Radioactive Isotopes as a Tool for Pairing Identification of the HAH 346—Hammadah al Hamra 346—Ordinary Chondrites from Two Separate Find Areas
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Method of Analysis
2.3. Quality Assurance
2.4. Chemometric Approach
3. Results
4. Conclusions
- A unique low-background gamma-ray spectrometric system was applied to obtain high measurement precision with a low counting rate in chondrite samples. The activities of the radioactive isotopes 54Mn, 26Al, 40K, 22Na, and 60Co in the chondrites collected during two different expeditions were analyzed and compared.
- Several statistical approaches, including K-means, PCA, and cluster analysis, have been applied to confirm the origins of all specimens from two different campaigns. A chemometric analysis based on a multivariate analysis of short-lived nuclides concentrations confirmed the lack of an affinity of two from a total of ten investigated ordinary chondrites. A chemometric analysis with many variables of short-lived radionuclides is more appropriate for handling a scientific investigation, but statistical (significant) differences do not explain the reason for such a difference between specimens; therefore, other more detailed analysis should be applied for the confirmation of the reason of difference.
- The dissimilar chondrites are: HaH 346-163 and HaH 346-198, which seem to be statistically different than the other eight chondrites (HAH 346-3, HAH 346-6, HAH 346-7, HaH 346-134, HaH 346-200, HaH 346-201, HaH 346-207, and HaH 346-120, all classified as ordinary chondrite L5). The difference in radionuclide concentrations could be the result of various physical or chemical parameters, especially fluctuating with the pre-atmospheric size of the object (various nuclear channel efficiencies, changes in the energy of particles interacting with the object, inhomogeneity of the structure) and volatility of various elements (boiling point K > Na > Mn > Al > Co).
- Short-lived radionuclides are sensitive tools to estimate the terrestrial age of chondrites, even if the fall took place in a relatively short time interval. With a short half-life of 312 days, 54Mn is the most representative for a comparison of specimens originating from different falls. Radioactivity levels of 54Mn in HaH 346-163 and HaH 346-198, is on average, twice lower than in the case of other specimens and are equal to 13.3 and 22.5 Bq/kg, while the average value for other specimens is equal to 35.9 ± 7.2 Bq/kg. The short-lived radioactivity levels in the HaH 346 chondrites are consistent with a recent fall (the observed fireball of November 2017).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlüter, J.; Schultz, L.K.; Thiedig, F.; Al-Mahdi, B.O.; Aghreb, A.E. The Dar al Gani meteorite field (Libyan Sahara): Geological setting, pairing of meteorites, and recovery density. Meteorit. Planet. Sci. 2002, 37, 1079–1093. [Google Scholar] [CrossRef]
- Reedy, R.C.; Arnold, J.R.; Lal, D. Cosmic-ray record in solar system matter. Annu. Rev. Nucl. Part Sci. 1983, 33, 505–537. Available online: www.annualreviews.org (accessed on 18 November 2021). [CrossRef]
