Ultra-High Pressure Metamorphism and Geochronology of Garnet Clinopyroxenite in the Paleozoic Dunhuang Orogenic Belt, Northwestern China
Abstract
1. Introduction
2. Regional Geology
3. Petrography
4. Analytical Methods and Geothermobarometry
4.1. Major and Trace Elements Analysis
4.2. SIMS U-Pb Dating of Titanite
4.3. Geothermobarometry
5. Results
5.1. Mineral Chemistry
5.2. U-Pb Dating Results of Titanite
5.3. Metamorphic P-T Paths
6. Discussion
6.1. Protolith of Garnet Clinopyroxenite
6.2. UHP Metamorphism Evidenced by Reaction Textures
6.3. UHP Metamorphism Confirmed by Geothermobarometers
6.4. Significance of Titanite U-Pb Ages
6.5. Possible Fast Exhumation of the UHP Metamorphic Rocks
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chopin, C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib. Miner. Petrol. 1984, 86, 107–118. [Google Scholar] [CrossRef]
- Smith, D.C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 1984, 310, 641–644. [Google Scholar] [CrossRef]
- Sobolev, N.V.; Shatsky, V.S. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature 1990, 343, 742–746. [Google Scholar] [CrossRef]
- Xu, S.T.; Okay, A.I.; Ji, S.Y.; Sengör, A.M.C.; Su, W.; Liu, Y.C.; Jiang, L.L. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 1992, 256, 80–82. [Google Scholar]
- Ye, K.; Cong, B.; Ye, D. The possible subduction of continental material to depths greater than 200 km. Nature 2000, 407, 734–736. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Green, H.W.; Jin, Z.; Bozhilov, K.N. Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km. Earth. Planet. Sci. Lett. 2007, 263, 180–191. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.F.; Cao, Y.T.; Green, H.W.; Yang, W.-Q.; Xu, H.-J.; Liao, X.-Y.; Kang, L. Evidence of former stishovite in UHP eclogite from the South Altyn Tagh, western China. Earth. Planet. Sci. Lett. 2018, 484, 353–362. [Google Scholar] [CrossRef]
- Mei, H.L.; Yu, H.F.; Lu, S.N.; Li, H.M.; Li, Q.; Lin, Y.X.; Zuo, Y.C. Archean tonalite in the Dunhuang, Gansu Province: Age from the U–Pb single zircon and Nd isotope. Prog. Precambrian. Res. 1998, 21, 41–45. (In Chinese) [Google Scholar]
- Zhang, J.; Gong, J.; Yu, S.C. 1.85 Ga HP granulite-facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: Evidence from U–Pb zircon dating of mafic granulites. J. Geol. Soc. (Lond.) 2012, 169, 511–514. [Google Scholar] [CrossRef]
- Zong, K.Q.; Zhang, Z.M.; He, Z.Y.; Hu, Z.C.; Santosh, M.; Liu, Y.S.; Wang, W. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: Constraints on continental collision in the southern Central Asian Orogenic Belt. J. Metamorph. Geol. 2012, 30, 753–768. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Zong, K.; Xiang, H.; Klemd, R. Metamorphic P–T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction. Lithos 2014, 196–197, 1–13. [Google Scholar] [CrossRef]
- Peng, T.; Wang, H.; Chen, H.-X.; Meng, J.; Lu, J.-S.; Wang, G.-D.; Wu, C.-M. Preliminary report on the metamorphic evolution of the Guanyingou amphibolites, Dunhuang Metamorphic Complex, NW China. Acta Petrol. Sin. 2014, 30, 503–511. (In Chinese) [Google Scholar]
- Zhao, Y.; Sun, Y.; Diwu, C.; Guo, A.-L.; Ao, W.-H.; Zhu, T. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China. Gondwana. Res. 2016, 30, 207–223. [Google Scholar] [CrossRef]
- Wang, H.Y.C.; Chen, H.X.; Lu, J.S.; Wang, G.-D.; Peng, T.; Zhang, H.C.G.; Yan, Q.-R.; Hou, Q.-L.; Zhang, Q.; Wu, C.-M. Metamorphic evolution and SIMS U-Pb geochronology of the Qingshigou area, Dunhuang block, NW China: Tectonic implications of the southernmost Central Asian orogenic belt. Lithosphere 2016, 8, 463–479. [Google Scholar] [CrossRef]
