Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Analytical Methods
3.1. Samples
3.2. Scanning Electron Microscope and Backscattered Electrons (SEM-BSE)
3.3. Electron-Microprobe Analysis (EMPA)
3.4. LA-ICP-MS Trace Element Analysis
3.5. Raman Spectroscopy, Incluison Petrography, and Microthermometry
4. Results
4.1. Beryl Chemical Compositions
4.2. Fluid Inclusion Microthermometry
5. Discussion
5.1. Beryl as Potential Indicators of Pegmatite Evolution
5.2. Fluid Properties
5.3. Enrichment Mechanism of Beryllium
6. Conclusions
- (1)
- The occurrence position of beryl in the Dakalasu No.1 pegmatite, mineral paragenetic association, and trace elements of beryl indicate that there are at least two periods of beryl mineralization in the Dakalasu No.1 pegmatite.
- (2)
- The crystallization of melt at highly undercooled states and melt–melt–fluid immiscibility are inferred to be the cause of Be enrichment and mineralization in the Dakalasu No.1 pegmatite.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibbs, G.V.; Breck, D.W.; Meagher, E.P. Structural refinement of hydrous and anhydrous synthetic beryl, Al2(Be3Si6)O18 and emerald, Al1·9Cr0·1(Be3Si6)O18. Lithos 1968, 1, 275–285. [Google Scholar] [CrossRef]
- Aurisicchio, C.; Conte, A.M. Beryl from miarolitic pockets of granitic pegmatite, Elba, Italy characterization of crystal chemistry by menas of Emp and Sims analyses. Can Mineral. 2012, 50, 1467–1488. [Google Scholar] [CrossRef]
- Černý, P.; Hawthorne, F.S. Refractive indices versus alkali contents in beryl: General limitation and applications to some pegmatitic types. Can. Mineral. 1976, 14, 491–497. [Google Scholar]
- Černý, P.; Ander, S.A.; Tomascak, P.B.; Chapman, R. Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. Can. Mineral. 2003, 41, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.C.; Che, X.D.; Zhang, W.L.; Zhang, A.C.; Zhang, H. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). Eur. J. Mineral. 2009, 21, 795–809. [Google Scholar] [CrossRef]
- Rao, C.; Wang, R.C.; Hu, H. Electron-microprobe compositions and genesis of beryls from the Nanping No.31 granitic pegmatite (Fujian Province, Southeastern China). Geol. J. China Univ. 2009, 15, 496–505. (In Chinese) [Google Scholar]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M.; Wang, C.L.; Tian, Y.; Sakyi, P.A. Mineralogy of the Koktokay No.3 pegmatite, Altai, NW China: Implications for evolution and melt-fluid processes of rare-metal pegmatites. Eur. J. Mineral. 2015, 27, 433–457. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M.; Wang, C.L.; Ma, L.S. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrol. Sin. 2019, 35, 1999–2012. (In Chinese) [Google Scholar]
- Michallik, R.M.; Wagner, T.; Rämö, O.T.; Heikkilä, P. The role of magmatic and hydrothermal processes in the formation of miarolitic gem beryl from the Luumki pegmatite, SE Finland. Eur. J. Mineral. 2019, 31, 507–518. [Google Scholar] [CrossRef]
- Černý, P. Alkali variations in pegmatitic beryl and their petrogenetic implications. Neues Jahrb Miner. 1975, 123, 198–212. [Google Scholar]
- Thomas, R.; Webster, J.D.; Davidson, P. Be-daughter minerals in fluid and melt inclusions: Implications for the enrichment of Be in granite-pegmatite systems. Contrib. Mineral. Petrol. 2011, 161, 483–495. [Google Scholar] [CrossRef]
- Palinkas, S.S.; Wegner, R.; Cobic, A.; Palinkas, L.A.; Barreto, S.D.; Vaczi, T.; Bermanec, V. The role of magmatic and hydrothermal processes in the evolution of Be-bearing pegmatites: Evidence from beryl and its breakdown products. Am. Mineral. 2014, 99, 424–432. [Google Scholar] [CrossRef]
