From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China)
Abstract
:1. Introduction
2. Tectonic Background and Regional Geology
3. Field Relationships, Sampling and Petrography
4. Analytical Methods
5. Results
5.1. Geochronology and Geochemistry for the Porphyritic Granite
5.2. Detrital Zircon Ages of Micaschists
6. Discussion
6.1. Provenance of Meta-Sedimentary Rocks in the Eastern Tiklik Belt
6.2. A New Tectonic Model for the Eastern Tiklik Belt
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molnar, P.; Tapponnier, P. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef]
- Tapponnier, P.; Meyer, B.; Avouac, J.P.; Peltzer, G.; Gaudemer, Y.; Guo, S.; Xiang, H.; Yin, K.; Chen, Z.; Cai, S.; et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet. Sci. Lett. 1990, 97, 382–403. [Google Scholar] [CrossRef]
- Tapponnier, P.; Xu, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Zhang, J.X.; Jiang, M. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geol. China 2006, 33, 221–238. [Google Scholar]
- Xu, Z.Q.; Yang, J.S.; Li, W.C.; Li, H.Q.; Cai, Z.H.; Yan, Z.; Ma, C.Q. Paleo-Tethys system and accretionary orogen in the Tibet Plateau. Acta Geol. Sin. 2013, 29, 1847–1860. [Google Scholar]
- Xiao, X.C.; Li, T.D. Lithospheric structure and uplift mechanism of the Qinghai-Xizang (Tibet) plateau and their influence on continental deformation. Geol. Rev. 1998, 44, 112. [Google Scholar]
- Xiao, W.J.; Windley, B.F.; Chen, H.L.; Zhang, G.C.; Li, J.L. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan plateau. Geology 2002, 30, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Windley, B.F.; Liu, D.Y.; Jian, P.; Sun, M. Accretionary tectonics of the western Kunlun orogen, China: A Paleozoic-Early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia. J. Geol. 2005, 113, 687–705. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Li, H.; Sun, Z.; Si, J.; Chevalier, M.L. Late Quaternary uplift of the northwestern Tibetan Plateau: Evidences from river terraces in the Ashikule area, West Kunlun Mountain. Acta Petrol. Sin. 2013, 29, 2199–2210. [Google Scholar]
- Pan, Y.S. The tectonic characteristics and evolution of West Kunlun region. Sci. Geol. Sin. 1990, 3, 224–232. [Google Scholar]
- Li, Z.X. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2007, 160, 179–210. [Google Scholar] [CrossRef]
- Yang, F.; Mao, J.; Pirajno, F.; Yan, S.; Liu, G.; Zhou, G.; Zhang, Z.; Liu, F.; Geng, X.; Guo, C. A review of the geological characteristics and geodynamic setting of Late Paleozoic porphyry copper deposits in the Junggar region, Xinjiang Uygur Autonomous Region, Northwest China. J. Asian Earth Sci. 2012, 49, 80–98. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Wang, Y.H.; He, S.P.; Li, R.S.; Li, M.; Yang, W.Q.; Cao, Y.T.; Collins, A.S.; Shi, C.; et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China. Precambrian Res. 2015, 267, 65–82. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; He, S.P.; Li, R.S.; Yang, W.Q.; Cao, Y.T. Timing of Precambrian basement from east segment of Tiekelike tectonic belt, Southwestern Tarim, China: Constrains from zircon U-Pb and Hf isotopic. J. Earth Sci. 2012, 23, 142–154. [Google Scholar] [CrossRef]
- Guo, Z.J.; Yin, A.; Bobinson, A.; Jia, C.Z. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. J. Asian Earth Sci. 2005, 25, 45–56. [Google Scholar] [CrossRef]
