Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean
Abstract
1. Introduction
2. Methods
3. Material
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chudaev, O.V. Distribution of clay minerals in flysch deposits of Eastern Kamchatka. Lithol. Miner. Resour. 1978, 1, 105–115. (In Russian) [Google Scholar]
- Markevich, P.V.; Chudaev, O.V. Composition of flish Sikhote-Alin and Kamchatka sandstands and paleotectonic conditions of its formation. Dokl. Acad. Sci. USSR 1979, 246, 428–431. (In Russian) [Google Scholar]
- Markevich, P. Geosynclinal Terrigenous Sedimentation in Eastern Asia in the Phanerozoic on the Example of Sikhote-Alin and Kamchatka; Nauka: Moscow, Russia, 1985; p. 117. (In Russian) [Google Scholar]
- Brindley, G.W.; Brown, G. (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification; Miner. Soc.: London, UK, 1980; p. 495. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; p. 400. [Google Scholar]
- Drits, V.A.; Sakharov, B.A. X-ray structural analysis of mixed-layer minerals. In Tr. GIN; Nauka: Moscow, Russia, 1976; Volume 295, p. 256. (In Russian) [Google Scholar]
- Drits, V.A. Mixed-layer minerals: Diffraction methods and structural features. In Proceedings of the International Clay Conference, Denver, CO, USA, 28 July–2 August 1985; Schultz, L.G., van Olphen, H., Mampton, F.A., Eds.; Clay Miner. Soc.: Bloomington, IN, USA, 1987; pp. 33–45. [Google Scholar]
- Gusev, N. State Geological Map of the Russian Federation. Scale 1: 1,000,000, 3rd ed.; Far Eastern Series; VSEGEI: St. Petersburg, Russia, 2011. (In Russian) [Google Scholar]
- Mozherovsky, A.V. Practical Application of the Mineralogical Mapping Method for Stratigraphy of the Cretaceous Deposits of Southern Primorye (Russian Far East). Minerals 2021, 11, 840. [Google Scholar] [CrossRef]
- Mozherovsky, A.V. Authigenic minerals of paleozoic-cenozoic volcanogenic-sedimentary rocks in the Southern Primorye Region. Russ. J. Pac. Geol. 2021, 15, 583–601. [Google Scholar] [CrossRef]
- Syasko, A.; Vrzhosek, A.; Dubinsky, A.; Kononets, S.; Korotkiy, A.; Kutub-Zade, T.; Lyakh, I.; Nevolin, P.; Popov, V.; Rodionov, A.; et al. State Geological Map of the Russian Federation, Scale 1: 200,000. Sikhote-Alinskaya Series. Sheets K-52-XII, XVIII; Explanatory Letter; Moscow Branch of FSBI VSEGEI: Moscow, Russia, 2016; p. 241. (In Russian) [Google Scholar]
- Lelikov, E.P.; Markevich, V.S.; Terekhov, E.P. Lower Cretaceous and Paleogene deposits of the Yamato Upland (Sea of Japan). Dokl. Acad. Sci. USSR 1980, 253, 678–681. (In Russian) [Google Scholar]
- Bersenev, I.I.; Lelikov, E.P.; Bezverkhny, V.L.; Vashchenkova, N.G.; S’edin, V.T.; Terekhov, E.P.; Tsoy, I.B. Geology of the Sea of Japan Bottom; Far Eastern Branch of the USSR Academy of Sciences: Vladivostok, Russia, 1987; p. 140. (In Russian) [Google Scholar]
- Tsoy, I.B.; Terekhov, E.P.; Shastina, V.V.; Gorovaya, M.T.; Mozherovskii, A.V. Age of the Kotikovaya group in the Terpeniya Peninsula (Eastern Sakhalin). Stratigr. Geol. Correl. 2005, 6, 632–643. [Google Scholar]
- Terekhov, E.P.; Mozherovsky, A.V.; Gorovaya, M.T.; Tsoy, I.B.; Vashchenkova, N.G. Composition of the rocks of the Kotikovo group and the main stages in the late cretaceous-paleogene evolution of the Terpeniya Peninsula, Sakhalin Island. Russ. J. Pac. Geol. 2010, 3, 260–273. [Google Scholar] [CrossRef]
