Polysynthetic Twinning of Diopsides in the Niewang and Tatliksu Nephrite Deposits, Xinjiang, China
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Gemological Properties
4.2. Raman Spectra
4.3. Petrography
4.4. Mineral Chemistry
5. Discussion
5.1. Determination of the Twinning Law
5.2. Estimation of P-T Conditions
5.3. Genesis of Mechanical Twinning of the Diopside
5.4. The Influence of Twinned Diopsides on Nephrite Formation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyman, T. Geochemistry, mineralogy and genesis of the Ayazmant Fe-Cu skarn deposit in Ayvalik, (Balikesir), Turkey. Ore Geol. Rev. 2010, 37, 175–201. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Shi, G.H.; Yui, T.-F.; Zhang, G.B.; Abuduwayiti, M.; Yang, L.Q.; Sun, X. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. J. Asian Earth Sci. 2011, 42, 440–451. [Google Scholar] [CrossRef]
- Gao, K.; Shi, G.H.; Wang, M.L.; Xie, G.; Wang, J.; Zhang, X.C.; Fang, T.; Lei, W.Y.; Liu, Y. The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, northwest China. Geosci. Front. 2019, 10, 1597–1612. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, G.; Xu, L.; Li, X. Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China). Minerals 2020, 10, 418. [Google Scholar] [CrossRef]
- Zhang, X.C.; Shi, G.H.; Zhang, X.M.; Gao, K. Formation of the nephrite deposit with five mineral assemblage zones in the Central Western Kunlun Mountains, China. J. Petrol. 2022, 63, egac117. [Google Scholar] [CrossRef]
- Cooper, A.F. Origin and evolution of nephrites, diopsidites and giant diopside crystals from the contact zones of the Pounamu Ultramafics, Westland, New Zealand. N. Z. J. Geol. Geophys. 2022, 1–14. [Google Scholar] [CrossRef]
- Stark, J.P. Mechanical twinning in crystals. Phys. Rev. B 1998, 38, 1139–1142. [Google Scholar] [CrossRef]
- Trepmann, C.; Stöckhert, B. Mechanical twinning of jadeite—An indication of synseismic loading beneath the brittle-plastic transition. Int. J. Earth Sci. 2001, 90, 4–14. [Google Scholar] [CrossRef]
- Orzol, J.; Trepmann, C.; Stöckhert, B.; Shi, G.H. Critical shear stress for mechanical twinning of jadeite—An experimental study. Tectonophysics 2003, 372, 135–145. [Google Scholar] [CrossRef]
- Smyth, J.R. Experimental study on the polymorphism of enstatite. Am. Miner. 1974, 59, 345–352. [Google Scholar]
- Raleigh, C.; Talbot, J.L. Mechanical twinning in naturally and experimentally deformed diopside. Am. J. Sci. 1967, 265, 151–165. [Google Scholar] [CrossRef]
- Carter, N.L.; Raleigh, C.B. Principal stress direction from plastic flow in crystals. Geol. Soc. Am. Bull. 1969, 80, 1231–1264. [Google Scholar] [CrossRef]
- Avé Lallemant, H.G. Experimental deformation of diopside and websterite. Tectonophysics 1978, 48, l–27. [Google Scholar] [CrossRef]
- Godard, G.; van Roermond, H. Deformation-induced clinopyroxene fabrics from eclogites. J. Struct. Geol. 1995, 17, 1425–1443. [Google Scholar] [CrossRef]
- Laurent, P.; Kern, H.; Lacombe, O. Determination of deviatoric stress tensor based on inversion of calcite twin data from experimentally defomed monophase samples: Part ii. Axial and triaxial experiments. Tectonophysics 2000, 327, 131–148. [Google Scholar] [CrossRef]
- Leroux, H.; Devouard, B.; Cordier, P.; Guyot, F. Pyroxene microstructure in the Northwest Africa 856 martian meteorite. Meteorit. Planet. Sci. 2004, 39, 711–722. [Google Scholar] [CrossRef]
- Wenk, H.-R. Submicroscopical twinning in lunar and experimentally deformed pyroxenes. Contrib. Mineral. Petrol. 1970, 26, 315–323. [Google Scholar] [CrossRef]
- Kirby, S.H.; Christie, J.M. Mechanical twinning in diopside Ca(Mg,Fe)Si2O6: Structural mechanism and associated crystal detects. Phys. Chem. Miner. 1977, 1, 137–163. [Google Scholar] [CrossRef]
