Geochemistry and Petrogenesis of the Wadhrai Granite Stock of the Malani Igneous Suite in Nagar Parkar Area, SE Pakistan
Abstract
:1. Introduction
2. Petrography
3. Geochemistry
3.1. Major Element Data
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 75.2 | 75.5 | 73.86 | 73.55 | 76.13 | 73.44 | 73.44 | 73.26 | 76.25 | 75.05 | 74.38 | 74.75 | 76.87 | 76.29 |
TiO2 | 0.3 | 0.27 | 0.33 | 0.33 | 0.23 | 0.29 | 0.26 | 0.28 | 0.26 | 0.27 | 0.32 | 0.29 | 0.16 | 0.22 |
Al2O3 | 12.78 | 12.32 | 13.86 | 14.12 | 11.16 | 13.38 | 13.71 | 13.26 | 12.96 | 13.92 | 13.59 | 14.11 | 13.12 | 13.04 |
Fe2O3 | 1.14 | 1.97 | 2.09 | 2.09 | 2.64 | 1.95 | 1.72 | 1.75 | 0.74 | 0.84 | 0.92 | 0.87 | 0.61 | 0.7 |
FeO | 0.81 | 0.92 | 1.02 | 0.96 | 0.68 | 0.77 | ||||||||
MnO | 0.08 | 0.08 | 0.07 | 0.08 | 0.1 | 0.06 | 0.07 | 0.09 | 0.03 | 0.07 | 0.07 | 0.08 | 0.04 | 0.08 |
MgO | 0.32 | 0.32 | 0.35 | 0.38 | 0.15 | 0.33 | 0.28 | 0.23 | 0.36 | 0.35 | 0.28 | 0.35 | 0.17 | 0.39 |
CaO | 0.89 | 0.36 | 1 | 1.09 | 0.15 | 0.91 | 0.96 | 1.4 | 0.99 | 1.06 | 1.21 | 0.99 | 0.44 | 1.09 |
Na2O | 5.02 | 4.92 | 4.23 | 4.41 | 4.64 | 4.89 | 4.96 | 4.72 | 2.66 | 3.75 | 4.83 | 3.9 | 3.82 | 3.53 |
K2O | 3.45 | 3.19 | 3.83 | 3.6 | 4.53 | 3.58 | 3.77 | 2.89 | 4.68 | 3.73 | 3.34 | 3.66 | 4.09 | 3.86 |
P2O5 | 0.03 | 0.04 | 0.04 | 0.04 | 0.02 | 0.05 | 0.05 | 0.06 | 0.24 | 0.03 | 0.04 | 0.03 | 0.01 | 0.04 |
LOI | 0.8 | 0.88 | 0.33 | 0.39 | 0.62 | 0.7 | 1.02 | 1.97 | ||||||
Total | 100 | 99.85 | 99.99 | 100.1 | 100.4 | 99.58 | 100.2 | 99.91 | 99.98 | 99.99 | 100 | 99.99 | 100 | 100 |
Ba | 644 | 726 | 797 | 20 | 730 | 770 | 440 | 454 | 684 | 661 | 705 | 796 | 879 | |
Zr | 63 | 344 | 294 | 1340 | 771 | 732 | 309 | 160 | 249 | 292 | 269 | 189 | 110 | |
Rb | 41.6 | 88 | 81 | 96.4 | 88 | 93.3 | 76 | 146 | 111 | 69 | 95 | 87 | 101 | |
Th | 11.5 | 8 | 8 | 12 | 7.2 | 9.7 | 8.7 | 12 | 14 | 15 | 10 | 13 | 7 | |
Ta | 1.1 | 1.1 | 0.7 | 1 | 0.9 | 4 | 6 | 4 | 7 | 5 | 7 | |||
Nb | 6.2 | 14 | 11 | 15.8 | 10.3 | 11.5 | 11.9 | 15 | 13 | 12 | 14 | 10 | 10 | |
Hf | 3.5 | 28.6 | 17.9 | 18.2 | 8.6 | 6 | 8 | 8 | 8 | 8 | 9 | |||