- Govorov, G.I. Geodynamics of Small-Kuril Paleoarc system after geochronological and petrochemical data. Dokl. Earth Sci. 2000, 4, 521–524. (In Russian) [Google Scholar]
- Govorov, G.I. Phanerozoic Magmatic Belts and Origin of the Okhotsk Sea Geoblock Structure; Dalnauka: Vladivostok, Russia, 2002; p. 198. (In Russian) [Google Scholar]
- Kulinich, R.G.; Karp, B.Y.; Lelikov, E.P.; Karnaukh, V.N.; Valitov, M.G.; Nikolaev, S.M.; Kolpashchikova, T.N.; Tsoi, I.B.; Baranov, B.V. Structural and Geological Characteristics of a «Seismic Gap» in the central part of the Kuril Island Arc. Russ. J. Pac. Geol. 2007, 1, 3–14. [Google Scholar] [CrossRef]
- Lelikov, E.P.; Tsoy, I.B.; Emel’yanova, T.A.; Terekhov, E.P.; Vashchenkova, N.G.; Vagina, N.K.; Smirnova, O.L.; Khudik, V.D. Geological Structure of the Submarine Vityaz Ridge within the Seismic Gap Area (Pacific Slope of the Kurile Island Arc). Russ. J. Pac. Geol. 2008, 2, 99–109. [Google Scholar] [CrossRef]
- Palechek, T.N.; Solov’ev, A.V.; Shapiro, M.N. Structure and age of Mesozoic sedimentary-volcanogenic deposits of the Palana Section (Western Kamchatka). Stratigr. Geol. Correl. 2003, 11, 261–277. [Google Scholar]
- Mozherovsky, A.V. Geology and stratigraphy of the Posiet Peninsula (South Primorye) from a mineralogical point of view. Bull. Kamchatka Reg. Assoc. Educ. Sci. Cent. Earth Sci. 2019, 3, 26–37. (In Russian) [Google Scholar]
- Mozherovsky, A.V.; Terekhov, E.P. Authigenic minerals in Early Cretaceous and Paleocene sedimentary rocks of the Yamato Ridge, East Sea. Geosci. J. 1998, 2, 148–159. [Google Scholar] [CrossRef]
- Mozherovsky, A.V.; Terekhov, E.P. Authigenic minerals of Meso-Cenozoic volcanic-sedimentary rocks of marginal seas bottom of the North-Western Pacific. Stand. Glob. J. Geol. Explor. Res. 2016, 3, 105–114. [Google Scholar]
- Terekhov, E.P.; Mozherovsky, A.V.; Tsoy, I.B.; Lelikov, E.P.; Vashchenkova, N.G.; Gorovaya, M.T. Late Mesozoic and Cenozoic volcanosedimentary complexes from the submarine Vityaz Ridge, the Island Arc slope of the Kuril-Kamchatka Trench, and its evolution. Russ. J. Pac. Geol. 2012, 3, 209–216. [Google Scholar] [CrossRef]
- Warr, L.N. Recommended abbreviations for the names of clay minerals and associated phases. Clay Miner. 2020, 55, 261–264. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Terekhov, E.P.; Mozherovsky, A.V.; Vashchenkova, N.G.; Barinov, N.N. Authigenic gypsum mineralization in the bottom rocks of the Sea of Japan and Okhotsk. New Data Miner. 2013, 48, 62–69. (In Russian) [Google Scholar]
- Terekhov, E.P.; Mozherovsky, A.V.; Barinov, N.N. Barites from the underwater Yamano Ridge (Japan Sea). Stand. Glob. J. Geol. Explor. Res. 2016, 4, 161–169. [Google Scholar]
- MacKenzie, R.C. (Ed.) Differential Thermal Analysis. Volume 1: Fundamental Aspects, 1st ed.; Academic Press: London, UK; New York, NY, USA, 1970; p. 804. [Google Scholar]
- Cuadros, J.; Fiore, S.; Huertas, F.J. Introduction to Mixed-Layer Clay Minerals. In Interstratified Clay Minerals: Origin, Characterization and Geochemical Significance; AIPEA Educational Series, Pub. No. 1; Fiore, S., Cuadros, J., Huertas, F.J., Eds.; Digilabs: Bari, Italy, 2010; p. 175. [Google Scholar]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Galán, E.; Kogure, T.; Stanjek, H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Miner. 2006, 41, 863–877. [Google Scholar] [CrossRef]
