A Role of Mineral Oxides on Trace Elements Behavior during Pulverized Coal Combustion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coal Fly Ash (CFA)
2.2. FactSage: Thermodynamic Calculation
3. Results
3.1. Trace Elements Interaction with Mineral Oxide
3.2. Trace Element Interactions with Coal Fly Ash Components
4. Discussion
4.1. The Migration of Trace Elements during Combustion Process
4.2. Trace Element Inhibition Characteristic during Combustion Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency, Coal Report; Coal 2020 Analysis and Forecast to 2025. Available online: http://www.iea.org/reports/coal-2020/demand (accessed on 15 April 2021).
- Vejahati, F.; Xu, Z.; Gupta, R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization—A review. Fuel 2010, 89, 904–911. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the host of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Xu, M.; Yan, R.; Zheng, C.; Qiau, Y.; Han, J.; Sheng, C. Status of trace element emission in coal combustion process: A review. Fuel Process. Technol. 2003, 85, 215–237. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, L.; Peng, S.; Chou, C.L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the junger power plant, inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Zhou, C.C.; Liu, G.J.; Wang, X.D.; Qi, C.C.; Hu, Y.H. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal. Bioresour. Technol. 2016, 214, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Lundholm, K.; Nordin, A.; Backman, R. Trace element speciation in combustion processes—Review and compilations of thermodynamic data. Fuel Process Technol 2007, 88, 1061–1070. [Google Scholar] [CrossRef]
- Yao, H.; Naruse, I. Control of trace metal emissions by sorbents during sewage sludge combustion. Proc. Combust. Inst. 2005, 30, 3009–3016. [Google Scholar] [CrossRef]
- Yao, H.; Naruse, I. Combustion characteristics of dried sewage sludge and control of trace metal emission. Energy Fuel 2005, 19, 2298–2303. [Google Scholar] [CrossRef]
- Lopez-Antón, M.A.; Díaz-Somoano, M.; Fierro, J.L.G.; Martínez-Tarazona, M.R. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Process. Technol. 2007, 88, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Somoano, M.; Martínez-Tarazona, M.R. Retention of trace elements using fly ash in a coal gasification flue gas. J. Chem. Technol. Biotechnol. 2002, 77, 396–402. [Google Scholar] [CrossRef]
- Cheng, J.F.; Zheng, H.C.; Xu, M.H. The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion. Int. J. Energy Res 2001, 25, 1043–1052. [Google Scholar] [CrossRef]
- Gullett, B.K.; Raghunathan, K. Reduction of coal-based metal emissions by furnace sorbent injection. Energy Fuels 1994, 8, 1068–1076. [Google Scholar] [CrossRef]
- Fiorentino, C.E.; Paoloni, J.D.; Sequeira, M.E.; Arosteguy, P. The presence of vanadium in groundwater of Southeastern extreme the pampean region Argentina relationship with other chemical elements. J. Contam. Hydrol. 2007, 93, 122–129. [Google Scholar] [CrossRef]
- Barbulescu, L.E.; Dumitriu, C.; Dragut, D.V.; Nicoara, A.; Badanoiu, A.; Pirvu, C. Residual titanium flakes as a novel material for retention and recovery of rare earth and relatively rare earth elements. Environ. Sci. Pollut. Res. 2020, 27, 4450–4459. [Google Scholar] [CrossRef]
- Jiao, F.; Ninomiya, Y.; Zhang, L.; Yamada, N.; Sato, A.; Dong, Z. Effect of coal blending on the leaching characteristics of arsenic in fly ash fluidized bed coal combustion. Fuel Process. Technol. 2013, 106, 769–775. [Google Scholar] [CrossRef]
- Díaz-Somoano, M.; Martínez-Tarazona, M.R. Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach. Fuel 2003, 82, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Contreras, M.L.; Arostegui, J.M.; Armesto, L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations. Fuel 2009, 88, 539–546. [Google Scholar] [CrossRef]
