Removal of Pyrrhotite from High-Sulphur Tailings Utilising Non-Oxidative H2SO4 Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material, Milling and Analytics
2.2. Screening Tests
2.3. Validation Tests
3. Results
3.1. Sample Characteristics
3.2. Screening Tests
3.3. Continuous Mode Validation
4. Discussion
4.1. Screening Tests
4.2. Continuous Mode Validation
4.3. Produced Outputs and Their Utilisation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuerstenau, M.C.; Chander, S.; Woods, P. Sulfide mineral flotation. In Froth Flotation: A Century of Innovation; Fuerstenau, M.C., Jameson, G.J., Yoon, R.H., Eds.; Society for Mining, Metallurgy and Exploration Inc.: Littleton, CO, USA, 2007; pp. 425–465. [Google Scholar]
- Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Elsevier Science & Technology: Oxford, UK, 2015. [Google Scholar]
- Lottermoser, B.G. Mine Wastes, Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lindsay, M.B.J.; Moncur, M.C.; Bain, J.G.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Geochemical and mineralogical aspects of sulfide mine tailings. Appl. Geochem. 2015, 57, 157–177. [Google Scholar] [CrossRef]
- Morin, D.H.R.; D’hugues, P. Bioleaching of a Cobalt-Containing Pyrite in Stirred Reactors. In Biomining; Rawlings, D.E., Johnson, D.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Neale, J.; Seppälä, J.; Laukka, A.; Van Aswegen, P.; Barnett, S.; Gericke, M. The MONDO Minerals Nickel Sulfide Bioleach Project: From Test Work to Early Plant Operation. Solid State Phenom. 2017, 262, 28–32. [Google Scholar] [CrossRef]
- Belize, N.; Yu-Wei, C.; Cai, M.-F.; Li, Y. A review of pyrrhotite oxidation. J. Geochem. Explor. 2004, 84, 65–76. [Google Scholar] [CrossRef]
- Arpalahti, A.; Lundström, M. The leaching behavior of minerals from a pyrrhotite-rich pentlandite ore during heap leaching. Miner. Eng. 2018, 119, 116–125. [Google Scholar] [CrossRef]
- Altinkaya, P.; Mäkinen, J.; Kinnunen, P.; Kolehmainen, E.; Haapalainen, M.; Lundström, M. Effect of biological pretreatment on metal extraction from flotation tailings for chloride leaching. Miner. Eng. 2018, 129, 47–53. [Google Scholar] [CrossRef]
- Mäkinen, J.; Heikola, T.; Salo, M.; Kinnunen, P. The Effects of Milling and pH on Co, Ni, Zn, and Cu Bioleaching from Polymetallic Sulfide Concentrate. Minerals 2021, 11, 317. [Google Scholar] [CrossRef]
- Mäkinen, J.; Salo, M.; Khoshkhoo, M.; Sundkvist, J.-E.; Kinnunen, P. Bioleaching of cobalt from sulfide mining tailings; a mini-pilot study. Hydrometallurgy 2020, 19, 105418. [Google Scholar] [CrossRef]
- Sand, W.; Gehrke, T.; Jozsa, P.-G.; Schippers, A. (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy 2001, 59, 159–175. [Google Scholar] [CrossRef]
- Abrahamsson, F. Leaching of Pyrrhotite from Nickel Concentrate. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2017. [Google Scholar]
- Peek, E.; Barnes, A.; Tuzun, A. Nickeliferous pyrrhotite-waste or a resource? Miner. Eng. 2011, 24, 625–637. [Google Scholar] [CrossRef]
- Subramanian, K.; Stratigakos, E.; Jennings, P. Hydrometallurgical processing of pyrrhotite. Can. Metall. Q. 1972, 11, 425–434. [Google Scholar] [CrossRef]
- Thomas, J.E.; Jones, C.F.; Skinner, W.M.; Smart, R.S. The role of surface sulfur species in the inhibition of pyrrhotite dissolution in acid conditions. Geochim. Cosmochim. Acta 1998, 62, 1555–1565. [Google Scholar] [CrossRef]
- Ingraham, T.; Parsons, H.; Cabri, L. Leaching of pyrrhotite with hydrochloric acid. Can. Metall. Q. 1972, 11, 407–411. [Google Scholar] [CrossRef]
- Seyeler, J.K.; Thornton, W.E.; Householder, M.K.H. Sulfuric Acid and Ferrous Sulfate Recovery From Waste Pickle Liquor; US Government Printing Office: Washington, DC, USA, 1974.
