermal field (Sabatini Mountains, Northern Latium, Italy). Geothermics 1979, 8, 55–73. [Google Scholar] [CrossRef]
- Gianelli, G.; Scandiffio, G. The Latera geothermal system (Italy): Chemical composition of the geothermal fluid and hypotheses on its origin. Geothermics 1989, 3, 447–463. [Google Scholar] [CrossRef]
- Cavarretta, G.; Gianelli, G.; Scandiffio, G.; Tecce, F. Evolution of the Latera geothermal system. II. Metamorphic hydrothermal mineral assemblages and fluid chemistry. J. Volcanol. Geotherm. Res. 1985, 26, 337–364. [Google Scholar] [CrossRef]
- Calamai, A.; Cataldi, R.; Dall’Aglio, M.; Ferrara, G.C. Preliminary report on the Cesano hot brine deposit (Northern Latium, Italy). In Proceedings of the 2nd United Nations Symposium on the Development and Use of Geothermal Energy, San Francisco, CA, USA, 20–29 May 1975; pp. 305–313. [Google Scholar]
- Duchi, V.; Minissale, A.; Paolieri, M.; Prati, F.; Valori, A. Chemical relationship between discharging fluids in the Siena-Radicofani graben and the deep fluids produced by the geothermal fields of Mt Amiata, Torre Alfina and Latera (Central Italy). Geothermics 1992, 21, 401–413. [Google Scholar] [CrossRef]
- Buonasorte, G.; Cataldi, R.; Ceccarelli, A.; Costantini, A.; D’Offizi, S.; Lazzarotto, A.; Ridolfi, A.; Baldi, P.; Bertini, G.; Bertrami, R.; et al. Ricerca ed csplorazione nell” area geotermica di Torre Alfina (Lazio-Umbria). Boll. Soc. Geol. Ital. 1988, 107, 265–337, (In Italian with English abstract). [Google Scholar]
- De Vivo, B.; Belkin, H.E.; Barbieri, M.; Chelini, W.; Lattanzi, P.; Lima, A.; Tolomeo, L. The Campi Flegrei (Italy) Geothermal System: A fluid inclusion study of the Mofete and San Vito Fields. J. Volcanol. Geotherm. Res. 1989, 36, 303–336. [Google Scholar] [CrossRef]
- Marini, L.; Principe, C.; Lelli, M. The Solfatara Magmatic-Hydrothermal System; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Bertello, F.; Fantoni, R.; Franciosi, R.; Gatti, V.; Ghielmi, M.; Pugliese, A. From thrust-and-fold belt to foreland: Hydrocarbon occurrences in Italy. In Petroleum Geology Conference Series; Geological Society: London, UK, 2010; Volume 7, pp. 113–126. [Google Scholar] [CrossRef]
- Minissale, A.; Donato, A.; Procesi, M.; Giammanco, S.; Pizzino, L. Dati e Carte geochimiche del Mezzogiorno d’Italia. In Progetto Atlante Geotermico del Mezzogiorno; Manzella, A., Ed.; CNR per il Mezzogiorno, CNR-IGG, Edizioni CNR: Pisa, Italy, 2016; ISBN 9788879580298. (In Italian) [Google Scholar]
- Guglielminetti, M. Mofete geothermal field. Geothermics 1986, 15, 781–790. [Google Scholar] [CrossRef]
- Carlino, S.; Troiano, A.; Di Giuseppe, M.G.; Tramelli, A.; Troise, C.; Somma, R.; De Natale, G. Exploitation of geothermal energy in active volcanic areas: A numerical modelling applied to high temperature Mofete geothermal field, at Campi Flegrei caldera (Southern Italy). Renew. Energy 2016, 87, 54–66. [Google Scholar] [CrossRef]
- Moeck, I. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Nanni, T.; Vivalda, P. Le acque salate dell’Avanfossa marchigiana: Origine, chimismo e caratteri strutturali delle zone di emergenza. Boll. Soc. Geol. Ital. 1999, 118, 191–215. (In Italian) [Google Scholar]
- Boschetti, T.; Toscani, L.; Shouakar-Stash, O.; Iacumin, P.; Venturelli, G.; Mucchino, C.; Frape, S.K. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquat. Geochem. 2011, 17, 71–108. [Google Scholar] [CrossRef]
- Bencini, A.; Duchi, G.; Martini, M. Geothermal springs of Tuscany. Chem. Geol. 1977, 19, 229–252. [Google Scholar] [CrossRef]
- Capecchiacci, F.; Tassi, F.; Vaselli, O.; Bicocchi, G.; Cabassi, J.; Giannini, L.; Nisi, B.; Chiocciora, G. A combined geochemical and isotopic study of the fluids discharged from the Montecatini thermal system (NW Tuscany, Italy). Appl. Geochem. 2015, 59, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Minissale, A.; Magro, G.; Vaselli, O.; Verrucchi, C.; Perticone, I. Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (Central Italy). J. Volcanol. Geotherm. Res. 1997, 79, 223–251. [Google Scholar] [CrossRef]