- Kollé, J.J.; Blacic, J.D. Deformation of single-crystal clinopyroxene:1. Mechanical twinning in diopside and hedenbergite. J. Geophys. Res. 1982, 87, 4019–4034. [Google Scholar] [CrossRef]
- White, A.J.R. Scapolite-Bearing Marbles and Calc-Silicate Rocks from Tungkillo and Milendella, South Australia. Geol. Mag. 1959, 96, 258–306. [Google Scholar] [CrossRef]
- Tribaudino, M.; Fioretti, A.M.; Martignago, F.; Molin, G. Transmission electron microscope texture and crystal chemistry of coexisting ortho- and clinopyroxene in the Antarctic ureilite Frontier Mountain 90054: Implications for thermal history. Meteorit. Planet. Sci. 1997, 32, 671–678. [Google Scholar] [CrossRef]
- Zhou, Y.S.; He, C.R. Microstructures and deformation mechanisms of experimentally deformed gabbro. Earthq. Sci. 2015, 28, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Gil, G.; Barnes, J.D.; Boschi, C.; Gunia, P.; Raczynski, P.; Szakmany, G.; Bendo, Z.; Peterdi, B. Nephrite from Zloty Stok (Sudetes, SW Poland): Petrological, geochemical, and isotopic evidence for a dolomite-related origin. Can. Mineral. 2015, 53, 533–555. [Google Scholar] [CrossRef]
- Cowgill, E.S.; Yin, A.; Harrison, T.M.S.; Wang, X. Reconstruction of the Altyn Tagh Fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J. Geophys. Res.-Solid Earth 2003, 108, 2346. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, Z.M.; Xu, Z.Q.; Yang, J.S.; Cui, J.W. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos 2001, 56, 187–206. [Google Scholar] [CrossRef]
- Mao, D.B.; Zhong, C.T.; Niu, G.H.; Zhang, C.S. A Comprehensive Research Report on Metallogenic Regularity and Prospecting Direction of Altyn Metallogenic Belt in Xinjiang; Tianjin Geological Survey Center: Tianjin, China, 2003; (In Chinese).
- Dong, S.L.; Li, Z.; Gao, J.; Zhu, L. Progress of study on Paleozoic tectonic framework and crystalline rock geochronology in Altun- Qilian- Kunlun Orogen. Geol. Rev. 2013, 59, 731–746, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.; Liu, L.; Yang, W.Q.; Zhu, X.H.; Cao, Y.T.; Kang, L.; Chen, S.F.; Li, R.S.; He, S.P. Provenance and ages of the Altyn Complex in Altyn Tagh: Implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res. 2013, 230, 193–208. [Google Scholar] [CrossRef]
- Wang, S.Q.; Shi, G.H. Nephrite from Xinjiang, China; Science Press: Beijing, China, 2022. [Google Scholar]
- Liu, Y.; Zhang, R.Q.; Abuduwayiti, M.; Wang, C.; Zhang, S.P.; Shen, C.H.; Zhang, Z.Y.; He, M.Y.; Zhang, Y.; Yang, X.D. SHRIMP U–Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China: Implication for a magnesium skarn. Ore Geol. Rev. 2016, 72, 699–727. [Google Scholar] [CrossRef]
- Shi, G.H.; Zhang, X.C.; Wang, Y.; Li, Q.L.; Wu, F.Y.; He, H.Y. Age determination of oriented rutile inclusions in sapphire and of moonstone from the Mogok metamorphic belt, Myanmar. Am. Miner. 2021, 106, 1852–1859. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Miner. 1988, 73, 1123–1133. [Google Scholar]
- Leake, B.E.; Woolley, A.R.; Arpes, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles. Report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Am. Miner. 1997, 82, 1019–1037. [Google Scholar]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Miner. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Cameron, M.; Papike, J.J. Structural and chemical variations in pyroxenes. Am. Miner. 1981, 66, 1–50. [Google Scholar]
- Kollé, J.J.; Blacic, J.D. Deformation of single-crystal clinopyroxenes: 2. Dislocation-controlled flow processes in hedenbergite. J. Geophys. Res. 1983, 88, 2381–2393. [Google Scholar] [CrossRef]
