Integrated Membrane Process Coupled with Metal Sulfide Precipitation to Recover Zinc and Cyanide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Cyanide Solution and Experimental Set-Up
2.2. Characterization of Zinc Sulfide Precipitates
2.3. Determination of Limiting Flux and Critical TMP
2.4. Sequential Tests of the SuCy Process
2.5. Tests of the SART Process
3. Results
3.1. Characterization of the Zinc Sulfide Precipitates
3.2. Determination of TMPC and JL
3.3. Sequential Tests of the SuCy Process
3.4. Test of the SART Process
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walton, R. Zinc cementation. In Gold Ore Processing: Project Development and Operations, 2nd ed.; Adams, M.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 553–560. [Google Scholar] [CrossRef]
- Estay, H. Designing the SART process—A review. Hydrometallurgy 2018, 176, 147–165. [Google Scholar] [CrossRef]
- Estay, H.; Gim-Krumm, M.; Quilaqueo, M. Two-stage SART process: A feasible alternative for gold cyanidation plants with high zinc and copper contents. Minerals 2018, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Littlejohn, P.; Kratochvil, D.; Hall, A. Sulfidisation-acidification-recycling-thickening (SART) for complex gold ores. In Proceedings of the World Gold 2013 Conference, Brisbane, Australia, 26–29 September 2013; pp. 149–155. [Google Scholar]
- Sanguinetti, D.; Mohammadi, F.; Lopez, O. SART to remove zinc and copper from a silver Merrill Crowe barren leach solution. In Proceedings of the HydroProcess 2014, 6th International Workshop on Process Hydrometallurgy, Viña del Mar, Chile, 23–25 July 2014. [Google Scholar]
- Lewis, A.E. Review of metal sulphide precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Estay, H.; Barros, L.; Troncoso, E. Metal sulfide precipitation: Recent breakthroughs and future outlooks. Minerals 2021, 11, 1385. [Google Scholar] [CrossRef]
- Gim-Krumm, M.; Quilaqueo, M.; Rojas, V.; Seriche, G.; Ruby-Figueroa, R.; Cortés-Arriagada, D.; Romero, J.; Troncoso, E.; Estay, H. Impact of precipitate characteristics and precipitation conditions on the settling performance of a sulfide precipitation process: An exhaustive characterization of the aggregation behavior. Hydrometallurgy 2019, 189, 105150. [Google Scholar] [CrossRef]
- Estay, H.; Ruby-Figueroa, R.; Gim-Krumm, M.; Seriche, G.; Quilaqueo, M.; Díaz-Quezada, S.; Cortés, I.; Barros, L. Changing the conventional clarification method in metal sulfide precipitation by a membrane-based filtration process. J. Mater. Sci. Technol. 2021, 11, 693–709. [Google Scholar] [CrossRef]
- Menzel, K.; Barros, L.; García, A.; Ruby-Figueroa, R.; Estay, H. Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage. Sep. Purif. Technol. 2021, 270, 118721. [Google Scholar] [CrossRef]
- Estay, H.; Ruby-Figueroa, R.; Quilaqueo, M.; Seriche, G.; Cortés, I.; Gim-Krumm, M.; Barros, L. Enhancing the effectiveness of copper and cyanide recovery in gold cyanidation: A new integrated membrane process. Hydrometallurgy 2021, 202, 105606. [Google Scholar] [CrossRef]
- Medina, D.; Anderson, C.G. A review of the cyanidation treatment of copper-gold ores and concentrates. Metals 2020, 10, 897. [Google Scholar] [CrossRef]
- Estay, H.; Troncoso, E.; Ruby-Figueroa, R.; Romero, J. Performance evaluation of mass transfer correlations in the GFMA process: A review with perspectives to the design. J. Membr. Sci. 2018, 554, 140–155. [Google Scholar] [CrossRef]
- Drioli, E.; Criscuoli, A.; Curcio, E. Membrane Contactors: Fundamentals, Applications and Potentialities; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Field, R.W.; Wu, D.; Howell, J.A.; Gupta, B.B. Critical flux concept for microfiltration fouling. J. Memb. Sci. 1995, 100, 259–272. [Google Scholar] [CrossRef]
- Hermia, J. Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Trans. Inst. Chem. Eng. 1982, 60, 183–187. [Google Scholar]