- Leya, I.; Masarik, J. Cosmogenic nuclides in stony meteorites revisited. Meteorit. Planet. Sci. 2009, 44, 1061–1086. [Google Scholar] [CrossRef]
- Povinec, P.P.; Sýkora, I.; Macke, R.J.; Tóth, J.; Kornoš, L.; Porubčan, V. Radionuclides in Chassigny and Nakhla meteorites of Mars origin: Implications for their pre-atmospheric sizes and cosmic-ray exposure ages. Planet. Space Sci. 2020, 186, 104914. [Google Scholar] [CrossRef]
- Alexeev, V.A.; Laubenstein, M.; Povinec, P.P.; Ustinova, G.K. Variations of cosmogenic radionuclide production rates along the meteorite orbits. Adv. Space Res. 2015, 56, 766–771. [Google Scholar] [CrossRef]
- Gladysheva, O.G. Disintegration of the Chelyabinsk cosmic body. Planet. Space Sci. 2019, 178, 104709. [Google Scholar] [CrossRef]
- Taricco, C.; Bhandari, N.; Colombetti, P.; Verma, N.; Vivaldo, G. Experimental set-up and optimization of a gamma-ray spectrometer for measurement of cosmogenic radionuclides in meteorites. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 572, 241–243. [Google Scholar] [CrossRef]
- Guan, Y.; Huss, G.R.; Leshin, L.A. SIMS analyses of Mg, Cr, and Ni isotopes in primitive meteorites and short-lived radionuclides in the early solar system. Appl. Surf. Sci. 2004, 231–232, 899–902. [Google Scholar] [CrossRef]
- Hsu, W. Short-lived radionuclides in the early solar system—A meteoritic perspective of the solar system formation. Chin. Astron. Astrophys. 2003, 27, 365–373. [Google Scholar] [CrossRef]
- Johnston, P.N.; Hulta, M.; Altzitzoglou, T. Measurement of low levels of 26Al from meteorite samples. Appl. Radiat. Isot. 2002, 56, 399–403. [Google Scholar] [CrossRef]
- Arnold, D.; Neumaiera, S.; Sima, O. Deep underground gamma spectrometric measurement of 26Al in meteorite samples. Appl. Radiat. Isot. 2002, 56, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Benedi, G.K.; Forman, L.V.; Daly, L.; Greenwood, R.C.; Franchi, I.A.; Friedrich, J.M.; Macke, R.; Wiggins, S.; Britt, D.; et al. Mineralogy, petrology, geochemistry, and chronology of the Murrili (H5) meteorite fall: The third recovered fall from the Desert Fireball Network. Meteorit. Planet. Sci. 2021, 56, 241–259. [Google Scholar] [CrossRef]
- Eugster, O.; Beer, J.; Burger, M.; Finkel, R.C.; Hofmann, H.J.; Krähenbühl, U.; Michel Th Synal, H.A.; Wölfli, W. History of the paired lunar meteorites MAC88104 and MAC88105 derived from noble gas isotopes, radionuclides, and some chemical abundances. Geochim. Cosmochim. Acta 1991, 55, 3139–3148. [Google Scholar] [CrossRef]
- Evans, J.C.; Reeves, J.H.; Rancitelli, L.A.; Bogard, D.D. Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967–1978. J. Geophys. Res. 1982, 87, 5577–5591. [Google Scholar] [CrossRef]
- Bischoff, A.; Barrat, J.A.; Berndt, J.; Borovicka, J.; Burkhardt, C.; Busemann, H.; Hakenmüller, J.; Heinlein, D.; Hertzog, J.; Kaiser, J.; et al. The Renchen L5-6 chondrite breccia—The first confirmed meteorite fall from Baden-Württemberg (Germany). Geochemistry 2019, 79, 125525. [Google Scholar] [CrossRef]
- Ogurtsov, M.G. Cosmogenic 44Ti in meteorites—A divergence with 14C and 10Be data. Adv. Space Res. 2021, 68, 1519–1524. [Google Scholar] [CrossRef]