Y | 53.6 | 50 | 42 | 106 | 76.2 | 81.3 | 54.7 | 50 | 47 | 45 | 50 | 37 | 24 | |
Sr | 72 | 99 | 119 | 108 | 101.5 | 104.5 | 76.7 | 90 | 96 | 111 | 100 | 29 | 135 | |
Ga | 22 | 21 | 19 | 20 | 20 | 20 | 20 | 16 | ||||||
Cs | 0.63 | 1.39 | 1.92 | 1.14 | 3.5 | 1.82 | 2.66 | 2.66 | 3.12 | 2.98 | ||||
Sc | 4 | 6 | 7 | 3 | 4 | 3 | ||||||||
U | 1.8 | 1.6 | 2.2 | 1.8 | 2.74 | 3.44 | 1.21 | 2.24 | 2.56 | 3.52 | ||||
La | 38.1 | 36.4 | 27.5 | 34.1 | 32.3 | 45.34 | 39.78 | 35.44 | 34.55 | 36.66 | 33.24 | |||
Ce | 70.8 | 110 | 100 | 110.5 | 65.4 | 77.9 | 74.9 | 113.1 | 102.5 | 76.66 | 99.89 | 96.13 | 88.12 | |
Pr | 9.2 | 12.45 | 7.87 | 9.09 | 8.61 | 11.98 | 14.78 | 12.34 | 12.55 | 12.33 | 11.13 | |||
Nd | 42.9 | 52 | 41 | 50.2 | 34.6 | 37.7 | 35.2 | 27.34 | 30.75 | 44.34 | 30.34 | 32.56 | 21.35 | |
Sm | 8.4 | 11 | 7.86 | 7.79 | 7.39 | 6.91 | 7.67 | 13.45 | 15.15 | 13.12 | 12.54 | |||
Eu | 1.4 | 1.97 | 1.47 | 1.38 | 1.4 | 1.18 | 1.57 | 1.28 | 1.34 | 1.18 | 1.65 | |||
Gd | 8.2 | 10.15 | 7.87 | 7.93 | 7.52 | 9.67 | 10.12 | 10.15 | 9.55 | 9.05 | 10.12 | |||
Tb | 1.3 | 1.97 | 1.33 | 1.37 | 1.3 | 1.77 | 1.54 | 1.35 | 1.34 | 1.07 | 1.37 | |||
Dy | 8.4 | 12.85 | 8.46 | 8.8 | 8.34 | 10.14 | 11.22 | 9.22 | 11.09 | 11.12 | 9.77 | |||
Ho | 1.8 | 2.72 | 1.74 | 1.8 | 1.78 | |||||||||
Er | 5.5 | 8.52 | 5.18 | 5.77 | 5.6 | 3.17 | 3.73 | 0.62 | 6.25 | 6.38 | 5.66 | |||
Tm | 1.32 | 0.84 | 0.93 | 0.9 | ||||||||||
Yb | 5.7 | 8.9 | 5.59 | 6.28 | 6.18 | 6.78 | 6.79 | 5.65 | 5.34 | 6.88 | 6.56 | |||
Lu | 1.36 | 0.85 | 0.97 | 0.92 | 0.93 | 1.14 | 1.21 | 1.23 | 1.14 | 1.15 |
3.2. Trace and Rare-Earth Element Data
4. Discussion
4.1. Petrogenetic and Geochronological Implications
4.2. Origin and Proposed Tectonic Setting
4.3. Crystallization Temperature of Granites and Inferred Pressure Conditions
5. Conclusions
- The Wadhrai granite stock of the NPIC is an extension of the Malani Igneous Suite.
- It is made up of a uniform hypersolvus, biotite-granite characterized by high silica, Fe#, and alkalis.
- The granite analyses classify it as I-type, and specifically as A-type, on various geochemical discrimination diagrams.