- Qin, K.Z.; Shen, M.D.; Tang, D.M.; Guo, Z.L.; Zhou, Q.F.; Wang, C.L.; Tian, Y.; Ding, J.G. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay. Xinjiang Geol. 2013, 31, 1–7. (In Chinese) [Google Scholar]
- Wang, D.H.; Chen, Y.C.; Xu, Z.G. 40Ar/39Ar isotope dating on muscovite from Indosinian rare metal deposits in Central Altay, Northwestern China. Bull. Mineral. Petrol. Geochem. 2003, 22, 14–17. (In Chinese) [Google Scholar]
- Zhou, Q.F.; Qin, K.Z.; Tang, D.M.; Wang, C.L.; Sakyi, P. LA-ICP-MS U–Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geol. Mag. 2018, 155, 707–728. [Google Scholar] [CrossRef]
- Feng, Y.G.; Liang, T.; Linnen, R.; Zhang, Z.; Zhou, Y.; Zhang, Z.L.; Gao, J.G. LA-ICP-MS dating of high-uranium columbite from no.1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance. Lithos 2020, 362–363, 1054–1061. [Google Scholar] [CrossRef]
- Zou, T.R.; Li, Q.C. Rare and Rare Earth Metallic Deposits in Xinjiang, China; Geological Publishing House: Bejing, China, 2006; p. 284. (In Chinese) [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altai tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Windley, B.F.; Kröner, A.; Guo, J.; Qu, G.; Li, Y.; Zhang, C. Neoproterozoic to Paleozoic geology of the Altaid orogen, NW China: New zircon age data and tectonic evolution. J. Geol. 2002, 110, 719–737. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Windley, B.F.; Badarch, G.; Sun, S.; Li, J.L.; Qin, K.Z.; Wang, Z. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. J. Geol. Soc. Lond. 2004, 161, 339–342. [Google Scholar] [CrossRef]
- He, G.Q.; Han, B.F.; Yue, Y.J.; Wang, J.H. Tectonic division and crustal evolution of Altay Orogenic Belt in China. Geosci. Xinjiang 1990, 2, 9–20. (In Chinese) [Google Scholar]
- Jahn, B.M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Aspect of the Tectonic Evolution of China. Geol. Soc. Lond. Spec. Publ. 2004, 226, 73–100. [Google Scholar] [CrossRef]
- Lv, Z.H.; Zhang, H.; Tang, Y.; Liu, Y.L.; Zhang, X. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore. Geol. Rev. 2018, 95, 161–181. [Google Scholar] [CrossRef]
- Wu, B.Q.; Zou, T.R. The genesis of granitic pegmatites in Xinjiang Altai. Mineral. Geol. Xinjiang 1989, 1, 60–70. (In Chinese) [Google Scholar]
- Pirajno, F.; Seltmann, R.; Yang, Y. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci. Front. 2011, 2, 157–185. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Wang, T.; Hong, D.W.; Kovach, V.P.; Han, B.F. Age and origin of the Takeshiken postorogenic alkali-rich intrusive rocks in southern Altai, near the Mongolian border in China and its implications for continental growth. Acta Petrol. Sin. 2006, 22, 1267–1278. (In Chinese) [Google Scholar]
- Li, Q.; Yang, F.Q.; Yang, C.D. Geochronology and geochemical characteristic of Dakalasu granite in Altay of Xinjiang, China and their tectonic significance. J. Earth Sci. Environ. 2019, 41, 396–413. (In Chinese) [Google Scholar]
- Brand, A.A.; Groat, L.A.; Linnen, R.L.; Garland, M.I.; Breaks, F.W.; Giuliani, G. Emerald mineralization associated with the Mavis Lake pegmatite group, near Dryden, Ontario. Can. Mineral. 2009, 47, 315–336. [Google Scholar] [CrossRef]
- Wu, S.T.; Karius, V.; Schmidt, B.C.; Simon, K.; Woerner, G. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2018, 42, 575–591. [Google Scholar] [CrossRef]