- Dilg, W.; Mannhart, W.; Steichele, E.; Arnold, P. Precision Neutron Total Cross Section Measurements On Gold And Cobalt In The 40micro-Ev To 5 Milli-EVZeitschriftfuer. Physik 1973, 264, 427. [Google Scholar] [CrossRef]
- Laubenstein, M.; Giampaoli, A.; Janowski, P.; Mietelski, J.W. Cosmogenic Radionuclides In The Sołtmany L6 Meteorite. Meteorites 2012, 2, 45–51. [Google Scholar] [CrossRef]
- Beno, J.; Breier, R.; Masarik, J. Effects of solar activity on production rates of short-lived cosmogenic radionuclides. Meteorit. Planet. Sci. 2020, 55, 1048–1056. [Google Scholar] [CrossRef]
- Welten, K.C.; Caffee, M.W.; Hillegonds, D.J.; Masarik, J.; Nishiizumi, K. Identifying large chondrites using cosmogenic radionuclides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1185–1188. [Google Scholar] [CrossRef]
- Mahajan, R.R. Noble gases, cosmic ray exposure and radiogenic ages in selected ordinary chondrites. Adv. Space Res. 2022, 70, 2112–2132. [Google Scholar] [CrossRef]
- Peplowski, P.N.; Wilson, J.T.; Burks, M.; Beck, A.W.; Jun, I.; Lawrence, D.J.; Yokley, Z.W. Cosmogenic radionuclide production modeling with Geant4: Experimental benchmarking and application to nuclear spectroscopy of asteroid (16) Psyche. Nucl. Inst Methods Phys. Res. B 2019, 446, 43–57. [Google Scholar] [CrossRef]
- Howard, C.; Ferm, M.; Cesaratto, J.; Daigle, S.; Iliadis, C. Radioisotope studies of the Farmville meteorite using γγ-coincidence spectrometry. Appl. Radiat. Isot. 2014, 94, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Welten, K.C.; Nishiizumi, K.; Finkel, R.C.; Hillegonds, D.J.; Jull, A.J.T.; Franke, L.; Schultz, L. Exposure history and terrestrial ages of ordinary chondrites from The Dar Al Gani Region, Libya. Meteorit. Planet. Sci. 2004, 39, 481–498. [Google Scholar] [CrossRef]
- Reedy, R.C. Recent advances in studies of meteorites using cosmogenic radionuclides. Nucl. Instrum. Methods Phys. Res. B 2004, 223–224, 587–590. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Leya, I.; Li, Y.; Li, X.; Smith, T. Petrology, mineralogy, porosity, and cosmic-ray exposure history of Huaxi ordinary chondrite. Meteorit. Planet. Sci. 2017, 52, 937–948. [Google Scholar] [CrossRef]
- Herpers, U.; Vogt, S.; Beer, J.; Suter, M.; Wölfli, W. Determination of spallogenic long-lived radionuclides in chondrites by nuclear analytical techniques. Analyst 1989, 114, 303. [Google Scholar] [CrossRef]
- Girault, F.; Perrier, F.; Moreira, M.; Zanda, B.; Rochette, P.; Teitler, Y. Effective radium-226 concentration in meteorites. Geochim. Cosmochim. Acta 2017, 208, 198–219. [Google Scholar] [CrossRef]
- Tymiński, Z.; Miśta EKalbarczyk, P. The Oslo meteorite research for cosmogenic radionuclides and the interpretation of the results. Acta Soc. Metheoriticae Pol. 2013, 4, 115. (In Polish) [Google Scholar]
- Jull, A.; Giscard, M.; Hutzler, A.; Schnitzer, C.; Zahn, D.; Burr, G.; Hill, D. Radionuclide Studies of Stony Meteorites from Hot Deserts. Radiocarbon 2013, 55, 1779–1789. [Google Scholar] [CrossRef]