- Lu, S.; Li, H.; Zhang, C.; Niu, G. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Res. 2008, 160, 94–107. [Google Scholar] [CrossRef]
- Pan, Y.S. Geological Evolution of the Karakorum and Kunlun Mountains; Seismological Press: Beijing, China, 1996; p. 288. [Google Scholar]
- Turner, S.A. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Res. 2010, 181, 85–96. [Google Scholar] [CrossRef]
- Xu, B.; Ping, J.; Zheng, H.; Zou, H.; Zhang, L.; Liu, D. U–Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Res. 2005, 136, 107–123. [Google Scholar] [CrossRef]
- Zhang, C.L.; Li, H.K.; Santosh, M.; Li, Z.X.; Zou, H.B.; Wang, H.; Ye, H. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt. J. Asian Earth Sci. 2012, 47, 5–20. [Google Scholar] [CrossRef]
- Zhao, P.; He, J.; Deng, C.; Chen, Y.; Mitchell, R.N. Early Neoproterozoic (870–820 Ma) amalgamation of the Tarim craton (northwestern China) and the final assembly of Rodinia. Geology 2021, 49, 1277–1282. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, G.; Cawood, P.A.; Han, Y.; Yu, S.; Liu, Q.; Yao, J.; Zhang, D. South Tarim tied to north India on the periphery of Rodinia and Gondwana and implications for the evolution of two supercontinents. Geology 2021, in press. [Google Scholar] [CrossRef]
- Evans, D.A.D. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geol. Soc. Lond. Spec. Publ. 2009, 327, 371–404. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.C.; Piper, J.D.A.; Wang, Y.C.; He, H.Y.; Zhu, R.X. Paleomagnetic and geochronological constraints on the post-collisional northward convergence of the southwest Tian Shan, NW China. Tectonophysics 2005, 409, 107–124. [Google Scholar] [CrossRef]
- Shu, L.S.; Deng, X.L.; Zhu, W.B.; Ma, D.S.; Xiao, W.J. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. J. Asian Earth Sci. 2011, 42, 774–790. [Google Scholar] [CrossRef]
- Chen, W.Y.; Zhang, Y.J.; Zhu, G.Y.; Zhang, K.J.; Du, D.T.; Zhang, Z.; Chen, Z.Y.; Yan, H.H.; Sun, Q.S.; Li, T.T.; et al. Provenance of newly discovered Upper Ordovician black rock units in the West Kunlun orogen, China: Constraints from detrital zircon U–Pb chronology and whole-rock geochemistry. Geol. J. 2020, 55, 1529–1545. [Google Scholar] [CrossRef]
- Jiang, C.F.; Yang, J.S.; Feng, B.G.; Zhu, Z. Opening and Closing Tectonics of the Kunlun Mountains; Geological Publishing House: Beijing, China, 1992; p. 217. [Google Scholar]
- Wang, X.L.; Gao, X.P.; Liu, Y.Q.; Zhou, X.K.; Zhang, S.A. Crystal basement feature of Tiekelike fault-uplift at southern margin of Tarim basin. Northwestern Geol. 2010, 43, 95–112. [Google Scholar]
- Pan, J.; Li, H.; Sun, Z.; Pei, J.; Zhang, L. Deformation features of the Mazartagh fold-thrust belt, south central Tarim Basin and its tectonic significances. Chin. J. Geol. (Sci. Geol. Sin.) 2010, 45, 1038–1056. [Google Scholar]
- Qiao, G.B.; Wu, Y.Z. Geochronology, petrogenesis and tectonic significance of Quanshuigou Pluton from southeastern West Kunlun Mountain in Xinjiang, China. Earth Sci. 2018, 43, 4283–4299. [Google Scholar]
- Wang, C.; Wang, Y.H.; Liu, L.; He, S.P.; Li, R.S.; Li, M.; Yang, W.Q.; Cao, Y.T.; Meert, J.G.; Shi, C. The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China. Precambrian Res. 2014, 254, 210–225. [Google Scholar] [CrossRef]
