Application of the Fine-Grained Soil Prospecting Method in Typical Covered Terrains of Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.1.1. The Huaniushan Deposit in the Arid Gobi Desert Covered Terrain
2.1.2. The Zhunsujihua Deposit in the Semi-Arid Grassland Covered Terrain
2.1.3. The Qujia Deposit in the Alluvium Soil Covered Terrain
2.2. Sampling and Analysis
2.2.1. Sampling and Analysis of the Huaniushan Deposit
2.2.2. Sampling and Analysis of the Zhunsujihua Deposit
2.2.3. Sampling and Analysis of the Qujia Deposit
3. Results
3.1. Results of the Huaniushan Deposit in the Arid Gobi Desert Covered Terrain
3.2. Results of the Zhunsujihua Deposit in the Semi-Arid Grassland Covered Terrain
3.3. Results of the Qujia Deposit in the Alluvium Soil Covered Terrain
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, E.M.; Hamilton, S.M.; Leybourne, M.I.; Hall, G.E.M.; McClenaghan, M.B. Finding deeply buried deposits using geochemistry. Geochem. Explor. Environ. Anal. 2004, 4, 7–32. [Google Scholar] [CrossRef]
- Wang, X.; Wen, X.; Rong, Y.; Liu, Z.; Sun, B.; Zhao, S.; Shi, S.; Wei, H. Vertical variations and dispersion of elements in arid desertregolith: A case study from the Jinwozi gold deposit, northwestern China. Geochem. Explor. Environ. Anal. 2007, 7, 163–171. [Google Scholar] [CrossRef]
- Zhang, B.; Han, Z.; Wang, X.; Liu, H.; Wu, H.; Feng, H. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance. Minerals 2019, 9, 414. [Google Scholar] [CrossRef] [Green Version]
- Morris, P.A. Fine fraction regolith chemistry from the East Wongatha area, Western Australia: Tracing bedrock and mineralization through thick cover. Geochem. Explor. Environ. Anal. 2013, 13, 21–40. [Google Scholar] [CrossRef]
- Noble, R.R.P.; Morris, P.A.; Anand, R.R.; Lau, I.C.; Pinchand, G.T. Application of ultrafine fraction soil extraction and analysis for mineral exploration. Geochem. Explor. Environ. Anal. 2020, 20, 129–154. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Zhou, J.; Han, Z.; Liu, W.; Liu, Q.; Wang, W.; Li, R.; Zhang, B.; Dou, B. Regional geochemical survey of concealed sandstone-type uranium deposits using fine-grained soil and groundwater in the Erlian basin, north-east China. J. Geochem. Explor. 2020, 216, 106573. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Ye, R.; Yao, W.; Wang, W. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. J. Guilin. Univ. Technol. 2019, 39, 301–310. [Google Scholar]
- Zhang, B.; Wang, X.; Ye, R.; Zhou, J.; Liu, H.; Liu, D.; Han, Z.; Lin, X.; Wang, Z. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. J. Geochem. Explor. 2015, 157, 184–193. [Google Scholar] [CrossRef]
- Liu, H.; Chi, Q.; Wang, W.; Wang, X.; Zhou, J. Geochemical methods for grassland-covered hilly terrains in central-eastern inner Mongolia. Geophy. Geochem. Explor. 2013, 37, 382–388. [Google Scholar]
- Liu, H.; Wang, X.; Zhang, B.; Liu, D.; Chi, Q. The application of debris and soil geochemical measurement methods to the Shaquanzi Cu-Ni deposit, Xinjiang. Geophys. Geochem. Explor. 2015, 39, 228–233. [Google Scholar]
- Lombard, M.; de Bruin, D.; Elsenbroek, J. High-density regional geochemical mapping of soils and stream sediments in South Africa. J. Geochem. Explor. 1999, 66, 145–149. [Google Scholar] [CrossRef]
- Gong, Q.; Xia, X.; Liu, N. Research progress of applied geochemsity during the decade of 2011 to 2020 in China. Bull. Mineral. Petrol. Geochem. 2020, 39, 927–944. [Google Scholar]
- Xie, X.; Ren, T.; Xi, X.; Zhang, L. The implementation of the Regional Geochemistry-National Reconnaissance Program (RGNR) in China in the past thirty years. Acta Geosci. Sin. 2009, 30, 700–716. [Google Scholar]
- Xie, X.; Sun, H.; Ren, T. Regional Geochemistry-National Reconnaissance project in China. J. Geochem. Explor. 1989, 33, 1–9. [Google Scholar]
- Wang, X. A decade of exploration geochemistry. Bull. Mineral. Petrol. Geochem. 2013, 32, 190–197. [Google Scholar]
- Xie, X.; Mu, X.; Ren, T. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [Google Scholar]
- Wang, X.; Zhang, B.; Lin, X.; Xu, S.; Yao, W.; Ye, R. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geol. Rev. 2016, 73, 417–431. [Google Scholar]
- Dai, W. Metallogenic study of Huaniushan Au-Ag-Pb-Zn deposit, Beishan area, Gansu province. Geol. Miner. Res. South China 2010, 3, 25–33. [Google Scholar]