- Mora, F.; Pérez, K.; Quezada, C.; Herrera, C.; Cassano, C.; Ruby-Figueroa, R. Impact of membrane pore size on the clarification performance of grape marc extract by microfiltration. Membranes 2019, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Z.; Peng, X.; Kong, L.; Hu, X. Hydrophilicity/hydrophobicity of metal sulfide particles as a determinator of aggregation performance in wastewater. J. Water Process Eng. 2021, 40, 101900. [Google Scholar] [CrossRef]
- Fleming, C.A.; Melashvili, M. The SART process: Killing the sacred cows. In Proceedings of the XXVIII International Mineral Processing Congress (IMPC 2016), Quebec City, QC, Canada, 11–15 September 2016. [Google Scholar]
- Miller, J.; Mulligan, P.; Johnson, C.E. Comminution of pulverized Pittsburgh coal during ASTM E1226-12a dust combustibility testing. Powder Technol. 2020, 375, 28–32. [Google Scholar] [CrossRef]
- Astudillo-Castro, C.L. Limiting flux and critical transmembrane pressure determination using an exponential model: The effect of concentration factor, temperature, and cross-flow velocity during casein micelle concentration by microfiltration. Ind. Eng. Chem. Res. 2015, 54, 414–425. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Seriche, G.; Valetto, S.; Barros, L.; Díaz-Quezada, S.; Ruby-Figueroa, R.; Troncoso, E.; Estay, H. An experimental study of membrane contactor modules for recovering cyanide through a gas membrane process. Membranes 2020, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Mokone, T.P.; van Hille, R.P.; Lewis, A.E. Effect of solution chemistry on particle characteristics during metal sulfide precipitation. J. Colloid. Interface Sci. 2010, 351, 10–18. [Google Scholar] [CrossRef] [PubMed]
Type of Fouling | Equation | Fitted Model Parameters and Statistical Model Analysis | Values |
---|---|---|---|
Complete blocking | Kc | 8.45 × 10−4 | |
R2 (%) | 65.50 | ||
RSME | 1.71 × 10−10 | ||
S-W test (p-value) | ≤0.05 | ||
K-S test (p-value) | ≤0.05 | ||
Standard blocking | Ks | 2.17 × 10−2 | |
R2 (%) | 87.20 | ||
RSME | 1.06 × 10−10 | ||
S-W test (p-value) | ≤0.05 | ||
K-S test (p-value) | ≤0.05 | ||
Intermediate blocking | Ki | 14.75 | |
R2 (%) | 86.20 | ||
RSME | 2.18 × 10−11 | ||
S-W test (p-value) | ≤0.05 | ||
K-S test (p-value) | ≤0.05 | ||
Cake formation | Kg | 445,538 | |
R2 (%) | 92.50 | ||
RSME | 1.25 × 10−11 | ||
S-W test (p-value) | ≤0.05 | ||
K-S test (p-value) | ≤0.05 |
Parameter | Value |
---|---|
Zn recovery in reactor, % | 97.8 |
Overall Zn recovery, % | ~100 |
Solids content in retentate of MF, % | 3.7 |
Zn content in precipitate, % | 66.6 |
S content in precipitate, % | 31.2 |
Titratable cyanide concentration at the end of MF stage, mg/L | 2270 |
Free cyanide concentration in the solution treated at the end of GFMA process, mg/L | 36.5 |
HCN flux in GFMA at 60 min, mg/m2s | 2.2 |
Permeate turbidity in UF, NTU | 0.3 |
Parameter | Value |
---|---|
Solids content in thickener underflow, % | 3.7 ± 0.8 |
Zn content in precipitate, % | 69.7 |
S content in precipitate, % | 28.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seriche, G.; Quilaqueo, M.; Barros, L.; Gim-Krumm, M.; Cortés, I.; Troncoso, E.; Ruby-Figueroa, R.; Estay, H. Integrated Membrane Process Coupled with Metal Sulfide Precipitation to Recover Zinc and Cyanide. Minerals 2022, 12, 229. https://doi.org/10.3390/min12020229
Seriche G, Quilaqueo M, Barros L, Gim-Krumm M, Cortés I, Troncoso E, Ruby-Figueroa R, Estay H. Integrated Membrane Process Coupled with Metal Sulfide Precipitation to Recover Zinc and Cyanide. Minerals. 2022; 12(2):229. https://doi.org/10.3390/min12020229
Chicago/Turabian StyleSeriche, Gabriel, Michelle Quilaqueo, Lorena Barros, Minghai Gim-Krumm, Ignacio Cortés, Elizabeth Troncoso, René Ruby-Figueroa, and Humberto Estay. 2022. "Integrated Membrane Process Coupled with Metal Sulfide Precipitation to Recover Zinc and Cyanide" Minerals 12, no. 2: 229. https://doi.org/10.3390/min12020229
APA StyleSeriche, G., Quilaqueo, M., Barros, L., Gim-Krumm, M., Cortés, I., Troncoso, E., Ruby-Figueroa, R., & Estay, H. (2022). Integrated Membrane Process Coupled with Metal Sulfide Precipitation to Recover Zinc and Cyanide. Minerals, 12(2), 229. https://doi.org/10.3390/min12020229