- Wu, S.T.; Woerner, G.; Jochum, K.P.; Stoll, B.; Simon, K.; Kronz, A. The preparation and preliminary characterization of three synthetic andesite reference glass materials (ARM-1, ARM-2, ARM-3) for in situ microanalysis. Geostand. Geoanal. Res. 2019, 43, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Griffin, W.J.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. Short Course Ser. 2008, 40, 308–311. [Google Scholar]
- Burke, E.A.J. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Sirbescu, M.C.; Nabelek, P.I. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—Evidence from fluid inclusions. Geochem. Cosmochim. Acta 2003, 67, 2443–2465. [Google Scholar] [CrossRef]
- Shepherd, T.J.; Rankin, A.H.; Alderton, D.H.M. A Practical Guide to Fluid Inclusions Studies; Mineralogical Magazine: Glasgow, UK; London, UK, 1985; pp. 352–353. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. In Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1984; Volume 12, pp. 1–644. [Google Scholar]
- Brown, P.E. FLINCOR: A Computer Program for the Reduction and Investigation of Fluid-Inclusion Data. Am. Mineral. 1989, 74, 1390–1393. [Google Scholar]
- Bakker, R.J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta. 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Darling, R.S. An extended equation to calculate NaCl contents from final clathrate melting temperature in H2O-CO2-NaCl fluid inclusions: Implications for P-T isochore location. Geochim. Cosmochim. Acta 1991, 55, 3869–3871. [Google Scholar] [CrossRef]
- Neiva, A.M.R.; Neiva, J.M.C. Beryl from the granitic pegmatite at Namivo, Alto Ligonha, Mozambique. Neues Jahrbuch für Mineralogie-Abhandlungen 2005, 181, 173–182. [Google Scholar] [CrossRef]
- Sardi, F.G.; Heimann, A. Pegmatitic beryl as indicator of melt evolution: Example from the Velasco district, Pampeana pegmatite province, Argentina, and review of worldwide occurrences. Can. Mineral. 2014, 52, 809–836. [Google Scholar] [CrossRef]
- Lum, J.E.; Viljoen, F.; Cairncross, B.; Frei, D. Mineralogical and geochemical characteristics of BERYL (AQUAMARINE) from the Erongo Volcanic Complex, Namibia. J. Afr. Earth Sci. 2016, 124, 104–125. [Google Scholar] [CrossRef]
- Uher, P.; Chudík, P.; Bačík, P.; Vaculovič, T.; Galiová, M. Beryl composition and evolution trends: An example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia. J. Geosci. 2010, 55, 69–80. [Google Scholar] [CrossRef] [Green Version]
- London, D. Pegmatites. Can. Mineral. 2008, 10, 347. [Google Scholar] [CrossRef]
- Ryzhenko, B.N.; Kovalenko, N.I.; Prisyagina, N.I. Titanium complexation in hydrothermal systems. Geochem. Int. 2006, 44, 879–895. [Google Scholar] [CrossRef]
- Audétat, A.; Keppler, H. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth Planet. Sci. Lett. 2005, 232, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Antignano, A.; Manning, C.E. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7~2.0 GPa and 700~1000 degrees C: Implications for the mobility of nominally insoluble elements. Chem. Geol. 2008, 255, 283–293. [Google Scholar] [CrossRef]
- Manning, C.E.; Wilke, M.; Schmidt, C.; Cauzid, J. Rutile solubility in albite-H2O and Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-XRF. Earth Planet. Sci. Lett. 2008, 272, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Rapp, J.F.; Klemme, S.; Butler, I.B.; Harley, S.L. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: An experimental investigation. Geology 2010, 38, 323–326. [Google Scholar] [CrossRef]