- Bonino, G.; Cini Castagnoli, G.; Taricco, C.; Bhandari, N.; Killgore, M. Cosmogenic radionuclides in four fragments of the portales valley meteorite shower: Influence of different element Abundances and Shielding. Adv. Space Res. 2002, 29, 771–782. [Google Scholar] [CrossRef]
- Alexeeva, V.A.; Laubenstein, M.; Povinec, P.P.; Ustinova, G.K. Cosmogenic Radionuclides In Meteorites and Solar Modulation of Galactic Cosmic Rays In the Internal Heliosphere. Sol. Syst. Res. 2019, 53, 98–115. [Google Scholar] [CrossRef]
- Długosz-Lisiecka, M. Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity. J. Radioanal. Nucl. Chem. 2016, 309, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Długosz-Lisiecka, M. Application of modern anticoincidence (AC) system in HPGe γ-spectrometry for the detection limit lowering of the radionuclides in air filters. J. Environ. Radioact. 2017, 169–170, 104–108. [Google Scholar] [CrossRef]
- Długosz-Lisiecka, M. Chemometric methods for source apportionment of 210Pb, 210Bi and 210Po for 10 years of urban air radioactivity monitoring in Lodz city, Poland. Chemosphere 2019, 220, 163–168. [Google Scholar] [CrossRef]
- Tillett, A.; Dermigny, J.; Emamian, M.; Tonin, Y.; Bucay, I.; Smith, R.L.; Darken, M.; Dearing, C.; Orbon, M.; Iliadis, C. A low-background γγ-coincidence spectrometer for radioisotope studies. Nucl. Inst Methods Phys. Res. 2017, 871, 66–71. [Google Scholar] [CrossRef]
- Colombetti, P.; Taricco, C.; Bhandari, N.; Sinha, N.; DiMartino, M.; Cora, A.; Vivaldo, G. Low γ activity measurement of meteorites using HPGe–NaI detector system. Nucl. Instrum. Methods Phys. Res. A 2013, 718, 140–142. [Google Scholar] [CrossRef]
- Konki, J.; Greenlees, P.T.; Jakobsson, U.; Jones, P.; Julin, R.S.; Juutinen, S.; Ketelhut, K.; Hauschild, R.; Kontro, A.-P.; Leppänen, A.; et al. Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry. Appl. Radiat. Isot. 2012, 70, 392–396. [Google Scholar] [CrossRef]
- Sharma, M.K.; Burnett, J.L. Sensitivity and low-energy response of the Small Anode Germanium well detector with ceramic insert. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 988, 164943. [Google Scholar] [CrossRef]
- Britton, R.; Jackson, M.J.; Davies, A.V. Quantifying radionuclide signatures from a γ–γ coincidence system. J. Environ. Radioact. 2015, 149, 158–163. [Google Scholar] [CrossRef]
- Suárez-Navarro, J.A.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Puertas, F. Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Radiat. Phys. Chem. 2020, 171, 108709. [Google Scholar] [CrossRef]
- Stanić, G.; Nikolov, J.; Tucaković, I.; Mrđa, D.; Todorović, N.; Grahek, Ž.; Coha, I.; Vraničar, A. Angle vs. LabSOCS for HPGe efficiency calibration. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 920, 81–87. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Argyraki, A. Multivariate statistical assessment of groundwater in cases with ultramafic rocks and anthropogenic activities influence. Appl. Geochem. 2022, 141, 105292. [Google Scholar] [CrossRef]
- Rosen, A.V.; Hofmann, B.A.; Von Sivers, M.; Schumann, M. Radionuclide Activities In Recent Chondrite Falls Determined By Gamma-Ray Spectrometry: Implications For Terrestrial Age Estimates. Meteorit. Planet. Sci. 2020, 55, 149–163. [Google Scholar] [CrossRef]