- Lewis, A.E. Review of metal sulphide precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Monhemius, J. Precipitation diagrams for metal hydroxides, sulfides, arsenates and phosphates. Tran. Inst. Min. Metall. Sect. C 1977, 86, 202–206. [Google Scholar]
- Karbanee, N.; van Hille, R.P.; Lewis, A.E. Controlled Nickel Sulfide Precipitation Using Gaseous Hydrogen Sulfide. Ind. Eng. Chem. Res. 2008, 47, 1596–1602. [Google Scholar] [CrossRef]
- Crundwell, F.K.; Verbaan, B. Kinetics and Mechanisms of the Non-oxidative Dissolution of Sphalerite (Zinc Sulphide). Hydrometallurgy 1987, 17, 369–384. [Google Scholar] [CrossRef]
HST-1 | HST-2 | |
---|---|---|
Element | wt% | wt% |
Fe | 37.1 | 40.3 |
S | 35.5 | 38.6 |
Si | 9.10 | 6.77 |
Ca | 2.01 | 1.76 |
Mg | 1.37 | 1.37 |
Zn | 0.96 | 0.95 |
Co | 0.75 | 0.79 |
Ni | 0.30 | 0.38 |
Al | 0.44 | 0.29 |
Cu | 0.27 | 0.22 |
As | 0.066 | 0.066 |
Na | 0.060 | 0.048 |
Mn | 0.024 | 0.019 |
HST-1 | HST-2 | |
---|---|---|
Mineral | wt% | wt% |
Pyrite | 53.4 | 55.7 |
Pyrrhotite | 24.4 | 23.3 |
Quartz | 9.3 | 8.5 |
Tremolite | 3.1 | 3.0 |
Sphalerite_Fe | 1.7 | 1.3 |
Dolomite | 1.4 | 2.0 |
Talc | 1.1 | 0.3 |
Calcite | 1.1 | 1.4 |
Biotite | 0.7 | 0.1 |
Chalcopyrite | 0.6 | 0.9 |
Plagioclase | 0.6 | 0.7 |
Gypsum | 0.4 | 0.1 |
Albite | 0.4 | 0.1 |
Pentlandite_Co | 0.3 | 0.6 |
Orthoclase | 0.3 | - |
Apatite | 0.2 | 0.1 |
Phlogopite | - | 0.3 |
Pentlandite | - | 0.2 |
Linnaeite_polydymite | - | 0.1 |
Unknown | 0.5 | 0.5 |
Total | 100 | 100 |
Test | Leaching Yield (%) | ||||
---|---|---|---|---|---|
Pyrrhotite | Zn | Cu | Co | Ni | |
pH 1.5; 80 °C | 51% | 30% | 0% | 1% | 9% |
pH 1.0; 80 °C | 58% | 30% | 0% | 0% | 1% |
Test | Leaching Yield (%) | ||||
---|---|---|---|---|---|
Pyrrhotite | Zn | Cu | Co | Ni | |
Test 1 LR1 | 82% | 13% | 0% | 0% | 5% |
Test 1 LR2 | 81% | 14% | 0% | 0% | 23% |
Test 2 LR1 | 78% | 11% | 0% | 0% | 3% |
Test 2 LR2 | 85% | 13% | 0% | 0% | 20% |
Mineral | SLR (wt%) |
---|---|
Pyrite | 64.3 |
Fe-sulphate | 12.1 |
Quartz | 7.8 |
Mixture of Fe-sulphate and quartz | 3.6 |
Fe-Si-sulphate cement | 1.8 |
Chalcopyrite | 1.7 |
Sphalerite | 1.6 |
Co-pentlandite | 1.4 |
Tremolite | 1.2 |
Mixture of goethite and gypsum | 1.0 |
Pyrite inclusion in tremolite | 0.7 |
Fe-sulphate alteration | 0.6 |
Talc | 0.4 |
Plagioclase | 0.3 |
Gypsum | 0.3 |
Unknown | 0.4 |
Total | 100 |
Action | Explanation | H2S kg/t Tailings |
---|---|---|
Non-oxidative leaching | 100% conversion of pyrrhotite to H2S. | +81.6 |
Precipitation of CoS | 1.2x excess consumption of H2S in precipitation. | 5.5 |
Precipitation of NiS | 1.2x excess consumption of H2S in precipitation. | 2.6 |
Precipitation of ZnS | 1.2x excess consumption of H2S in precipitation. | 5.9 |
Precipitation of CuS | 1.0x excess consumption of H2S in precipitation. | 1.2 |
Balance | +66.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mäkinen, J.; Pietek, G.; Miettinen, V.; Khoshkhoo, M.; Sundkvist, J.-E.; Kinnunen, P. Removal of Pyrrhotite from High-Sulphur Tailings Utilising Non-Oxidative H2SO4 Leaching. Minerals 2022, 12, 1610. https://doi.org/10.3390/min12121610
Mäkinen J, Pietek G, Miettinen V, Khoshkhoo M, Sundkvist J-E, Kinnunen P. Removal of Pyrrhotite from High-Sulphur Tailings Utilising Non-Oxidative H2SO4 Leaching. Minerals. 2022; 12(12):1610. https://doi.org/10.3390/min12121610
Chicago/Turabian StyleMäkinen, Jarno, Grzegorz Pietek, Ville Miettinen, Mohammad Khoshkhoo, Jan-Eric Sundkvist, and Päivi Kinnunen. 2022. "Removal of Pyrrhotite from High-Sulphur Tailings Utilising Non-Oxidative H2SO4 Leaching" Minerals 12, no. 12: 1610. https://doi.org/10.3390/min12121610
APA StyleMäkinen, J., Pietek, G., Miettinen, V., Khoshkhoo, M., Sundkvist, J.-E., & Kinnunen, P. (2022). Removal of Pyrrhotite from High-Sulphur Tailings Utilising Non-Oxidative H2SO4 Leaching. Minerals, 12(12), 1610. https://doi.org/10.3390/min12121610