- Leroux, H.; Doukhan, J.C.; Langenhorst, F. Microstructural defects in experimentally shocked diopside: A TEM characterization. Phys. Chem. Miner. 1994, 20, 521–530. [Google Scholar] [CrossRef]
- Hornemann, U.; Müller, W.F. Shock-induced deformation twins in clinopyroxene. Neues Jahrb. Mineral. Monatsh. 1971, 6, 247–255. [Google Scholar]
- Raterron, P.; Jaoul, O. High-temperature deformation of diopside single crystal. 1. Mechanical data. J. Geophys. Res. 1991, 96, 14277–14286. [Google Scholar] [CrossRef]
- Ingrin, J.; Doukhan, N.; Doukhan, J.C. Dislocation glide systems in diopside single crystals deformed at 800–900 °C. Eur. J. Mineral. 1992, 4, 1291–1302. [Google Scholar] [CrossRef]
- Van Duysen, J.C.; Doukhan, N.; Doukhan, J.C. Room temperature microplasticity of alpha-spodumene LiAlSi2O6. Phys. Chem. Miner. 1984, 10, 125–135. [Google Scholar] [CrossRef]
- Jakubith, M.; Seidel, P. Shock-loading experiments on eclogite. Geophys. Res. Lett. 1982, 9, 408411. [Google Scholar] [CrossRef]
- Kirby, S.H.; Kronenberg, A.K. Deformation of clinopyroxenite: Evidence for a transition in flow mechanisms and semi-brittle behavior. J. Geophys. Res. 1984, 89, 3177–3192. [Google Scholar] [CrossRef]
- Tullis, T.E. The use of mechanical twinning in minerals as a measure of shear stress magnitudes. J. Geophys. Res. 1980, 85, 6263–6268. [Google Scholar] [CrossRef]
- Noh, J.H.; Yu, J.-Y.; Choi, J.B. Genesis of nephrite and associated calc-silicate minerals in Chuncheon area. J. Geol. Soc. Korea 1993, 29, 199–224. (In Korean) [Google Scholar]
- Ashworth, J.R. Deformation mechanisms in mildly shocked chondritic diopside. Meteoritics 1980, 15, 105–115. [Google Scholar] [CrossRef]
- Müller, W.F. Thermal and deformation history of the Shergotty meteorite deduced from clinopyroxene microstructure. Geochim. Cosmochim. Acta 1993, 57, 4311–4322. [Google Scholar] [CrossRef]
- Leroux, H.; Jacob, D.; Marinova, M.; Hewins, R.H.; Zanda, B.; Pont, S.; Lorand, J.P.; Humayun, M. Exsolution and shock microstructures of igneous pyroxene clasts in the Northwest Africa 7533 Martian meteorite. Meteorit. Planet. Sci. 2016, 51, 932–945. [Google Scholar] [CrossRef] [Green Version]
- Skrotzki, W. Defect structure and deformation mechanisms in naturally deformed augite and enstatite. Tectonophysics 1994, 229, 43–68. [Google Scholar] [CrossRef]
- Shi, G.H.; Wang, X.; Chu, B.B.; Cui, W.Y. Jadeite jade from Myanmar: Its texture and gemmological implications. J. Gemmol. 2009, 31, 185–195. [Google Scholar] [CrossRef]
- Molnar, P.; Burchfiel, B.C.; Liang, K.Y.; Zhao, Z.Y. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology 1987, 15, 249–253. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yu, S.Y.; Li, Y.S.; Yu, X.X.; Lin, Y.H.; Mao, X.H. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrol. Sin. 2015, 31, 3531–3554. [Google Scholar]
- Xu, B.; Hou, Z.Q.; Zheng, Y.C.; Wang, R.; He, M.Y.; Zhou, L.M.; Yang, Y. In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralization in southern Tibet. Ore Geol. Rev. 2017, 90, 1063–1077. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; He, D.F.; Wu, B.; Gao, H.H. Kinematic evolution of fold-and-thrust belts in the Yubei-Tangbei area: Implications for tectonic events in the southern Tarim Basin. Geosci. Front. 2021, 12, 101233. [Google Scholar] [CrossRef]
- Kuang, X.T.; Zhu, X.Y.; Ning, F.X.; Li, W.; Zheng, Q.F.; Li, B.; Zhou, D.Q. Aeromagnetic-imaged basement fault structure of the eastern Tarim Basin and its tectonic implication. Front. Earth Sci. 2022, 9, 825498. [Google Scholar] [CrossRef]
- Shi, G.H.; Jia, R.; Santosh, M.; Liang, H.; He, H.Y. First report of nephrite jade deposit from Africa: Characterization and geological and archeological implications. GSA Bulletin. submitted.