- Cui, J.W.; Guo, X.P.; Ding, X.Z.; Li, P.W.; Zhang, X.W. Mesozoic-Cenozoic deformation structures and their dynamics in the basin-range junction belt of the west Kunlun-Tarim basin. Earth Sci. Front. 2006, 13, 103–118. [Google Scholar]
- XBGMR. Regional Geology of Xinjiang Autonomous Region, Geological Memoirs, Ser. 1, No. 32, Map Scale 1:1,500,000; Geological Publishing House: Beijing, China, 1993; p. 841. [Google Scholar]
- Zhang, C.L.; Lu, S.N.; Yu, H.F. Tectonic evolution of western orogenic belt: Evidences from zircon SHRIMP and LA-ICP-MS U-Pb ages. Sci. China 2007, 37, 145–154. [Google Scholar]
- Zhang, C.L.; Zhao, Y.; Wang, A.G.; Dong, Y.G. Geochemistry of Mesoproterozoic volcanic rocks in the Western Kunlun Mountains: Evidence for plate tectonic evolution. Acta Geol. Sin. 2010, 77, 180–190. [Google Scholar]
- Wang, C.; Zhang, J.H.; Li, M.; Li, R.S.; Peng, Y. Generation of ca. 900–870 Ma bimodal rifting volcanism along the southwestern margin of the Tarim Craton and its implications for the Tarim–North China connection in the early Neoproterozoic. J. Asian Earth Sci. 2015, 113, 610–625. [Google Scholar] [CrossRef]
- Jiang, C.; Mu, Y.; Zhao, X.; Bai, K.; Zhang, H. Petrology and geochemistry of the intrusion belt along the northern active margin of the Tarim plate. Reg. Geol. China 2001, 20, 158–163. [Google Scholar]
- Milkov, A.V.; Claypool, G.E.; Lee, Y.J.; Xu, W.; Dickens, G.R.; Borowski, W.S.; Ocean Drilling Program, L.; Shipboard Scientific Party, College Station, Tx, United States. In situ methane concentrations at Hydrate Ridge, offshore Oregon; new constraints on the global gas hydrate inventory from an active margin. Geology 2003, 31, 833–836. [Google Scholar] [CrossRef]
- Li, D.P.; Li, X.L.; Zhou, X.K.; Li, W.; Liu, Y.Q. SHRIMP U-Pb zircon dating of Neoarchean metagabbro dikes on the southwestern margin of the Tarim plate and its significance. Geol. China 2007, 34, 262–269. [Google Scholar]
- Guo, R.; Liu, G.; Hu, X.; Liang, W.; Tao, C. Petrogenesis and geological significance of the Late Ordovician adakitic rock in the eastern segment of Tiekelike, southern margin of Tarim Basin, Xinjiang. Geol. Sci. Technol. Inf. 2018, 37, 7–16. [Google Scholar]
- Geological Survey of Shannxi Province. The Geological Map of Qiaha (J44 C 004002) with scale of 1:250,000; Geological Survey of Shannxi Province: Xi’an, China, 2005. [Google Scholar]
- Ji, W.Q.; Wu, F.Y.; Wang, J.M.; Liu, X.C.; Liu, Z.C.; Zhang, Z.Y.; Cao, W.R.; Wang, J.G.; Zhang, C. Early Evolution of Himalayan Orogenic Belt and Generation of Middle Eocene Magmatism: Constraint From Haweng Granodiorite Porphyry in the Tethyan Himalaya. Front. Earth Sci. 2020, 8, 236. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosystems 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 4, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Spencer, C.J.; Kirkland, C.L.; Taylor, R.J.M. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci. Front. 2016, 7, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital zircon analysis of the sedimentary record. Rev. Mineral. Geochem. 2003, 53, 277–303. [Google Scholar] [CrossRef]
- Xiao, A.F.; Li, D.P. Zircon SHRIMP U-Pb dating of the gneiss granite on the southwestern margin of the Tarim Basin. Northwestern Geol. 2010, 43, 87–94. [Google Scholar]
Sample NO. | 18TK23 | TK-HX-1 * | TK-HX-2 * | TK-HX-3 * | TK-HX-4 * |
---|---|---|---|---|---|
Age (Ma) | 442 | 444 | 444 | 444 | 444 |