- The magma was developed in continental extensional environment from source material that possibly developed in a subduction-related setup, but the possibility cannot be entirely ruled out that that the granite magma may have belonged to a continental margin subduction regime.
- The granite magma was likely derived from a tonalite-granodiorite-dominated crustal source, generated initially in a subduction-related continental margin and evolved into the rift-related tectonic setting.
- The magma was possibly generated at a depth of about 25–27 km and at 770–870 °C, and crystallized at 19–13 km depth.
- It underwent a small degree of feldspar and biotite fractionation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jan, M.Q.; Laghari, A.; Khan, M.A. Petrography of the Nagar Parkar igneous complex. Tharparkar, Southeastern Sindh, Pakistan. Geol. Bull. Univ. Peshawar 1997, 30, 227–259. [Google Scholar]
- Ahmad, S.A.; Chaudhry, M.N. A-type granites from the Nagarparkar complex, Pakistan: Geochemistry and origin. Geol. Bull. Punjab Univ. 2008, 43, 69–81. [Google Scholar]
- Khan, T.; Murata, M.; Rehman, H.U.; Zafar, M.; Ozawa, H. Nagarparker granites showing Rodinia remnants in the southeastern part of Pakistan. J. Asian Earth Sci. 2012, 59, 39–51. [Google Scholar] [CrossRef]
- Bhushan, S.K. Malani rhyolite—A review. Gondwana Res. 2000, 3, 65–77. [Google Scholar]
- Pareek, H.S. Petrochemistry and petrogenesis of the Malani Igneous Suite, India. Geol. Soc. Am. Bull. 1981, 92, 206–273. [Google Scholar]
- Wang, W.; Pandit, M.K.; Zhao, J.; Chen, W.; Zheng, J. Slab break-off triggered lithosphere asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India. Lithos 2017, 296–299, 281–296. [Google Scholar] [CrossRef]
- Kochhar, N. Geological evolution of the Trans-Aravalli block (TAB) of the NW Indian Shield and Seychelles connection in the Late Proterozoic: Evidence from plume related A-type Malani magmatism. Geol. Surv. India Spec. Publ. 2004, 84, 247–264. [Google Scholar]
- Gregory, L.C.; Meert, J.G.; Bingen, B.; Pandit, M.K.; Torsvik, T.H. Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Res. 2009, 170, 13–26. [Google Scholar] [CrossRef]
- Ashwall, L.D.; Solanki, A.M.; Pandit, M.K.; Corfu, F.; Hendriks, B.W.H.; Burke, K.; Torsvik, T.H. Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: Regional correlation and implications for Rodinia paleogeography. Precambrian Res. 2013, 236, 265–286. [Google Scholar] [CrossRef]
- de Wall, H.; Pandit, M.K.; Donhauser, I.; Schobel, S.; Wang, W.; Sharma, K.K. Evolution and tectonic setting of the Malani–Nagarparkar: A Neoproterozoic silicic-dominated large igneous province in NW India-SE Pakistan. J. Asian Earth Sci. 2018, 160, 136–158. [Google Scholar]
- Khan, T.; Murata, M.; Jan, M.Q.; Rehman, H.U.; Zafar, M.; Ozawa, H.; Qadir, A.; Mehmood, S. Felsic dykes in the Neoproterozoic Nagar Parkar Igneous complex, SE Sindh, Pakistan: Geochemistry and tectonic settings. Arab. J. Geosci. 2017, 10, 308. [Google Scholar] [CrossRef]
- Markhand, A.H.; Xia, Q.; Agheem, M.H.; Jia, L. U-Pb Zircon dating and geochemistry of the rocks at Wadhrai body, Nagar Parkar Igneous Complex, Sindh, Pakistan. Sindh Univ. Res. J. Sci. Ser. 2017, 49, 1–6. [Google Scholar]
- Mastoi, A.S.; Yang, X.; Deng, J.; Hakro, A.A.A.D. Early Neoproterozoic evolution of southeast Pakistan: Evidence from geochemistry, geochronology, and isotopic composition of the Nagarparkar igneous complex. Int. Geol. Rev. 2019, 61, 1391–1408. [Google Scholar]
- Rehman, H.U.; Khan, T.; Jan, M.Q.; Lee, H.-Y.; Chung, S.-L.; Murata, M. Timing and span of the continental crustal growth in SE Pakistan: Evidence from LA-ICP-MS U-Pb zircon ages from granites of the Nagar Parkar Igneous Complex. Gondwana Res. 2018, 61, 172–186. [Google Scholar] [CrossRef]