- Mysen, B. High-pressure and high-temperature titanium solution mechanisms in silicate-saturated aqueous fluids and hydrous silicate melts. Am. Mineral. 2012, 97, 1241–1251. [Google Scholar] [CrossRef]
- Lee, B.G.; Choi, J.W.; Lee, S.E.; Jeong, Y.S.; Oh, H.J.; Chi, C.S. Formation behavior of anodic TiO2 nanotubes in fluoride containing electrolytes. Trans. Nonferrous Met. Soc. China 2009, 19, 842–845. [Google Scholar] [CrossRef]
- Lu, H.Z. Magmatic fluid-magmatic and fluid inclusions studies on granite, South China. J. Gunlin Inst. Technol. 1996, 16, 1–13. (In Chinese) [Google Scholar]
- Zhu, J.C.; Wu, C.N.; Liu, C.S.; Li, F.C.; Huang, X.L.; Zhou, D.S. Magmatic-hydrothermal evolution and genesis of Koktokay No.3 rare metal pegmatite dyke, Altai, China. Geol. J. China Univ. 2000, 6, 40–52. (In Chinese) [Google Scholar]
- London, D. The magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence form fluid inclusions and phase-equilibrium experiments. Am. Mineral. 1986, 71, 376–395. [Google Scholar]
- Li, J.K. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2006. [Google Scholar]
- Liu, B. Fluid Inclusion Thermodynamics; Geological Publishing House: Beijing, China, 2000; p. 252. (In Chinese) [Google Scholar]
- Frantz, J.D.; Popp, R.K.; Hoering, T.C. The compositional limits of fluid immiscibility in the system H2O-NaCl-CO2 as determined with the use of synthetic fluid inclusions in conjunction with mass spectroscopy. Chem. Geol. 1992, 98, 237–255. [Google Scholar] [CrossRef]
- Alfonso, P.; Melgarejo, J.C. The Cap de Creus rare element pegmatite field Catalonia, Spain: Model of crystallization. Abstracts XIII ECROFI. Bol. Soc. Esp. Mineral. 1995, 18, 4–6. [Google Scholar]
- Martin, R.C.; Vindel, E.; Lopez, G.J.A.; Cathelineau, M. Relationships between fluid migration and regional stress field in mineralized pegmatites: An example from the Spanish central system. Abstracts XIII ECROFI. Bol. Soc. Esp. Mineral. 1995, 18, 135–136. [Google Scholar]
- Beurlen, H.; Siva, M.R.R.; Castro, C. Fluid inclusion mirothermometry in Be-Ta-(Li-Sn)-bearing pegmatites from the Borborema Province, Northeast Brazil. Chem. Geol. 2001, 173, 107–123. [Google Scholar] [CrossRef]
- Audétat, A.; Günther, D.; Heinrich, C.A. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole granite (Australia). Geochim. Cosmochim. Acta 2000, 64, 3373–3393. [Google Scholar] [CrossRef] [Green Version]
- London, D. Reading pegmatites: Part 1—what Beryl says. Rocks Miner. 2015, 90, 138–153. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. Water and Melt/Melt Immiscibility, the Essential Components in the Formation of Pegmatites; Evidence from Melt Inclusions. Z. Geol. Wiss. 2008, 36, 347–364. [Google Scholar]
- Thomas, R.; Davidson, P.; Badanina, E. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems. Miner. Petrol. 2009, 96, 129–140. [Google Scholar] [CrossRef]
- Martel, S.J. Progress in understanding sheeting joints over the past two centuries. J. Struct. Geol. 2017, 94, 68–86. [Google Scholar] [CrossRef] [Green Version]
- Nadan, B.J.; Engelder, T. Microcracks in New England granitoids: A record of thermoelastic relaxation during exhumation of intracontinental crust. Bull. Geol. Soc. Am. 2009, 121, 80–99. [Google Scholar] [CrossRef]
- Feng, Y.G.; Liang, T.; Lei, R.X.; Ju, M.H.; Zhang, Z.L.; Gao, J.G.; Zhou, Y.; Wu, C.Z. Relationship between undercooling and emplacement of rare-element pegmatites-Thinking based on field observations and pegmatite geochronology. J. Earth Sci. Environ. 2021, 43, 100–116. (In Chinese) [Google Scholar]