SiO2 | 68.13 | 62.9 | 63.5 | 64.9 | 65.8 |
Al2O3 | 14.85 | 17 | 16.9 | 16.5 | 15.5 |
Fe2O3T | 2.82 | 4.35 | 3.99 | 3.23 | 3.18 |
CaO | 2.77 | 4.44 | 4.33 | 2.42 | 2.58 |
MgO | 1.27 | 2.28 | 2.16 | 1.66 | 1.57 |
Na2O | 4.69 | 4.49 | 4.48 | 4.47 | 4.94 |
K2O | 3.68 | 2.65 | 2.63 | 4.17 | 3.66 |
TiO2 | 0.35 | 0.42 | 0.37 | 0.34 | 0.34 |
MnO | 0.06 | 0.08 | 0.07 | 0.07 | 0.06 |
P2O5 | 0.19 | 0.39 | 0.36 | 0.29 | 0.28 |
LOI | 0.77 | 0.54 | 0.66 | 1.83 | 1.65 |
Total | 99.57 | 99.92 | 99.81 | 100.32 | 99.83 |
V | 52.84 | ||||
Cr | 20 | 20 | 10 | 15 | |
Co | 5.99 | ||||
Ni | 12.63 | 10 | 15 | 10 | 5 |
Rb | 173.85 | 89.3 | 82.3 | 165.5 | 154.5 |
Sr | 994.16 | 1460 | 1525 | 1135 | 616 |
Y | 15.57 | 12.6 | 12.1 | 11.8 | 11.4 |
Zr | 216.82 | 199 | 218 | 212 | 220 |
Nb | 18.73 | 12.2 | 11.1 | 15.1 | 13.4 |
Mo | 0.21 | ||||
Sn | 2.13 | ||||
Ba | 865.97 | 2050 | 1845 | 2660 | 1730 |
La | 63.14 | 133 | 117.5 | 110.5 | 102.5 |
Ce | 117.91 | 242 | 218 | 202 | 189 |
Pr | 11.83 | 23.3 | 21.3 | 19.5 | 18.55 |
Nd | 43.16 | 74.1 | 69.1 | 61.1 | 58.9 |
Sm | 6.98 | 9.89 | 9.28 | 8.43 | 8.27 |
Eu | 1.57 | 2.09 | 2.04 | 1.8 | 1.75 |
Gd | 4.39 | 5.16 | 5.07 | 4.6 | 4.44 |
Tb | 0.57 | 0.57 | 0.54 | 0.51 | 0.46 |
Dy | 2.38 | 2.54 | 2.31 | 2.29 | 2.26 |
Ho | 0.4 | 0.45 | 0.41 | 0.39 | 0.38 |
Er | 1.07 | 1.15 | 1.1 | 0.97 | 0.98 |
Tm | 0.13 | 0.15 | 0.15 | 0.12 | 0.15 |
Yb | 0.89 | 1.02 | 0.99 | 0.92 | 0.87 |
Lu | 0.13 | 0.13 | 0.11 | 0.13 | 0.14 |
Hf | 4.59 | 4.6 | 4.9 | 4.6 | 4.7 |
Ta | 0.87 | 0.7 | 0.6 | 1.1 | 0.8 |
Pb | 46.28 | ||||
Th | 16.87 | 44 | 39.3 | 40.1 | 37 |
U | 3.31 | 2.81 | 3.26 | 3.5 | 3.64 |
Mg# | 51.2 | 55.0 | 55.8 | 54.5 | 53.5 |
Sr/Y | 64 | 116 | 126 | 96 | 54 |
Single Peak | Multiple Peaks | ||||
---|---|---|---|---|---|
No | Sample | The Youngest Zircon Age | No | Sample | The Youngest Zircon Age |
1 | 18TK15 (AG_B-B’) | 795Ma | 11 | 18TK07 (AG_A-A’) | 775 Ma |
2 | 18TK04 (AG_SETM) | 765 Ma | 12 | 18TK06 (AG SETM) | 753 Ma |
3 | 18TK08 (SG_A-A’) | 755 Ma | 13 | 18TK11 (SG_A-A’) | 727 Ma |
4 | 18TK19 (AG_B-B’) | 754 Ma | 14 | 18TK12 (SG A-A’) | 714 Ma |
5 | 18TK13 (SG_B-B’) | 741Ma | 15 | 18TK16 (AG_B-B’) | 703 Ma |
6 | 18TK09 (SG_A-A’) | 733 Ma | 16 | 18TK10 (SG_A-A’) | 444 Ma |
7 | 18TK03 (AG_SETM) | 735 Ma | |||
8 | 18TK14 (AG_B-B’) | 659 Ma | |||
9 | 18TK05 (AG_SETM) | 638 Ma | |||
10 | 18TK18 (AG_B-B’) | 587 Ma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, M.; Xiao, W.; Windley, B.F.; Mao, Q.; Zhang, Z.; Wang, H.; Yang, H.; Ao, S.; Song, D.; Gan, J.; et al. From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals 2022, 12, 166. https://doi.org/10.3390/min12020166
Sang M, Xiao W, Windley BF, Mao Q, Zhang Z, Wang H, Yang H, Ao S, Song D, Gan J, et al. From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals. 2022; 12(2):166. https://doi.org/10.3390/min12020166
Chicago/Turabian StyleSang, Miao, Wenjiao Xiao, Brian F. Windley, Qigui Mao, Zhiyong Zhang, Hao Wang, He Yang, Songjian Ao, Dongfang Song, Jingmin Gan, and et al. 2022. "From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China)" Minerals 12, no. 2: 166. https://doi.org/10.3390/min12020166
APA StyleSang, M., Xiao, W., Windley, B. F., Mao, Q., Zhang, Z., Wang, H., Yang, H., Ao, S., Song, D., Gan, J., Zhang, Z., & Li, L. (2022). From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals, 12(2), 166. https://doi.org/10.3390/min12020166