- Guggenheim, S. Introduction to Mg-rich clay minerals: Structure and composition. In Magnesian Clays: Characterization, Origin and Applications; AIPEA Educational Series, Pub. No. 2; Pozo, M., Galán, E., Eds.; Digilabs: Bari, Italy, 2015; pp. 1–62. [Google Scholar]
- Drits, V.A.; Kossowskaya, A.G. Clay Minerals: Smectites, Mixed-Layer Silicates; Nauka: Moscow, Russia, 1990; p. 214. (In Russian) [Google Scholar]
- Gibbs, R.J. Clay mineral segregation in the marine environment. J. Sediment. Petrol. 1977, 47, 237–243. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1973; p. 644. [Google Scholar]
- Konta, Y. Phyllosilicates in the sediment-forming processes: Weathering, erosion, transportation, and deposition. Acta Geodyn. Geomater. 2009, 6, 13–43. [Google Scholar]
- Kossovskaya, A.G. Genetic types and paragenetic association of minerals of the corrensite groupe. In Proceedings of the International Clay Conference, Madrid, Spain, 23–30 June 1972; Serratosa, J.M., Sanchez, A., Eds.; Division de Ciencias, C.S.I.C.: Madrid, Spain, 1973; Volume 1, pp. 341–342. [Google Scholar]
- Golovneva, L.; Bugdaeva, E.; Volynets, E.; Sun, Y.; Zolina, A. Angiosperm diversification in the Early Cretaceous of Primorye, Far East of Russia. Foss. Impr. 2021, 2, 231–255. [Google Scholar] [CrossRef]
- Iijima, A.; Utada, M. Present-day zeolitic diagenesis of the Neogene geosynclinal deposites in the Niigata oil field Japan. In Molecular Sieve Zeolites-I, Advances in Chemistry Series, 101; Flanigen, M., Sand, L.B., Eds.; American Chemical Society: Washington, DC, USA, 1971; pp. 342–349. [Google Scholar]
- Kimbara, K.; Sudo, T. Chloritic clay minerals in tuffa-ceous sandstones of the miocene Green Tuff Formation Yamata district, Ishicava Perfecture, Japan. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1973, 68, 246–258. [Google Scholar] [CrossRef][Green Version]
- Mehegan, J.M.; Robinson, P.T.; Delaney, J.R. Secondary mineralization and hydrothermal alteration in the Reydarfjordur drill core, Eastern Iceland. J. Geophys. Res. Solid Earth 1982, 87, 6511–6524. [Google Scholar] [CrossRef]
- Liu, X.; Hu, X.; Li, J. Cretaceous oceanic anoxic and oxic events. Chin. J. Nat. 2020, 4, 347–354, (In Chinese with English Abstract). [Google Scholar]
- Levitan, M.A.; Antonova, T.A.; Gelvi, T.N. Mesozoic-Cenozoic sedimentation in the Circum-Arctic Belt. 2. Cretaceous-Paleogene. Geochem. Int. 2015, 5, 411–429. [Google Scholar] [CrossRef]
- Aoyagy, K.; Kazama, T. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology 1980, 27, 179–188. [Google Scholar] [CrossRef]
- Kossovskaya, A.G.; Drits, V.A. Problems of crystal chemical and genetic classification of micaceous minerals of sedimentary rocks. In Epigenesis and Its Mineral Indicators; Nauka: Moscow, Russia, 1971; pp. 71–95. (In Russian) [Google Scholar]
- Hauff, P.L. Corrensite: Mineralogical Ambiguities and Geologic Significance. In Open-File Report 81-850; United States Department of the Interior Geological Survey: Washington, DC, USA, 1981; p. 45. [Google Scholar]
- Hazen, R.M.; Sverjensky, D.A.; Azzolini, D.; Bish, D.L.; Elmor, S.C.; Hinnov, L.; Milliken, R.E. Clay mineral evolution. Am. Mineral. 2013, 98, 2007–2029. [Google Scholar] [CrossRef]
Components | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 4) | (n = 4) | (n = 2) | (n = 2) | (n = 6) | (n = 2) | (n = 3) | (n = 3) | (n = 1) | (n = 3) | (n = 3) | (n = 6) | (n = 7) | (n = 10) | (n = 3) | (n = 3) | (n = 6) | (n = 6) | (n = 6) | |