- Sutopo, U.M.; Desfitri, E.R.; Hanum, F.F.; Hayakawa, Y.; Kambara, S. An experimental and thermodynamic analysis on the leaching process of arsenic (As) from coal fly ash. J. Jpn. Inst. Energy 2021, 100, 102–109. [Google Scholar] [CrossRef]
- Desfitri, E.R.; Sutopo, U.M.; Hayakawa, Y.; Kambara, S. Effect of additive material on controlling chromium (Cr) leaching from coal fly ash. Minerals 2020, 10, 563. [Google Scholar] [CrossRef]
- Liu, J.; Xie, C.; Xie, W.; Zhang, X.; Chang, K.; Sun, J.; Kuo, J.; Xie, W.; Liu, C.; Sun, J.; et al. Arsenic partitioning behavior during sludge co-combustion: Thermodynamic equilibrium simulation. Waste Biomass Valorization 2018, 10, 2297–2307. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yu, L.; Oakey, J. Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Process. Technol. 2006, 87, 209–215. [Google Scholar] [CrossRef]
- Roy, B.; Choo, W.L.; Bhattacharya, S. Prediction of distribution of trace elements under oxy-fuel combustion condition using Victorian brown coals. Fuel 2013, 114, 135–142. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Zhao, C.; Khalili, N. The effect of fly ash on reactivity of calcium based sorbents for CO2 capture. Chem. Eng. J. 2017, 309, 725–737. [Google Scholar] [CrossRef]
- Low, F.; Girolamo, A.D.; Dai, B.Q.; Zhang, L. Emission of organically bound elements during pyrolysis and char oxidation of lignites in air and oxyfuel combustion mode. Energy Fuel 2014, 28, 4157–4176. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Zhang, J.; Zhao, Y. Modes of occurance of fluorine by extraction and SEM method in coal-fired power plant from inner Mongolia, China. Minerals 2015, 5, 863–869. [Google Scholar] [CrossRef]
- Yoshiie, R.; Taya, Y.; Ichiyanagi, T.; Ueki, Y.; Naruse, I. Emissions of particles and trace elements from coal gasification. Fuel 2013, 108, 67–72. [Google Scholar] [CrossRef]
- Zhou, S.; Duan, Y.; Li, Y.; Liu, M.; Lu, J.; Ding, Y.; Gu, X.; Tao, J.; Du, M. Emission characteristic and transformation mechanism of hazardous trace elements in coal-fired power plant. Fuel 2018, 214, 597–606. [Google Scholar] [CrossRef]
- Linak, W.P.; Wendt, J.O.L. Trace metal transformation mechanisms during coal combustion. Fuel Process. Technol. 1994, 39, 173–198. [Google Scholar] [CrossRef]
- Chen, D.; Hu, H.; Xu, Z.; Liu, H.; Cao, J.; Shen, J.; Yao, H. Findings of proper temperatures for arsenic captured by CaO in the simulated flue gas with and without SO2. Chem. Eng. J. 2015, 267, 201–206. [Google Scholar] [CrossRef]
- Han, H.; Hu, S.; Lu, C.; Wang, Y.; Jiang, L.; Xiang, J.; Su, S. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis. Bioresour. Technol. 2016, 218, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, C.; Li, W.; Liu, H.; Zhang, Y.; Hack, P.; Pan, W. Removal of gasphase As2O3 by metal oxide adsorbents: Effects of experimental conditions and evaluation of adsorption mechanism. Energy Fuel 2015, 29, 6578–6585. [Google Scholar] [CrossRef]
- Riess, M.; Muller, M. High temperature sorption of arsenic in gasification atmosphere. Energy Fuel 2011, 25, 1438–1443. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Li, W.M.; Tung, K.S.; Shih, C.F.; Hsu, W.D. Synthesis and application of magnesium oxide nanospheres with high surface area. Mater. Res. Bull. 2012, 47, 3912–3915. [Google Scholar] [CrossRef]
- Ma, W.; Liu, S.; Li, Z.; Lv, J.; Yang, L. Release and transformation mechanisms of hazardous trace elements in the ash and slag during underground coal gasification. Fuel 2020, 281, 118774. [Google Scholar] [CrossRef]
- Tambe, S.S.; Naniwadekar, M.; Tiwary, S.; Mukherjee, A.; Das, T.B. Prediction of coal ash fusion temperatures using computational intelligence based models. Int. J. Coal Sci. Technol. 2018, 5, 486–507. [Google Scholar] [CrossRef] [Green Version]
Sorbents | Findings | Research |
---|---|---|
Kaoline | Addition of kaolin powders into the sewage sludge combustion contributed to inhibiting Pb and Cd compounds at the temperature of 1223 K due to the reaction of Pb and Cd compounds with the kaolin during combustion. | Yao et al., 2005 [8,9] |