- Wang, H.Y.C.; Chen, H.X.; Zhang, Q.W.L.; Shi, M.-Y.; Yan, Q.-R.; Hou, Q.-L.; Zhang, Q.; Kusky, T.; Wu, C.-M. Tectonic mélange records the Silurian–Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt. Geology 2017, 45, 427–430. [Google Scholar] [CrossRef]
- Wang, H.Y.C.; Wang, J.; Wang, G.-D.; Lu, J.-S.; Chen, H.-X.; Peng, T.; Zhang, H.C.G.; Zhang, Q.W.L.; Xiao, W.-J.; Hou, Q.-L.; et al. Metamorphic evolution and geochronology of the Dunhuang orogenic belt in the Hongliuxia area, northwestern China. J. Asian. Earth. Sci. 2017, 135, 51–69. [Google Scholar] [CrossRef]
- Wang, H.Y.C.; Zhang, Q.W.L.; Chen, H.-X.; Liu, J.-H.; Zhang, H.C.G.; Pham, V.T.; Peng, T.; Wu, C.M. Paleozoic subduction of the southern Dunhuang Orogenic Belt, northwest China: Metamorphism and geochronology of the Shuixiakou area. Geodin. Acta 2018, 30, 63–83. [Google Scholar] [CrossRef]
- Wang, H.Y.C.; Zhang, Q.W.L.; Lu, J.-S.; Chen, H.-X.; Liu, J.-H.; Zhang, H.C.G.; Pham, V.T.; Peng, T.; Wu, C.-M. Metamorphic evolution and geochronology of the tectonic mélange of the Dongbatu and Mogutai blocks, middle Dunhuang orogenic belt, northwestern China. Geosphere 2018, 14, 883–906. [Google Scholar] [CrossRef]
- Zhang, Q.W.L.; Wang, H.Y.C.; Liu, J.-H.; Shi, M.-Y.; Chen, Y.-C.; Li, Z.M.G.; Wu, C.-M. Diverse subduction and exhumation of tectono-metamorphic slices in the Kalatashitage area, western Paleozoic Dunhuang Orogenic Belt, northwestern China. Lithos 2020, 360–361, 105434. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, S.; Mattinson, C.G. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana. Res. 2017, 41, 267–289. [Google Scholar] [CrossRef]
- Lu, S.N.; Yu, H.F.; Li, H.K.; Guo, K.Y.; Wang, H.C.; Jin, W.; Zhang, C.L.; Liu, Y.S. Research on Precambrian Major Problems in Chinese; Geological Publishing House: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Cunningham, D.; Zhang, J.; Li, Y. Late Cenozoic transpressional mountain building directly north of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics 2016, 687, 111–128. [Google Scholar] [CrossRef]
- Festa, A.; Dilek, Y.; Pini, G.A.; Codegone, G.; Ogata, K. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges. Tectonophysics 2012, 568–569, 7–24. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Hwang, S.L.; Shen, P.; Chu, H.T.; Yui, T.F.; Iizuka, Y.; Schertl, H.P. Rutile inclusions in garnet from a dissolution-reprecipitation mechanism. J. Metamorph. Geol. 2019, 37, 1079–1098. [Google Scholar] [CrossRef]
- Ague, J.J.; Eckert, J.O. Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A. Am. Miner. 2012, 97, 840–855. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef]
- Holland, T.; Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Miner. Petrol. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Li, Q.L. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications, Chinese. Chin. Sci. Bull. 2008, 53, 768–776. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, X.H.; Liu, Y.; Wu, F.-Y.; Yang, J.-H.; Mitchell, R.H. Precise U–Pb and Th–Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chem. Geol. 2010, 269, 396–405. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.-W.; Li, Q.-L.; Xiang, H.; Zhong, Z.-Q.; Brouwer, F.M. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U–Pb geochronology. J. Asian. Earth. Sci. 2014, 92, 77–91. [Google Scholar] [CrossRef]