Deposit; Rock Type | Niewang (Close to Nephrite) | Tatliksu (Ep-Di Zone) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | 007-2 | 007-3 | 1 | 5-9 | ||||||
No. | 1-2 | 4-1 | 5 | 8 | 5-1 | 4-1-1 | 2-4 | 1-4 | 1-3 | 1-2 |
SiO2 | 55.844 | 55.111 | 54.942 | 54.557 | 54.295 | 55.302 | 54.111 | 53.820 | 52.491 | 52.310 |
TiO2 | b.d.l. | 0.045 | 0.027 | 0.032 | 0.101 | 0.012 | 0.077 | b.d.l. | b.d.l. | b.d.l. |
Al2O3 | 0.052 | 0.112 | 0.115 | 0.364 | 0.095 | 0.087 | 0.120 | 0.188 | 0.362 | 0.121 |
Cr2O3 | 0.026 | b.d.l. | b.d.l. | 0.027 | b.d.l. | b.d.l. | 0.045 | n.a. | n.a. | n.a. |
FeO | 0.020 | 0.083 | 0.118 | 0.203 | 0.083 | b.d.l. | 0.177 | 2.280 | 2.170 | 6.527 |
MnO | 0.055 | 0.029 | b.d.l. | 0.049 | b.d.l. | 0.002 | 0.092 | 0.129 | 0.118 | 1.146 |
NiO | b.d.l. | 0.018 | b.d.l. | 0.010 | 0.061 | 0.059 | 0.038 | b.d.l. | b.d.l. | b.d.l. |
MgO | 18.430 | 18.613 | 18.940 | 18.844 | 19.401 | 18.100 | 18.651 | 16.458 | 16.305 | 12.798 |
CaO | 25.724 | 25.314 | 26.499 | 25.861 | 26.142 | 25.373 | 25.877 | 26.404 | 26.307 | 25.576 |
Na2O | 0.030 | 0.015 | 0.029 | 0.075 | 0.048 | 0.018 | 0.044 | 0.095 | 0.124 | 0.133 |
K2O | b.d.l. | 0.016 | b.d.l. | 0.010 | 0.004 | 0.004 | 0.010 | b.d.l. | 0.004 | b.d.l. |
Total | 100.181 | 99.356 | 100.67 | 100.032 | 100.23 | 98.957 | 99.242 | 99.374 | 97.881 | 98.611 |
Si | 2.01 | 2.00 | 1.96 | 1.96 | 1.95 | 2.02 | 1.96 | 1.97 | 1.95 | 1.98 |
AlIV | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 |
Fe3+ | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.00 |
Sum T | 2.01 | 2.00 | 1.97 | 1.99 | 1.95 | 2.02 | 1.98 | 2.00 | 2.00 | 1.99 |
Fe3+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.04 | 0.04 |
Fe2+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.16 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
Mg | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 0.90 | 0.90 | 0.72 |
Sum M1 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 0.95 | 0.94 | 0.96 |
Mg | 0.00 | 0.01 | 0.01 | 0.01 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
Ca | 0.99 | 0.98 | 1.02 | 1.00 | 1.00 | 0.99 | 1.01 | 1.04 | 1.05 | 1.04 |
Na | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 |
Sum M2 | 0.99 | 1.00 | 1.03 | 1.01 | 1.05 | 0.99 | 1.02 | 1.04 | 1.06 | 1.05 |
Di | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 | 0.93 | 0.93 | 0.79 |
Hed | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.07 | 0.07 | 0.21 |
Deposit and Rock Type | Niewang (Nephrite) | Tatliksu (Ep-Di Zone) | ||||
---|---|---|---|---|---|---|
Sample and No. | 7-2-2 | 7-2-4-3 | 7-3-5 | 1-1-2 | 1-3-2 | 1-1-3 |
SiO2 | 56.792 | 58.090 | 57.439 | 54.851 | 55.098 | 54.771 |
TiO2 | 0.067 | 0.027 | 0.002 | 0.157 | b.d.l | 0.078 |
Al2O3 | 1.499 | 1.156 | 1.204 | 1.009 | 1.628 | 2.563 |
Cr2O3 | 0.084 | b.d.l | b.d.l. | n.a. | n.a. | n.a. |
Fe2O3 | 0.672 | 0.302 | 0.435 | 0.483 | 0.140 | 0.000 |