Laboratory Code of the Specimen | Sample Mass [g] | Date of the Sample Collection from the Desert | |
---|---|---|---|
Bulk Sample | Powder | ||
HaH 346-3 | 23 | 50 | 2018 |
HaH 346-6 | 141 | - | 2018 |
HaH 346-7 | 221 | - | 2018 |
HaH 346-134 | 134 | - | 2019 |
HaH 346-198 | 198 | - | 2019 |
HaH 346-201 | 201 | - | 2019 |
HaH 346-200 | 200 | - | 2019 |
HaH 346-207 | 207 | - | 2019 |
HaH 346-163 | 163 | - | 2019 |
HaH 346-120 | 120 | - | 2019 |
Isotope | Gamma Energy Peaks (keV) | Yield of Gamma Emission (%) | T1/2 | MDA [dpm/kg] |
---|---|---|---|---|
22Na | 1274 | 99.94 | 2.602 years | 1.11 |
26Al | 1808 | 99.76 | 7.17·105 years | 1.44 |
40K | 1460 | 10.66 | 1.25·109 years | 11.54 |
54Mn | 834 | 99.97 | 312.2 days | 0.43 |
60Co | 1173 1332 | 99.85 99.98 | 5.30 years | 1.04 1.15 |
Activity Concentration of Radionuclides [Bq/kg] | |||||
---|---|---|---|---|---|
Id | 22Na | 26Al | 54Mn | 40K | 60Co |
HaH 346-3 | 59.3 ± 5.1 | 44.3 ± 4.1 | 44.4 ± 4.4 | 1440 ± 71 | 156 ± 10 |
HaH 346-6 | 50.9 ± 4.9 | 46.6 ± 4.3 | 43.4 ± 3.9 | 1532 ± 70 | 17.2 ± 1.5 |
HaH 346-7 | 50.3 ± 4.4 | 43.6 ± 4.2 | 43.0 ± 3.8 | 1475 ± 72 | 70.6 ± 6 |
HaH 346-134 | 59.6 ± 5.3 | 45.1 ± 4.4 | 36.8 ± 3.3 | 1336 ± 66 | 85.4 ± 7.9 |
HaH 346-198 | 37.1 ± 3.5 | 63.1 ± 6.1 | 22.5 ± 2.0 | 1630 ± 80 | 7.1 ± 0.5 |
HaH 346-201 | 53.2 ± 5.1 | 39.6 ± 3.1 | 26.7 ± 2.1 | 1584 ± 75 | 28.4 ± 2.1 |
HaH 346-200 | 48.7 ± 4.3 | 39.3 ± 3.3 | 27.5 ± 2.5 | 1420 ± 70 | 52.0 ± 5.1 |
HaH 346-207 | 58.1 ± 5.6 | 48.0 ± 4.5 | 31.9 ± 2.9 | 1477 ± 73 | 13.4 ± 0.9 |
HaH 346-163 | 37.8 ± 3.5 | 41.0 ± 3.8 | 13.3 ± 0.9 | 1799 ± 89 | 15.0 ± 1.2 |
HaH 346-120 | 49.1 ± 4.6 | 35.6 ± 3.2 | 33.3 ± 2.9 | 1517 ± 70 | 43.5 ± 4.2 |
Coefficient of PC1 | Coefficient of PC2 | |
---|---|---|
54Mn | 0.490 | 0.241 |
22Na | 0.516 | −0.038 |
60Co | 0.451 | −0.042 |
40K | −0.507 | −0.181 |
26Al | −0.179 | 0.952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Długosz-Lisiecka, M.; Jakubowski, T.; Krystek, M.; ElMallul, A. Radioactive Isotopes as a Tool for Pairing Identification of the HAH 346—Hammadah al Hamra 346—Ordinary Chondrites from Two Separate Find Areas. Minerals 2022, 12, 1553. https://doi.org/10.3390/min12121553
Długosz-Lisiecka M, Jakubowski T, Krystek M, ElMallul A. Radioactive Isotopes as a Tool for Pairing Identification of the HAH 346—Hammadah al Hamra 346—Ordinary Chondrites from Two Separate Find Areas. Minerals. 2022; 12(12):1553. https://doi.org/10.3390/min12121553
Chicago/Turabian StyleDługosz-Lisiecka, Magdalena, Tomasz Jakubowski, Marcin Krystek, and Ahmed ElMallul. 2022. "Radioactive Isotopes as a Tool for Pairing Identification of the HAH 346—Hammadah al Hamra 346—Ordinary Chondrites from Two Separate Find Areas" Minerals 12, no. 12: 1553. https://doi.org/10.3390/min12121553
APA StyleDługosz-Lisiecka, M., Jakubowski, T., Krystek, M., & ElMallul, A. (2022). Radioactive Isotopes as a Tool for Pairing Identification of the HAH 346—Hammadah al Hamra 346—Ordinary Chondrites from Two Separate Find Areas. Minerals, 12(12), 1553. https://doi.org/10.3390/min12121553