- Ling, X.X.; Schmädicke, E.; Li, Q.L.; Gose, J.; Wu, R.-H.; Wang, S.-Q.; Liu, Y.; Tang, G.-Q.; Li, X.-H. Age determination of nephrite by in-situ SIMS U–Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos 2015, 220–223, 289–299. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhao, L.; Zhang, Y.B.; Yang, J.H.; Kim, J.N.; Han, R.H. Zircon-titanite-rutile U-Pb system from metamorphic rocks of Jungshan “Group” in Korea: Implications of tectono-thermal events from Paleoproterozoic to Mesozoic. Acta Petrol. Sin. 2016, 32, 3019–3032. (In Chinese) [Google Scholar]
- Aleinikoff, J.N.; Wintsch, R.P.; Tollo, R.P.; Unruh, D.M.; Fanning, C.M.; Schmitz, M.D. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England. Am. J. Sci. 2007, 307, 63–118. [Google Scholar] [CrossRef]
- Tera, F.; Wasserburg, G.J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth. Planet. Sci. Lett. 1972, 14, 281–304. [Google Scholar] [CrossRef]
- Ludwig, K.R. Users Manual for Isoplot/Ex Rev. 2.49; Special Publication No. 1a; Berkeley Geochronology Centre: Berkeley, CA, USA, 2001. [Google Scholar]
- Nakamura, D. A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. J. Metamorph. Geol. 2009, 27, 495–508. [Google Scholar] [CrossRef]
- Beyer, C.; Frost, D.J.; Miyajima, N. Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contrib. Miner. Petrol. 2015, 169, 1–21. [Google Scholar] [CrossRef]
- Gerya, T.V.; Perchuk, L.L.; Triboulet, C.; Audren, C.; Sez’ko, A.I. Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan. Petrology 1997, 5, 503–533. [Google Scholar]
- Hayden, L.A.; Watson, E.B.; Wark, D.A. A thermobarometer for sphene (titanite). Contrib. Miner. Petrol. 2008, 155, 529–540. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Miner. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Jiao, S.; Guo, J.; Mao, Q.; Zhao, R. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contrib. Miner. Petrol. 2011, 162, 379–393. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Zack, T.; Moraes, R.; Kronz, A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. Miner. Petrol. 2004, 148, 471–488. [Google Scholar] [CrossRef]
- Spear, F.S.; Florence, F.P. Thermobarometry in granulites: Pitfalls and new approaches. Precambrian Res. 1992, 55, 209–241. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of Pyroxenes. Miner. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Smith, D.C. The pressure and temperature dependence of Al-solubility in sphene in the system Ti-Al-Ca-Si-O-F. Prog. Exp. Petrol. (Ser. D) 1981, 18, 193–197. [Google Scholar]
- Franz, G.; Spear, F.S. Aluminous titanite (sphene) from the eclogite-zone, south-central Tauern Window, Austria. Chem. Geol. 1985, 50, 33–46. [Google Scholar] [CrossRef]
- Castelli, D. Eclogitic metamorphism in carbonate rocks: The example of impure marbles from the Sesia-Lanzo Zone, Italian Western Alps. J. Metamorph. Geol. 1991, 9, 61–77. [Google Scholar] [CrossRef]
- Carswell, D.A.; Wilson, R.N.; Zhai, M. Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Miner. Mag. 1996, 60, 461–471. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Rötzler, J. High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics. J. Metamorph. Geol. 2003, 21, 3–20. [Google Scholar] [CrossRef]
- Winter, J.D. Principles of Igneous and Metamorphic Petrology, 2nd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Kennedy, C.S.; Kennedy, G.C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976, 81, 2467–2470. [Google Scholar] [CrossRef]