- Evensen, J.M.; London, D. Experimental partitioning of Be, Cs and other trace elements between cordierite and silicic melt, and the chemical signature of S-type granite. Contrib. Mineral. Petrol. 2003, 144, 739–757. [Google Scholar] [CrossRef]
Sample N | Beryl I | Beryl IIa | Beryl IIb |
---|---|---|---|
20DKP13 (11) | 20DK1-4 (26) | 20DKLS1-1 (17) | |
SiO2 wt% | 67.18 | 64.82 | 64.78 |
Al2O3 | 16.60 | 16.96 | 16.71 |
FeO | 0.76 | 0.44 | 0.49 |
MnO | 0.03 | 0.01 | 0.01 |
MgO | 0.16 | 0.05 | 0.03 |
CaO | 0.01 | 0.01 | 0.01 |
SrO | 0 | 0.22 | 0.23 |
BeO* | 12.51 | 13.08 | 13.15 |
Li2O* | 0.09 | 0.16 | 0.09 |
Na2O | 1.82 | 0.48 | 0.43 |
K2O | 0.03 | 0.12 | 0.02 |
Rb2O | 0.13 | 0.13 | 0.13 |
Cs2O | 0.03 | 0.11 | 0.11 |
Total | 99.74 | 96.58 | 96.21 |
Formulae based on 18 oxygen atoms | |||
Si apfu | 6.100 | 6.07 | 6.08 |
Al | 1.778 | 1.86 | 1.84 |
Fe | 0.057 | 0.03 | 0.04 |
Mn | 0.002 | 0.00 | 0.00 |
Mg | 0.022 | 0.01 | 0.00 |
∑ | 1.859 | 1.904 | 1.891 |
Ca | 0.001 | 0.00 | 0.00 |
Be | 2.75 | 2.94 | 2.96 |
Li | 0.25 | 0.06 | 0.04 |
Na | 0.32 | 0.09 | 0.08 |
K | 0.003 | 0.01 | 0.00 |
Rb | 0.008 | 0.01 | 0.01 |
Cs | 0.004 | 0.00 | 0.00 |
□ | 0.905 | 0.87 | 0.89 |
P | 0.002 | 0.00 | 0.00 |
Na/Cs | 79.61 | 4.05 | 3.44 |
Sample N | Grained Beryl (I) | Prismatic Beryl (IIa) | Prismatic Beryl (IIb) |
---|---|---|---|
20DKP13 (9) | 20DK1-4(14) | 20DKLS1-1-2(12) | |
Li.ppm | 400 | 534 | 501 |
Cs | 815 | 1476 | 1595 |
Mg | 1200 | 366 | 186 |
Ti | 84 | 107 | 90 |
K | 312 | 80 | 60 |
Sc | 1.1 | 8 | 7 |
V | 2.3 | 4.3 | 4.9 |
Mn | 179 | 36 | 40 |
Ga | 22 | 63 | 62 |
Rb | 140 | 28 | 30 |
Host Mineral | Inclusion Type | Genetic Type | Microthermometric Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tm,ice (°C) | Tm,clath (°C) | Salinity (wt% NaCl equ.) | Th,tot (°C) | State | n | |||||||
Range | Mdn ± σ | Range | Mdn ± σ | Range | Mdn ± σ | Range | Mdn ± σ | |||||
Beryl II | Type 1 | Primary | −4.1 to −2 | −3.1 ± 1.1 | 3.4–6.2 | 5.1 ± 1.5 | 300–320 | 310 ± 7 | L | 3 | ||
Type 2 | Primary | 5–9.2 | 6.1 ± 0.9 | 1.6–9 | 7.2 ± 1.7 | 300–400 | 340 ± 35 | L | 53 | |||
Type 3 | Pseudosecondary | 5.2–6.2 | 5.6 ± 0.6 | 7.1–8.7 | 7.9 ± 0.4 | 260–275 | 268 ± 7 | L | 7 | |||
Quartz | Type 1 | Primary | −5.5 to −5 | −5.2 ± 0.2 | 7.8–8.6 | 8.1 ± 0.3 | 340–350 | 345 ± 5 | L | 5 | ||
Type 2 | Primary | 5.2–7 | 6.1 ± 0.7 | 5.7–8.7 | 7.1 ± 1.5 | 315–385 | 342 ± 35 | L | 19 | |||
Type 3 | Primary | 7.2–7.3 | 7.2 ± 0.1 | 5.1–5.3 | 5.2 ± 0.1 | 280–290 | 285 ± 5 | L | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, Q.; Shen, P.; Luo, Y.; Li, C.; Feng, H.; Cao, C.; Pan, H.; Bai, Y. Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China. Minerals 2022, 12, 450. https://doi.org/10.3390/min12040450
Suo Q, Shen P, Luo Y, Li C, Feng H, Cao C, Pan H, Bai Y. Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China. Minerals. 2022; 12(4):450. https://doi.org/10.3390/min12040450
Chicago/Turabian StyleSuo, Qingyu, Ping Shen, Yaoqing Luo, Changhao Li, Haoxuan Feng, Chong Cao, Hongdi Pan, and Yingxiong Bai. 2022. "Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China" Minerals 12, no. 4: 450. https://doi.org/10.3390/min12040450
APA StyleSuo, Q., Shen, P., Luo, Y., Li, C., Feng, H., Cao, C., Pan, H., & Bai, Y. (2022). Beryl Mineralogy and Fluid Inclusion Constraints on the Be Enrichment in the Dakalasu No.1 Pegmatite, Altai, NW China. Minerals, 12(4), 450. https://doi.org/10.3390/min12040450