- Yang, J.; Zhai, J.; Yang, H.; Wang, C.; Xie, C.; Wang, X.; Lei, Y. LA-ICP-MS zircon U-Pb dating of basalt and its geological significance in Huaniushan Pb-Zn deposit, Beishan area, Gansu, China. Geol. Bull. China 2010, 29, 1017–1023. [Google Scholar]
- Wang, J.; Xiao, R.; Lang, H.; Tao, J.; Xu, Y.; Li, P. Geophysical and geochemical anomalous features of molybdenum deposit in Zhunsujihua, Inner Mongolia and its geological significance. Geoscience 2011, 25, 253–260. [Google Scholar]
- Zhang, B.; Wang, X.; He, L.; Zhou, J.; Liu, H. Geochemical exploration for concealed deposits on semi-arid grasslands of Inner Mongolia. Geophys. Geochem. Explor. 2013, 37, 804–810. [Google Scholar]
- Deng, J.; Wang, Q. Gold mineralization in china: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Yang, L.; Li, R.; Gao, X.; Qiu, K.; Zhang, L. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China. Acta Petrol. Sin. 2020, 36, 1285–1314. [Google Scholar]
- Song, M.; Cui, S.; Yang, Z.; Jiang, H.; Yang, C.; Jiao, X. Great progress and far-reaching significance of deep exploration in the Jiaojia metallogenic belt, Shandong province. Geol. Prospect. 2008, 44, 1–8. [Google Scholar]
- Yu, X.; Li, D.; Tian, J.; Shan, W.; Li, H.; Yang, D.; Zhang, S.; Luo, W.; Xiong, Y. Progress of deep exploration and theoretical innovation of metallogenic of gold deposits in Shandong province. Shandong Land Resour. 2018, 34, 1–13. [Google Scholar]
- Yang, D.; Yu, X.; Wang, L.; Xiong, Y.; Zhu, X.; Shu, L.; Song, Y.; Liu, P.; Chi, N. A study of geochemical Zonation of primary halos in the Qujia gold deposit, Laizhou, Shandong province, and its geological significance. Acta Geosci. Sin. 2020, 41, 337–356. [Google Scholar]
- Liu, H.; Zhang, B.; Liu, D.; Wang, X.; Zhang, Z.; Han, Z. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophy. Geochem. Explor. 2016, 40, 33–39. [Google Scholar]
- Xie, X.; Yan, M.; Li, L.; Shen, H. Usable values for Chinese standard reference samples of stream sediment, soil and rocks GSD 9-12, GSS 1-8 and GSR 1-6. Geostand. Newslett. 1985, 9, 227–280. [Google Scholar]
- Yan, M.; Wang, C.; Cao, Q.; Gu, T.; Chi, Q. Eleven gold geochemical reference samples (GAu 8-18). Geostand. Newslett. 1995, 19, 125–133. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, J.; Wang, Y. Analytical scheme and quality monitoring system for China Geochemcial Baselines. Earth Sci. Front. 2012, 19, 33–42. [Google Scholar]
- Xiang, Y.; Mou, X.; Ren, T.; Ma, Z.; Liu, R.; Gong, Q.; Wang, M.; Gong, J.; Yang, W.; Yang, Y.; et al. Research on Application of Geochemical Exploration Data for Evaluation of National Mineral Resources Potential; Geological Publishing House: Beijing, China, 2018; pp. 67–92. [Google Scholar]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Pang, X.; Dai, J.; Hu, X.; Song, Z.; Yu, C.; Chen, L.; Zhang, H.; Liu, H.; Wang, H.; Wang, Z.; et al. Background values of soil geochemistry in Shandong province. Shandong Land Resour. 2018, 34, 39–43. [Google Scholar]
- Pang, X.; Dai, J.; Chen, L.; Liu, H.; Yu, C.; Han, L.; Ren, T.; Hu, X.; Wang, H.; Wang, Z.; et al. Soil geochemical background value of 17 cities in Shandong province. Shandong Land Resour. 2019, 35, 46–56. [Google Scholar]
- Zhu, D.; Zhang, W.; Wang, Y.; Tian, J.; Liu, H.; Hou, J.; Gao, H. Characteristics of ore bodies and prospecting potential of Zhaoxian gold deposit in Laizhou city of Shandong province. Shandong Land Resour. 2018, 34, 14–19. [Google Scholar]
- Salama, W.; Anand, R.; Bohu, T. Biochemical and mechanical dispersion mechanisms of Au and As in areas covered by Permian glacial sediments and aeolian sand. ASEG Ext. Abstr. 2019, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical and biological features for the remote detection of mineralization. Econ. Geol. 2006, 101, 729–752. [Google Scholar] [CrossRef]
- Malmqvist, L.; Kristiansson, K. Experimental evidence for an ascending microflow of geogas in the ground. Earth Planet. Sci. Lett. 1984, 70, 407–416. [Google Scholar]
- Wang, X. Conceptual model of deep-penetrating geochemical migration. Geol. Bull. China 2005, 24, 892–896. [Google Scholar]
- Anand, R.R.; Aspandiar, M.F.; Noble, R.R.P. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith. Ore Geol. Rev. 2016, 73, 394–416. [Google Scholar] [CrossRef]