- Bose, K.; Ganguly, J. Quartz-coesite transition revisited: Reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am. Miner. 1995, 80, 231–238. [Google Scholar] [CrossRef]
- Ye, K.; Ye, D. Significance of phosphorous (P)- and magnesium (Mg)-bearing high-Al titanite in high-pressure marble from Yangguantun, Rongcheng County, Shandong Province. Chin. Sci. Bull. 1996, 41, 1194–1197. [Google Scholar]
- Tropper, P.; Manning, C.E.; Essene, E.J. The substitution of Al and F in titanite at high pressure and temperature: Experimental constraints on phase relations and solid solution properties. J. Petrol. 2002, 43, 1787–1814. [Google Scholar] [CrossRef]
- Enami, M.; Suzuki, K.; Liou, J.G.; Bird, D.K. Al-Fe3+ and F-OH substitutions in titanite and constrains on their P-T dependence. Eur. J. Miner. 1993, 5, 219–231. [Google Scholar] [CrossRef]
- Castelli, D.; Rubatto, D. Stability of Al- and F-rich titanite in metacarbonate: Petrologic and isotopic constraints from a polymetamorphic eclogitic marble of the internal Sesia Zone (Western Alps). Contrib. Miner. Petrol. 2002, 142, 627–639. [Google Scholar] [CrossRef]
- Ryan-Davis, J.; Lackey, J.S.; Gevedon, M.; Barnes, J.D.; Lee, C. -T.A.; Kitajima, K.; Valley, J.W. Andradite skarn garnet records of exceptionally low δ18O values within an Early Cretaceous hydrothermal system, Sierra Nevada, CA. Contrib. Miner. Petrol. 2019, 174, 68. [Google Scholar] [CrossRef]
- Alaminia, Z.; Mehrabi, B.; Razavi, S.M.H.; Tecce, F. Mineral chemistry, petrogenesis and evolution of the Ghorveh-Seranjic skarn, Northern Sanandaj Sirjan Zone, Iran. Miner. Petrol. 2020, 114, 15–38. [Google Scholar] [CrossRef]
- Pearce, J.A. A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Wyman, D.A., Ed.; Short Course Notes 12; Geological Association of Canada: Newfoundland, NL, Canada, 1996; pp. 79–113. [Google Scholar]
- Pearce, J.A. Trace element characteristics of lavas from destructive plate boundaries. In Andesites; Thorpe, R.S., Ed.; Wiley: Chichester, UK, 1982; pp. 525–548. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, C.; Zhang, J.; Chu, H. Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia. Sci. Bull. 2015, 60, 1698–1707. [Google Scholar] [CrossRef]
- Wu, J.; Zhai, M.; Zhang, H.; Guo, J.; Wang, H.; Yang, W.; Zhang, H.; Hu, B. Petrologic indicators of prograde metamorphism in Paleoproterozoic garnet mafic granulites from the Huai’an complex, North China Craton. Sci. Bull. 2018, 63, 81–84. [Google Scholar] [CrossRef]
- Frost, B.R.; Chamberlain, K.R.; Schumacher, J.C. Sphene (titanite): Phase relations and role as a geochronometer. Chem. Geol. 2001, 172, 131–148. [Google Scholar] [CrossRef]
- Oberti, R.; Smith, D.C.; Rossi, G.; Caucia, F. The crystal chemistry of high-aluminum titanites. Eur. J. Miner. 1991, 3, 777–792. [Google Scholar] [CrossRef]
- Snoeyenbos, D.R.; Williams, M.L.; Hanmer, S. Archean high-pressure metamorphism in the western Canadian Shield. Eur. J. Miner. 1995, 7, 1251–1272. [Google Scholar] [CrossRef]
- Smith, D.C. Highly aluminous sphene (titanite) in natural high-pressure hydrous-eclogite-facies rocks from Norway and Italy, and in experimental runs at high pressure. In Proceedings of the 26th International Geological Congress, Paris, France, 7–17 July 1980. [Google Scholar]