FeO | 0.606 | 0.555 | 0.392 | 4.471 | 4.040 | 4.848 |
MnO | 0.081 | 0.080 | 0.067 | 0.140 | 0.140 | 0.098 |
NiO | 0.001 | 0.108 | 0.017 | b.d.l | 0.016 | 0.014 |
MgO | 24.673 | 24.239 | 24.904 | 20.400 | 20.569 | 19.555 |
CaO | 13.282 | 12.297 | 13.309 | 13.721 | 13.627 | 13.526 |
Na2O | 0.229 | 0.119 | 0.175 | 0.110 | 0.204 | 0.322 |
K2O | 0.261 | 0.367 | 0.143 | 0.055 | 0.089 | 0.150 |
Total | 98.247 | 97.340 | 98.087 | 95.397 | 95.551 | 95.925 |
Si | 7.71 | 7.91 | 7.77 | 7.86 | 7.84 | 7.80 |
Al IV | 0.24 | 0.09 | 0.19 | 0.14 | 0.16 | 0.20 |
Ti | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe3+ | 0.04 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
Sum T | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Al VI | 0.00 | 0.10 | 0.00 | 0.03 | 0.11 | 0.23 |
Cr | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ti | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 |
Fe3+ | 0.03 | 0.03 | 0.00 | 0.05 | 0.02 | 0.00 |
Mg | 4.91 | 4.86 | 4.96 | 4.36 | 4.36 | 4.15 |
Fe2+ | 0.00 | 0.00 | 0.00 | 0.47 | 0.48 | 0.58 |
Mn | 0.01 | 0.01 | 0.00 | 0.02 | 0.02 | 0.01 |
Ca | 0.00 | 0.00 | 0.00 | 0.04 | 0.01 | 0.02 |
Sum C | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Mg | 0.09 | 0.06 | 0.06 | 0.00 | 0.00 | 0.00 |
Ni | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+ | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
Mn | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
Ca | 1.91 | 1.80 | 1.93 | 2.00 | 2.00 | 2.00 |
Na | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
Sum B | 2.00 | 1.93 | 2.00 | 2.00 | 2.00 | 2.00 |
Ca | 0.02 | 0.00 | 0.00 | 0.02 | 0.03 | 0.01 |
Na | 0.03 | 0.00 | 0.05 | 0.03 | 0.06 | 0.09 |
K | 0.05 | 0.06 | 0.03 | 0.01 | 0.02 | 0.03 |
Sum A | 0.10 | 0.06 | 0.08 | 0.06 | 0.11 | 0.13 |
Mg/(Mg + Fe2+) | 1.00 | 0.99 | 1.00 | 0.90 | 0.90 | 0.88 |
Mineral | Tr | Tr | Tr | Tr | Tr | Act |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Shi, G.; Yuan, Y.; Cao, C.; Sun, X.; Zhang, X. Polysynthetic Twinning of Diopsides in the Niewang and Tatliksu Nephrite Deposits, Xinjiang, China. Minerals 2022, 12, 1575. https://doi.org/10.3390/min12121575
Liang H, Shi G, Yuan Y, Cao C, Sun X, Zhang X. Polysynthetic Twinning of Diopsides in the Niewang and Tatliksu Nephrite Deposits, Xinjiang, China. Minerals. 2022; 12(12):1575. https://doi.org/10.3390/min12121575
Chicago/Turabian StyleLiang, Huan, Guanghai Shi, Ye Yuan, Chuqi Cao, Xiang Sun, and Xiaohui Zhang. 2022. "Polysynthetic Twinning of Diopsides in the Niewang and Tatliksu Nephrite Deposits, Xinjiang, China" Minerals 12, no. 12: 1575. https://doi.org/10.3390/min12121575
APA StyleLiang, H., Shi, G., Yuan, Y., Cao, C., Sun, X., & Zhang, X. (2022). Polysynthetic Twinning of Diopsides in the Niewang and Tatliksu Nephrite Deposits, Xinjiang, China. Minerals, 12(12), 1575. https://doi.org/10.3390/min12121575