- Rehman, H.U.; Khan, T.; Lee, H.-Y.; Chung, S.-L.; Murata, M.; Jan, M.Q. Permian felsic magmatism in the Neoproterozoic Nagar Parkar Igneous Complex of the Malani Igneous Suite: Evidence from zircon U–Pb age. Isl. Arc 2019, 28, e12323. [Google Scholar] [CrossRef]
- Jan, M.Q.; Agheem, M.H.; Laghari, A.; Anjum, S. Geology and petrography of the Nagar Parker igneous complex, southeastern Sindh: The Wadhrai body. J. Himal. Earth Sci. 2016, 49, 1–13. [Google Scholar]
- Laghari, A. Petrology of the Nagar Parkar Granites and Associated Basic Rocks, Thar District, Sindh, Pakistan. Ph.D. Thesis, University of Peshawar, Peshawar, Pakistan, 2004. [Google Scholar]
- O’Connor, J.T. A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol. Surv. Prof. Pap. 1965, 525B, B79–B84. [Google Scholar]
- De la Roche, H.; Leterrier, J.; Grandle Claude, P.; Marchal, M. A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses- its relationships and current nomenclature. Chem. Geol. 1980, 29, 193–210. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Shand, S.J. The Eruptive Rocks, 2nd ed.; John Wiley: New York, NY, USA, 1943; p. 444. [Google Scholar]
- Yin, J.; Chen, W.; Xiao, W.; Yuan, C.; Windley, B.F.; Yu, S.; Cai, K. Late Silurian-early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: Partial melting of mafic lower crust and implications for slab roll-back. Gondwana Res. 2017, 43, 55–73. [Google Scholar] [CrossRef][Green Version]
- Alirezaei, S.; Hassanzadeh, J. Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj-Sijan belt: A new record of the Gondwana break-up in Iran. Lithos 2012, 151, 1221–1234. [Google Scholar] [CrossRef]
- Bea, F.; Mazhai, A.; Montero, P.; Amini, S.; Ghalamghash, J. Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: Evidence for Variscan magmatism in a supposedly Cimmerian super terrane. J. Asian Earth Sci. 2011, 40, 172–179. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Whalen, J.B.; Curry, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence, and chemical characteristics and speculation on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams: Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geol. Assoc. Can. Short Course Notes 1996, 12, 79–113. [Google Scholar]
- Danishvar, N.; Maanijou, M.; Azizi, H.; Asahaar, Y. Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran. J. Geodyn. 2019, 132, 101669. [Google Scholar] [CrossRef]
- Wood, D.A.; Joron, J.L.; Treuil, M. A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett. 1979, 45, 326–336. [Google Scholar] [CrossRef]
- Maheshvari, A.; Garhia, S.S.; Sial, A.N.; Ferreira, V.P.; Dwivedi, V.; Chittora, V.K. Geology and geochemistry of granites around Jaswantpura, Jalor district, southwestern Rajasthan, India. Precambrian Res. 2002, 5, 37–379. [Google Scholar]
- Carter, L.M. Granitic and Rhyolitic Magmatism: Constraints on Continental Reconstruction from Geochemistry, Geochronology and Palaeomagnetism. Master’s Thesis, Rand Afrikaan University, Johannesburg, South Africa, 2005; p. 54. [Google Scholar]
- Ashwal, L.D.; Demaiffre, D.; Torsvik, T.H. Petrogenesis of Neoproterozoic granitoids and related rocks from Seychelles: The case of an Andean-type arc origin. J. Petrol. 2002, 43, 4–83. [Google Scholar] [CrossRef]
- Dharma Rao, C.V.; Santosh, M.; Kim, S.W. Cryogenian volcanic arc in the NW Indian Shield: Zircon SHRIMP U-Pb geochronology of felsic tuffs and implications for Gondwana assembly. Gondwana Res. 2012, 22, 36–53. [Google Scholar]
- Zhao, Z.F.; Zheng, Y.F.; Chen, Y.X.; Sun, G.C. Partial melting of subducted continental crust: Geochemical evidence syn-exhumation granite in Sulu orogeny. Geol. Soc. Am. Bull. 2017, 129, 1692–1707. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 17–214. [Google Scholar] [CrossRef]
- White, W. Geochemistry, Online Textbook. 2007, p. 413. Available online: http://www.geo.cornell.edu/geology/classes/geo455/Chapter.html (accessed on 7 November 2021).