- Duchi, V.; Minissale, A.; Vaselli, O.; Ancillotti, M. Hydrogeochemistry of the Campania region in southern Italy. J. Volcanol. Geotherm. Res. 1995, 67, 313–328. [Google Scholar] [CrossRef]
- Aiuppa, A.; Avino, R.; Brusca, L.; Caliro, S.; Chiodini, G.; D’Alessandro, W.; Favara, R.; Federico, C.; Ginevra, W.; Inguaggiato, S.; et al. Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem. Geol. 2006, 229, 313–330. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Pecoraino, G.; D’Amore, F. Chemical and isotopical characterisation of fluid manifestations of Ischia Island (Italy). J. Volcanol. Geotherm. Res. 2000, 99, 151–178. [Google Scholar] [CrossRef]
- Angelone, M.; Gasparini, C.; Guerra, M.; Lombardi, S.; Pizzino, L.; Quattrocchi, F.; Zuppi, G.M. Fluid geochemistry of the Sardinian Rift-Campidano Graben (Sardinia, Italy): Fault segmentation, seismic quiescence of geochemically “active” faults, and new constraints for selection of CO2 storage sites. Appl. Geochem. 2005, 20, 317–340. [Google Scholar] [CrossRef]
- Tassi, F.; Capaccioni, B.; Caramanna, G.; Cinti, D.; Montegrossi, G.; Pizzino, L.; Quattrocchi, F.; Vaselli, O. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 2009, 24, 246–254. [Google Scholar] [CrossRef]
- Siame, E.; Pascoe, R.D. Extraction of lithium from micaceous waste from china clay production. Miner. Eng. 2011, 24, 1595–1602. [Google Scholar] [CrossRef]
- Bertau, M.; Voigt, W.; Schneider, A.; Martin, G. Lithium Recovery from Challenging Deposits: Zinnwaldite and Magnesium-Rich Salt Lake Brines. ChemBioEng Rev. 2017, 4, 360–376. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; Ghahreman, A. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy 2019, 187, 81–100. [Google Scholar] [CrossRef]
- Yuan, X.; Hu, Y.; Zhao, Y.; Li, Q.; Liu, C. Contribution of hydrothermal processes to the enrichment of lithium in brines: Evidence from water–rock interacting experiments. Aquat. Geochem. 2021, 27, 221–239. [Google Scholar] [CrossRef]
- Mancini, L.; Sala, S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resour. Policy 2018, 57, 98–111. [Google Scholar] [CrossRef]
- Jerez, B.; Garcés, I.; Torres, R. Lithium extractivism and water injustices in the Salar de Atacama, Chile: The colonial shadow of green electromobility. Polit. Geogr. 2021, 87, 102382. [Google Scholar] [CrossRef]
- BankTrack; Ristic, R.; Malusevic, I.; Neskovic, P.; Novakovic, A.; Polovina, S.; Milcanovic, V. Spatial Degradation within the “Jadar” Project. Available online: https://www.banktrack.org/download/spatial_degradation_within_the_jadar_project/ristic_et_al__sanu_eng_2021_1.pdf (accessed on 26 December 2021).
- Mining-Technology; Skidmore, Z. Rio Tinto Suspends Proposed Lithium Mine in Serbia after Protests. Available online: https://www.mining-technology.com/news/rio-tinto-suspends-proposed-lithium-mine-in-serbia-after-protes/ (accessed on 1 June 2022).
- TusciaWeb; Ghinassi, A. L’impianto Geotermico a Torre Alfina non Sarà Realizzato. Available online: http://www.tusciaweb.eu/2021/02/limpianto-geotermico-torre-alfina-non-sara-realizzato/ (accessed on 26 December 2021). (In Italian).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dini, A.; Lattanzi, P.; Ruggieri, G.; Trumpy, E. Lithium Occurrence in Italy—An Overview. Minerals 2022, 12, 945. https://doi.org/10.3390/min12080945
Dini A, Lattanzi P, Ruggieri G, Trumpy E. Lithium Occurrence in Italy—An Overview. Minerals. 2022; 12(8):945. https://doi.org/10.3390/min12080945
Chicago/Turabian StyleDini, Andrea, Pierfranco Lattanzi, Giovanni Ruggieri, and Eugenio Trumpy. 2022. "Lithium Occurrence in Italy—An Overview" Minerals 12, no. 8: 945. https://doi.org/10.3390/min12080945
APA StyleDini, A., Lattanzi, P., Ruggieri, G., & Trumpy, E. (2022). Lithium Occurrence in Italy—An Overview. Minerals, 12(8), 945. https://doi.org/10.3390/min12080945