Activated carbon | Activated carbons can capture As and Se by the ash content of the activated carbon and the composition of the atmosphere. | López-Antón et al., (2007) [10] |
Fly ash | Fly ash is an efficient sorbent for inhibiting As, Se, and Zn. Retention capacities of TEs depend on temperature and atmosphere. | Diza-Somoano et al., (2002) [11] |
Limestone, CaSO4, bauxite, kaolinite, and CaO | 1. Absorbents can inhibit of TEs emissions. Kaolinite is the best for the sorption of Pb, bauxite for Cd, kaolinite, and bauxite have slight sorption on Cr, lime has no effect on Cr capture. 2. Combustion temperature influences the capture of TEs. The best temperature on the absorptive capacity was 1473 K. 3. The retention of As in fly ash is affected by CaO due to their chemical reaction. | Cheng et al., (2001), Gullett and Raghunathan (1994) [12,13] |
Vanadium (V) | The correlation analysis between V and As give a coefficient r = 58.7%, Correlation among V and F (r = 31.6%) and B (r = 20.9%) is not significant. | Fiorentino et al., (2007) [14] |
Titanium (Ti) | The nanostructured Ti flake surface can inhibit the release of some rare earth elements La, Lu, and Yb. Be recovery percentage was over 90%, while lanthanides have just a satisfactory recovery percentage (about 65% Yb and Lu and 50% La). | Barbulescu et al., 2019 [15] |
Main Oxides | Proportion (%) |
---|---|
SiO2 | 59.38 |
Al2O3 | 20.45 |
TiO2 | 0.62 |
Fe2O3 | 15.65 |
CaO | 1.13 |
MgO | 0.61 |
Na2O | 0.47 |
K2O | 1.06 |
P2O5 | 0.08 |
MnO | 0.07 |
V2O5 | 0.01 |
SO3 | 0.49 |
Total | 100 |
Trace elements (mg/kg) | |
As | 12.53 |
B | 160.00 |
Cr | 7.70 |
F | 10.00 |
Se | 3.87 |
Component Interactions | Formed Species | ||||
---|---|---|---|---|---|
As | B | Cr | F | Se | |
TEs-O2-K | K3AsO4(s) | KBO2(s) | K2CrO4(s) | KF(s) | SeO2(s) |
TEs-O2-Ca | Ca3(AsO4)2(s) | Ca3B2O6(s) | CaCr2O4(s) | CaF2(s) | SeO2(s) |
TEs-O2-Al | AlAsO4(s) | (Al2O3)9(B2O3)2(s) | CrO2(s) | AlF3(s) | SeO2(s) |
TEs-O2-Fe | FeAsO4(s) | B2O3(s) | CrO2(s) | FeF3(s) | SeO2(s) |
TEs-O2-Mg | Mg3(AsO4)2(s) | Mg3B2O6(s) | CrO2(s) | MgF2(s) | MgSeO3(s) |
Interaction | Species of Trace Elements Produced | |
---|---|---|
Gaseous | Solid | |
Arsenic (As) | As, As2, As3, As4, AsN, AsO, As2O3, As4O6, AsS, As4S4 | AlAsO4, K3AsO4, Ca3(AsO4)2 |
Boron (B) | B-, B, B+, B2, BN, BO, B2O, BO2-, BO2, (BO)2, B2O3, NaBO2, AlBO2, BS, B2S2, B2S3, KBO2 | (Al2O3)9(B2O3)2, Mg2B2O5, (CaO)2(Al2O3)(B2O3), Mg3B2O6, Ca11B2Si4O22 |
Chromium (Cr) | Cr, Cr-, Cr+, CrN, CrO, CrO2, CrO3, CrS | CrO2, Cr2O3, K2CrO4, Ca3Cr2Si3O12 |
Fluorine (F) | F-, F, OF, O2F, ONF, NaF, (NaF)2, MgF, MgF2, AlF, AlF3, AlF4-, OAlF, OAlF2-, NaAlF4, SiF4, OSiF2, KF, (KF)2, KAlF4, CaF2, TiF3, OTiF, OTiF2, FeF, FeF2, FeF3 | SiAl2F2O4, Mg3SiF2O4, Mg5Si2F2O8, CaF2, Ca4Si2F2O7, Ca12Al14F2O32, Ca5Si2F2O8 |
Selenium (Se) | Se, Se2, Se3, Se4, Se5, Se6, Se7, Se8, SeO, SeO2, NSe, AlSe, Al2Se, SiSe, SiSe, SiSe2, SeS, TiSe | MgSeO3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutopo, U.M.; Desfitri, E.R.; Hayakawa, Y.; Kambara, S. A Role of Mineral Oxides on Trace Elements Behavior during Pulverized Coal Combustion. Minerals 2021, 11, 1270. https://doi.org/10.3390/min11111270
Sutopo UM, Desfitri ER, Hayakawa Y, Kambara S. A Role of Mineral Oxides on Trace Elements Behavior during Pulverized Coal Combustion. Minerals. 2021; 11(11):1270. https://doi.org/10.3390/min11111270
Chicago/Turabian StyleSutopo, Ulung Muhammad, Erda Rahmilaila Desfitri, Yukio Hayakawa, and Shinji Kambara. 2021. "A Role of Mineral Oxides on Trace Elements Behavior during Pulverized Coal Combustion" Minerals 11, no. 11: 1270. https://doi.org/10.3390/min11111270
APA StyleSutopo, U. M., Desfitri, E. R., Hayakawa, Y., & Kambara, S. (2021). A Role of Mineral Oxides on Trace Elements Behavior during Pulverized Coal Combustion. Minerals, 11(11), 1270. https://doi.org/10.3390/min11111270