- Butt, K.A.; Jan, M.Q.; Karim, A. Late Proterozoic rocks of Nagar Parkar, southeastern Pakistan: A preliminary petrologic account. In Geology in South Asia-1; Ahmed, R., Sheikh, A.M., Eds.; Hydrocarbon Development Institute of Pakistan: Islamabad, Pakistan, 1994; pp. 106–109. [Google Scholar]
- Jan, M.Q.; Agheem, M.H.; Laghari, A.; Anjum, S. Geology and petrography of the Nagar Parkar igneous complex, southeastern Sindh, Pakistan: The Kharsar body. J. Geol. Soc. India 2017, 89, 91–98. [Google Scholar] [CrossRef]
- Sharma, K.K. Malani-magmatism: An extensional lithospheric tectonic origin. Geol. Soc. Am. Spec. Pap. 2005, 388, 463–476. [Google Scholar]
- Winter, J.D. An Introduction to Igneous and Metamorphic Petrology; Prentice Hall: New York, NY, USA, 2010; p. 702. [Google Scholar]
- Smith, E.I.; Tibbetts, A.; Belmontes, H.; Johnsen, R.; Walker, J.D. Pliocene basaltic and rhyolitic volcanism in the Greenwater Range, Death Valley area, California. In Proceedings of the Natural History Conference, Death Valley Natural History Association, San Diego, CA, USA, February 2016; pp. 3–43. [Google Scholar]
- Kochhar, N.; Dhar, S.; Sharma, R. Geochemistry and tectonic significance of acid and basic dykes associated with Jalor magmatism, west Rajasthan. Mem. Geol. Soc. India 1995, 33, 375–389. [Google Scholar]
- Rehman, H.U.; Khan, T.; Lee, H.-Y.; Chung, S.-L.; Jan, M.Q.; Zafar, T.; Murata, M. Petrogenetic source and tectonic evolution of the Neoproterozoic Nagar Parkar complex granitoids: Evidence from zircon Hf isotope and trace element geochemistry. Precambrian Res. 2021, 354, 106047. [Google Scholar] [CrossRef]
- Regelous, A.; Scharfenberg, L.; De Wall, H. Origin of S-, A-, and I-type granites: Petrogenetic evidence from whole rock Th/U ratio variations. Minerals 2021, 11, 672. [Google Scholar] [CrossRef]
- Kochhar, N. Malani Igneous Suite: Hot spot magmatism and cratonisation of the northern part of the Indian shield. J. Geol. Soc. India 1984, 25, 155–161. [Google Scholar]
- Kochhar, N. A-type Malani magmatism, northwestern peninsular India. In Glimpses of Geoscientific Research in India; Singhvi, A.K., Bhattacharya, A., Guha, S., Eds.; Indian National Science Academy: New Delhi, India, 2008; pp. 176–181. [Google Scholar]
- Srivastava, K.R.; Maheshwari, A.; Upadhyaya, A. Geochemistry of felsic volcanics from Gurapratap Singh and Diri, Pali district, Rajasthan (Part II, trace elements). J. Geol. Soc. India 1989, 34, 617–631. [Google Scholar]
- Torsvick, T.H.; Ashwal, L.D.; Tucker, R.D.; Eide, D.A. Neoproterozoic geochronology of the Seychelles microcontinent: The India link. Precambrian Res. 2001, 110, 47–59. [Google Scholar] [CrossRef]