FeO | 13.92 | 15.62 | 10.27 | 11.03 | 14.66 | 11.2 | 11.7 | 9.77 | 9.8 | 15.47 | 17.03 | 10.27 | 19.44 | 9.94 | 3.88 | 0.88 | 6.21 | 15.50 | 12.03 |
MgO | 6.24 | 5.44 | 2.09 | 5.06 | 9.23 | 1.74 | 1.23 | 3.52 | 1.90 | 5.55 | 9.69 | 16.03 | 10.47 | 20.77 | 23.47 | 2.78 | 1.90 | 7.16 | 3.65 |
CaO | 0.14 | 0.09 | 1.78 | 0.77 | 1.02 | 0.94 | 0.06 | 1.26 | 3.77 | 1.17 | 1.13 | 1.70 | 2.08 | 1.67 | 1.43 | 0.36 | 0.35 | 3.27 | 1.63 |
Na2O | 1.51 | 1.61 | 1.04 | 1.15 | 1.01 | 2.56 | 1.55 | 2.54 | 2.48 | 1.90 | 1.60 | 0.35 | 1.11 | 0.51 | 0.12 | 0.36 | 1.09 | 1.33 | 1.01 |
K2O | 1.90 | 2.55 | 4.17 | 2.74 | 1.81 | 3.16 | 3.57 | 2.54 | 0.93 | 1.90 | 1.60 | 2.62 | 0.95 | 0.33 | 0.64 | 0.09 | 5.14 | 1.24 | 2.02 |
Components | Southern Primorye | Underwater Vityaz Ridge | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
in wt% | Chl-Sme | Crr | Chl-Sme | Crr | |||||||
No | 4 | 18 | 84 | 85 | 128 | 176 | 178 | 181 | LV-41-19-1p | LV-41-16 | LV-41-15-8 |
SiO2 | 52.3 | 53.8 | 53.8 | 42.6 | 43.3 | 41.1 | 41 | 40.3 | 47.02 | 38.47 | 39.98 |
Al2O3 | 19.6 | 16.9 | 19.4 | 17 | 17.8 | 17.9 | 15.4 | 17.2 | 18.47 | 15.57 | 13.64 |
Fe2O3 tot | 11.7 | 9.8 | 9.4 | 19.2 | 17.8 | 18.2 | 15.9 | 17 | 10.5 | 19.55 | 18.09 |
TiO2 | 0.83 | 0.87 | 0.8 | 0.71 | 0.81 | 0.52 | 0.91 | 0.68 | 1.5 | 0.36 | 0.14 |
MnO | 0.08 | 0.16 | 0.15 | 0.15 | 0.18 | 0.07 | 0.11 | 0.07 | 0.05 | 0.182 | 0.062 |
MgO | 2.56 | 1.9 | 2.43 | 7.32 | 6.91 | 8.76 | 10.93 | 9.37 | 3.43 | 14.64 | 15.28 |
CaO | 0.11 | 3.77 | 1.07 | 0.91 | 1.54 | 0.83 | 1.6 | 0.97 | 1.21 | 0.25 | 0.14 |
Na2O | 1.08 | 2.48 | 1.65 | 2.01 | 2.05 | 1.29 | 2.07 | 1.43 | 0.92 | 1.19 | 0.66 |
K2O | 3.75 | 0.93 | 1.65 | 2.01 | 2.05 | 1.29 | 2.07 | 1.43 | 1.96 | 0.44 | 0.53 |
LOI | 6.62 | 8.47 | 7.44 | 9.09 | 9 | 8.77 | 8.68 | 11.14 | 14.96 | 10.05 | 11.66 |
∑summ | 98.63 | 99.08 | 97.79 | 101 | 101.4 | 98.73 | 98.67 | 99.59 | 100.02 | 100.702 | 100.182 |
Si | 3.57 | 3.70 | 3.67 | 3.06 | 3.08 | 2.99 | 3.01 | 2.98 | 3.46 | 2.81 | 2.96 |
Al | 1.58 | 1.37 | 1.56 | 1.44 | 1.49 | 1.53 | 1.33 | 1.50 | 1.60 | 1.34 | 1.19 |
Fe | 0.60 | 0.51 | 0.48 | 1.04 | 0.95 | 1.00 | 0.88 | 0.95 | 0.58 | 1.07 | 1.01 |
Ti | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.03 | 0.05 | 0.04 | 0.08 | 0.02 | 0.01 |
Mn | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
Mg | 0.26 | 0.19 | 0.25 | 0.78 | 0.73 | 0.95 | 1.20 | 1.03 | 0.38 | 1.59 | 1.69 |
Ca | 0.01 | 0.28 | 0.08 | 0.07 | 0.12 | 0.06 | 0.13 | 0.08 | 0.10 | 0.02 | 0.01 |
Na | 0.14 | 0.33 | 0.22 | 0.28 | 0.28 | 0.18 | 0.29 | 0.21 | 0.13 | 0.17 | 0.09 |
K | 0.33 | 0.08 | 0.14 | 0.18 | 0.19 | 0.12 | 0.19 | 0.14 | 0.18 | 0.04 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozherovsky, A.V. Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean. Minerals 2022, 12, 909. https://doi.org/10.3390/min12070909
Mozherovsky AV. Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean. Minerals. 2022; 12(7):909. https://doi.org/10.3390/min12070909
Chicago/Turabian StyleMozherovsky, Anatoly V. 2022. "Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean" Minerals 12, no. 7: 909. https://doi.org/10.3390/min12070909
APA StyleMozherovsky, A. V. (2022). Clay Mineral Assemblages in the Cretaceous Volcanogenic–Sedimentary Rocks of the North-Western Part of the Transition Zone from the Asian Continent to the Pacific Ocean. Minerals, 12(7), 909. https://doi.org/10.3390/min12070909