- Xie, X.; Wang, X. Recent developments on deep-penetrating geochemistry. Earth Sci. Front. 2003, 10, 225–238. [Google Scholar]
- Zhang, B.; Wang, X.; Chi, Q.; Yao, W.; Liu, H.; Lin, X. Three-dimensional geochemical patterns of regolith over a concealed gold deposit revealed by overburden drilling in desert terrains of northwestern China. J. Geochem. Explor. 2016, 164, 122–135. [Google Scholar] [CrossRef]
- Cao, J. Characteristics, formation and migration of the particles carried by ascending gas flow from the concealed metal deposit. Earth Sci. Front. 2012, 19, 113–119. [Google Scholar]
- Wang, X.; Zhang, B.; Liu, X. Nanogeochemistry: Deep-penetrating geochemical exploration through cover. Earth Sci. Front. 2012, 19, 101–112. [Google Scholar]
- Wang, X.; Zhang, B.; Ye, R. Nanoparticles observed by TEM from gold, copper-nickel, and silver deposits and implications for mineral exploration in covered Terrains. J. Nanosci. Nanotechnol. 2017, 17, 6014–6025. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, B.; Wu, H.; Liu, H.; Qiao, Y.; Zhang, S. Microscopic characterization of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. J. Geochem. Explor. 2020, 217, 106562. [Google Scholar] [CrossRef]
- Lu, M.; Ye, R.; Zhang, B. Source identification of the geochemical anomaly from the fine-grained soil survey in the Nuheting sandstone-type uranium deposit, Erlian Basin, north China. J. Geochem. Explor. 2021, 227, 106797. [Google Scholar] [CrossRef]
- Anand, R.R.; Lintern, M.; Noble, R.R.P.; Aspandiar, M.; Macfarlane, C.; Hough, R.; Stewart, A.; Wakelin, S.; Townley, B.; Reid, N. Geochemical dispersion through transported cover in regolith-dominated terrains-toward an understanding of process. SEG Spec. Publ. 2014, 18, 97–126. [Google Scholar]
- Noble, R.R.P.; Lintern, M.; Townley, B.; Anand, R.R.; Reid, N. Metal migration at the North Miitel Ni sulphide deposit in the southern Yilgarn craton: Part 3. Gas and overview. Geochem. Explor. Environ. Anal. 2013, 13, 99–113. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Y.; Yao, W.; Bai, J. Further study on deep penetrating geochemistry over the Spence porphyry copper deposit, Chile. Geosci. Front. 2011, 2, 303–311. [Google Scholar] [CrossRef]
- Wang, X. Leaching of mobile forms of metals in overburden: Development and application. J. Geochem. Explor. 1998, 61, 39–55. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Lin, X. Comparative Interpretation of Multi-Element Regional Geochemistry in Gobi Desert, Eastern Tianshan, NW China; Chinese Academy of Geological Sciences: Beijing, China, 2015. [Google Scholar]
- Zhang, B. Deep-Penetrating Geochemistry: Mechanism and Methods in Gobi Areas; Chinese Academy of Geological Sciences: Beijing, China, 2011. [Google Scholar]
- Yang, M.; Liang, X.; Ma, L.; Huang, J.; He, H.; Zhu, J. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, S.; Liu, X.; Hu, B. Geogas field characteristics of the Kalu’an pegmatite lithium deposit and its prospecting significance. Acta Petrol. Miner. 2019, 38, 570–578. [Google Scholar]
- Wang, X.; Xu, S.; Zhang, B.; Zhao, S. Deep-penetrating geochemistry for sandstone-type uranium deposits in the Turpan–Hami basin, north-western China. Appl. Geochem. 2011, 26, 2238–2246. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Xu, S.; Yao, W.; Ye, R. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geol. China 2016, 43, 1697–1709. [Google Scholar]
- van Geffen, P.W.G.; Kyser, K.T.; Oates, C.J.; Ihlenfeld, C. Till and vegetation geochemistry at the Talbot VMS Cu–Zn prospect, Manitoba, Canada: Implications for mineral exploration. Geochem. Explor. Environ. Anal. 2012, 12, 67–88. [Google Scholar] [CrossRef] [Green Version]
Mechanism | Force | Medium | Process | Limiting Factors | |
---|---|---|---|---|---|
Phreatic | Dilatancy pumping | Stress | Water | Groundwater pumped upwards due to compressional stress along faults or fractures. Arid climates favor rapid evaporation and restriction of metals | Requires neotectonic active areas/faults through transported cover. Confirmation of visible groundwater effusion after earthquakes |