- Solanki, A.M. A Petrographic, Geochemical and Geochronological Investigation of Deformed Granitoids from SW Rajasthan: Neoproterozoic Age of Formation and Evidence of Pan-African Imprint. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2016; 216p. [Google Scholar]
- Schobel1, S.; Sharma, K.K.; Horbrand, T.; Bohm, T.; Donhauser, I.; de Wall, H. Continental rift setting and evolution of Neoproterozoic Sindreth Basin in NW-India. J. Earth Syst. Sci. 2017, 126, 90. [Google Scholar] [CrossRef]
- Kochhar, N. The Greater Malani Supercontinent: South China, Siberia, Mongolia, Kazakhstan, and Tarim connection during the Neoproterozoic. In Precambrian Evolution and Deep Exploration of the Continental Lithosphere; IAGR Conference Series: Beijing, China, 2013; pp. 51–57. [Google Scholar]
- Jan, M.Q.; Laghari, A.; Khan, M.A.; Agheem, M.H.; Khan, T. Petrology of calc-alkaline/adakitic basement hosting A-type Neoproterozoic granites of the Malani Igneous Suite in Nagar Parkar, SE Sindh, Pakistan. Arab. J. Geosci. 2018, 11, 25. [Google Scholar] [CrossRef]
- de Wall, H.; Regelous, A.; Schulz, B.; Hahn, G.; Bestmann, M.; Sharma, K.K. Neoproterozoic geodynamic in NW India—Evidence from Erinpura granites in the south Delhi Fold Belt. Int. Geol. Rev. 2022, 64, 1050–1080. [Google Scholar] [CrossRef]
- Hine, R.; Williams, I.S.; Chappell, B.W.; White, A.J.R. Contrasts between I- and S-type granitoids of the Kosciusco Batholith. J. Geol. Soc. Aust. 1978, 25, 219–234. [Google Scholar] [CrossRef]
- Laurent, O.; Martin, H.; Moyen, J.F.; Doucelance, R. The diversity and evolution of Late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Johannes, W.; Holtz, F. Petrogenesis and Experimental Petrology of Granitic Rocks; Springer: Berlin/Heidelberg, Germany, 1996; p. 335. [Google Scholar]
- Condie, K.C. Archean magmatism and crustal thickening. Geol. Soc. Am. Bull. 1973, 84, 2981–2992. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Li, S.; Chung, S.-L.; Wang, T.; Wilde, S.A.; Chu, M.F.; Pang, C.-J.; Guo, Q.Q. Water-fluxed crustal melting and petrogenesis of large-scale Early Cretaceous intercontinental granitoids in the southern Great Xing’an range, North China. Geol. Soc. Am. Bull. 2018, 130, 580–597. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Clark, C.; Hand, M. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. J. Metamorph. Geol. 2008, 26, 199–212. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Yang, J.-H.; Peng, J.-T.; Zheng, Y.-F.; Hu, R.-Z.; Bi, X.-W.; Zhao, J.-H.; Huang, J.-C.; Zhang, B.-L. Petrogenesis of the Mesozoic Shuikoushan per-aluminous I-type granodioritic intrusion in Hunan Province, South China: Middle-lower crustal reworking in an extensional tectonic setting. J. Asian Earth Sci. 2016, 123, 224–242. [Google Scholar] [CrossRef][Green Version]