- Smith, D.C. A review of the peculiar mineralogy of the “Norwegian coesite eclogite province”, with crystal-chemical, petrological, geochemical and geodynamical notes and an extensive bibliography. In Developments and Petrology 12, Eclogite-facies Rocks; Smith, D.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Brey, G.P.; Nickel, K.G.; Kogarko, L. Garnet-pyroxene equilibria in the system CaO-MgO-Al2O3-SiO2 (CMAS): Prospects for simplified (‘T-independent’) lherzolite barometry and an eclogite-barometer. Contrib. Miner. Petrol. 1986, 92, 448–455. [Google Scholar] [CrossRef]
- Mukhopadhyay, B. Garnet-clinopyroxene geobarometry: The problems, a prospect, and an approximate solution with some applications. Am. Miner. 1991, 76, 512–529. [Google Scholar]
- Simakov, S.K.; Taylor, L.A. Geobarometry for mantle eclogites: Solubility of Ca-tschermaks in clinopyroxene. Int. Geol. Rev. 2000, 4, 534–544. [Google Scholar] [CrossRef]
- Simakov, S.K. Garnet-clinopyroxene and clinopyroxene geothermobarometry of deep mantle and crust eclogites and peridotites. Lithos 2008, 106, 125–136. [Google Scholar] [CrossRef]
- Mercier, J.-C.C. Single-pyroxene thermobarometry. Tectonophysics 1980, 70, 1–37. [Google Scholar] [CrossRef]
- Taylor, W.R.; Nimis, P. A single-pyroxene thermobarometer for lherzolitic Cr-diopside and its application in diamond exploration. In Proceedings of the Seventh International Kimberlite Conference, Cape Town, South Africa, 13–17 April 1998; pp. 897–898. [Google Scholar]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part, I. Calibration and testing of a Cr–in–Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Miner. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Holder, R.M.; Hacker, B.R. Fluid-driven resetting of titanite following ultrahigh-temperature metamorphism in southern Madagascar. Chem. Geol. 2019, 504, 38–52. [Google Scholar] [CrossRef]
- Scott, D.J.; St-Onge, M.R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations. Geology 1995, 23, 1123–1126. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Wu, F.; Xie, L.; Yang, Y.; Liu, Z.; Li, X. In situ U-Pb dating of titanite by LA-ICPMS. Chin. Sci. Bull. 2012, 57, 2506–2516. [Google Scholar] [CrossRef]
- Walters, J.B.; Kohn, M.J. Protracted thrusting followed by late rapid cooling of the Greater Himalayan Sequence, Annapurna Himalaya, central Nepal: Insights from titanite petrochronology. J. Metamorph. Geol. 2017, 35, 897–917. [Google Scholar] [CrossRef]
- Ernst, W.G. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 1988, 16, 1081–1084. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, H.; Zhang, Q.; Shi, M.-Y.; Lu, J.-S.; Liu, J.-H.; Wu, C.-M. Ultra-High Pressure Metamorphism and Geochronology of Garnet Clinopyroxenite in the Paleozoic Dunhuang Orogenic Belt, Northwestern China. Minerals 2021, 11, 117. https://doi.org/10.3390/min11020117
Li Z, Wang H, Zhang Q, Shi M-Y, Lu J-S, Liu J-H, Wu C-M. Ultra-High Pressure Metamorphism and Geochronology of Garnet Clinopyroxenite in the Paleozoic Dunhuang Orogenic Belt, Northwestern China. Minerals. 2021; 11(2):117. https://doi.org/10.3390/min11020117
Chicago/Turabian StyleLi, Zhen, Hao Wang, Qian Zhang, Meng-Yan Shi, Jun-Sheng Lu, Jia-Hui Liu, and Chun-Ming Wu. 2021. "Ultra-High Pressure Metamorphism and Geochronology of Garnet Clinopyroxenite in the Paleozoic Dunhuang Orogenic Belt, Northwestern China" Minerals 11, no. 2: 117. https://doi.org/10.3390/min11020117
APA StyleLi, Z., Wang, H., Zhang, Q., Shi, M.-Y., Lu, J.-S., Liu, J.-H., & Wu, C.-M. (2021). Ultra-High Pressure Metamorphism and Geochronology of Garnet Clinopyroxenite in the Paleozoic Dunhuang Orogenic Belt, Northwestern China. Minerals, 11(2), 117. https://doi.org/10.3390/min11020117