Glacial tectonic pressure | Stress | Water | Groundwater pumped upwards in more porous zones due to change in hydraulic gradient as ice shifts | Requires retreating glacial ice. Requires preferential flow paths through the cover via faults and fractures | |
Convection (heat) | Heat | Water | Faster upward migration of ions due to currents generated by density or heat | Needs sulfide-rich oxidizing deposit. Effectiveness over deposit not fully proven. Limited to water table | |
Bubble | Pressure/ buoyancy | Gas | Metal ions and nanoparticles attach to upward streaming carrier gas bubbles (CO2) | Fate of bubbles and attached particles is unclear | |
Diffusion (indirect effects) | Concentration gradient | Water | Diffusion along concentration gradient from deep to surface | Very slow process, with only H+ migrating fast enough through saturated cover | |
Spontaneous potentials | Self-potentials | Water | Electrical currents set around from sulfide ore with concentration of cations at edges | Process is limited to shallow cover. Relies on diffusion process to pass through thick cover | |
Redox gradient | Redox gradient | Water | Redox differences between oxidizing near surface and reducing base of cover. Faster migration in voltaic gradient | Needs saturation conditions and associated redox gradient for effective transfer | |
Vadose | Capillary | Pressure/ suction | Water | Surface tension-related rise of groundwater above water table. Evaporation at surface drives suction upwards | Upward extent is unclear and operation in heterogeneous textural materials are unproven. Groundwater generally is at >10 m in arid areas |
Gaseous diffusion | Concentration gradient | Gaseous | Oxidizing ore body produce gases (CO2, COS, SO2, CH4) and volatiles (Hg, AsH3) diffusion through porous media | Migration along preferential pathways (structural conduits). Gas signal is complicated by biological released gases. Temporal stability of many gaseous species is limited | |
Barometric pumping | Pressure | Gaseous | Rapid advective transport of gases in fractured media via barometric pumping | It is limited to fractured media | |
Gas convection | Heat gradient | Gaseous | Air temperature differences drive hotter gases from the ore body upwards | Limited to hilly regions or for low-relief regions, permeable covers, high sulfide contents, and oxidizing conditions | |
Plant uptake and release to surface via litter | Physiological/pressure | Water/ regolith | Absorption of metals from water table or anomalous zone, accumulation in organs and release to surface via litter | Limited to root penetration depths (maximum 30 m). Anomalous water or regolith is required for plants to give a response. Species-related uptake is unclear | |
Plant uptake and release to soil-hydraulic lift | Physiological/pressure | Water /regolith | Water absorption from depth (water table) and release near surface (upper soil horizon) | Metal transfer with water is not confirmed. Depth from which water is lifted is poorly constrained. Limited to understanding of the process | |
Bioturbation and gravity | Animal metabolism | Regolith | Vertical and lateral movement of material from depth to surface by burrowing activities of conveyor belt organisms (termites and ants)—biomantle | In many areas, it is limited by depth of biomantle (<5 m). Further information on burrowing depths of ants and termites in dry settings |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, B.; Wang, X.; Han, Z.; Zhang, B.; Yuan, G. Application of the Fine-Grained Soil Prospecting Method in Typical Covered Terrains of Northern China. Minerals 2021, 11, 1383. https://doi.org/10.3390/min11121383
Liu H, Zhang B, Wang X, Han Z, Zhang B, Yuan G. Application of the Fine-Grained Soil Prospecting Method in Typical Covered Terrains of Northern China. Minerals. 2021; 11(12):1383. https://doi.org/10.3390/min11121383
Chicago/Turabian StyleLiu, Hanliang, Bimin Zhang, Xueqiu Wang, Zhixuan Han, Baoyun Zhang, and Guoli Yuan. 2021. "Application of the Fine-Grained Soil Prospecting Method in Typical Covered Terrains of Northern China" Minerals 11, no. 12: 1383. https://doi.org/10.3390/min11121383
APA StyleLiu, H., Zhang, B., Wang, X., Han, Z., Zhang, B., & Yuan, G. (2021). Application of the Fine-Grained Soil Prospecting Method in Typical Covered Terrains of Northern China. Minerals, 11(12), 1383. https://doi.org/10.3390/min11121383