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q | 30.78 | 32.98 | 31.24 | 30.51 | 33.61 | 28.49 | 27.36 | 31.46 | 40.17 | 35.39 | 29.72 | 34.61 | 37.16 | 37.43 |
C | 0 | 0.21 | 1.03 | 1.08 | 0 | 0 | 0 | 0 | 2.29 | 1.85 | 0 | 2 | 1.63 | 1.16 |
or | 20.57 | 19.08 | 22.75 | 21.38 | 26.89 | 21.43 | 22.48 | 17.46 | 27.67 | 22.05 | 19.75 | 21.64 | 24.18 | 22.82 |
ab | 42.85 | 42.13 | 35.97 | 37.49 | 32.31 | 41.49 | 42.36 | 40.84 | 22.52 | 31.75 | 40.89 | 33.02 | 32.33 | 29.88 |
an | 2.15 | 1.54 | 4.72 | 5.17 | 0 | 4.02 | 4.03 | 6.59 | 3.35 | 5.07 | 5.53 | 4.72 | 2.12 | 5.15 |
di | 1.75 | 0 | 0 | 0 | 0.54 | 0.19 | 0.38 | 0.1 | 0 | 0 | 0.19 | 0 | 0 | 0 |
hy | 0.9 | 2.92 | 2.99 | 3.08 | 3.53 | 2.76 | 2.3 | 2.38 | 2.51 | 2.81 | 2.68 | 2.88 | 1.9 | 2.63 |
Mt | 0.34 | 0.51 | 0.55 | 0.55 | 0 | 1.28 | 1.22 | 1.28 | 0.42 | 0.48 | 0.53 | 0.5 | 0.34 | 0.41 |
il | 0.57 | 0.52 | 0.63 | 0.63 | 0.44 | 0.56 | 0.5 | 0.54 | 0.49 | 0.51 | 0.61 | 0.55 | 0.3 | 0.42 |
ap | 0.07 | 0.09 | 0.09 | 0.09 | 0.04 | 0.11 | 0.11 | 0.13 | 0.52 | 0.07 | 0.09 | 0.07 | 0.02 | 0.09 |
CI | 3.56 | 3.95 | 4.17 | 4.26 | 4.51 | 4.01 | 3.63 | 3.49 | 3.43 | 3.8 | 4.01 | 3.93 | 2.55 | 3.45 |
An mol% | 4.8 | 3.5 | 11.6 | 12.1 | 0 | 8.8 | 8.7 | 13.9 | 12.9 | 13.8 | 11.9 | 12.5 | 6.2 | 14.7 |
Sample | 1 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 | 13 | 14 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Watson & Harrison (1983) [64] | 703 | 861 | 845 | 987 | 935 | 928 | 799 | 838 | 846 | 814 | 762 | 847 |
Kelsey et al. (2008) [65] | 700 | 870 | 852 | 1015 | 958 | 953 | 805 | 849 | 858 | 824 | 764 | 859 |
Boehnke et al. (2013) [66] | 641 | 830 | 811 | 973 | 915 | 907 | 761 | 806 | 816 | 778 | 715 | 814 |
Miller et al. (2003) [67] | 695 | 844 | 829 | 960 | 916 | 913 | 791 | 830 | 837 | 809 | 755 | 834 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, M.Q.; Agheem, M.H.; Khan, T.; Rehman, H.U.; Markhand, A.H. Geochemistry and Petrogenesis of the Wadhrai Granite Stock of the Malani Igneous Suite in Nagar Parkar Area, SE Pakistan. Minerals 2022, 12, 1240. https://doi.org/10.3390/min12101240
Jan MQ, Agheem MH, Khan T, Rehman HU, Markhand AH. Geochemistry and Petrogenesis of the Wadhrai Granite Stock of the Malani Igneous Suite in Nagar Parkar Area, SE Pakistan. Minerals. 2022; 12(10):1240. https://doi.org/10.3390/min12101240
Chicago/Turabian StyleJan, M. Qasim, M. Hassan Agheem, Tahseenullah Khan, Hafiz U. Rehman, and Akhtar Hussain Markhand. 2022. "Geochemistry and Petrogenesis of the Wadhrai Granite Stock of the Malani Igneous Suite in Nagar Parkar Area, SE Pakistan" Minerals 12, no. 10: 1240. https://doi.org/10.3390/min12101240