Rare Earth Elements Recycling Potential Estimate Based on End-of-Life NdFeB Permanent Magnets from Mobile Phones and Hard Disk Drives in Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. End-of-Life Generation
3.2. NdFeB Magnet Weight and Content
3.3. Recycling Potential Estimate (RPE)
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sales and Stocks in Brazil | Computers | Mobile Phones | ||
---|---|---|---|---|
Year | Sales 1 | Stocks 1 | Sales 2 | Stocks 3 |
2009 | - | 55.93 | - | 173.97 |
2010 | 12.00 | 66.00 | 52.77 | 202.97 |
2011 | 14.59 | 78.30 | 65.42 | 242.24 |
2012 | 16.20 | 91.60 | 58.59 | 261.81 |
2013 | 18.99 | 109.40 | 65.57 | 271.10 |
2014 | 22.60 | 128.00 | 70.30 | 280.73 |
2015 | 20.40 | 144.80 | 51.09 | 257.81 |
2016 | 14.20 | 155.00 | 48.41 | 244.07 |
2017 | 12.00 | 162.80 | 50.78 | 236.49 |
2018 | 12.00 | 170.20 | 47.04 | 229.20 |
2019 | 12.40 | 177.50 | 48.61 | 226.67 |
Appendix B
Lifespan | Smartphone | Feature Phone | Notebook | Desktop |
---|---|---|---|---|
Years | ||||
Abbondanza and Souza (2019) [11] | 1.98 | 2.46 | 4.54 | 6.78 |
Echegaray (2015) [55] | 3.0 | 4.0 | ||
UNEP (2009) [24] | 4.0 | 5.0 | ||
Araújo et al. (2012) [18] | 4.5 | 5.0 | ||
IDEC (2013) [56] | 2.6 | 3.1 | ||
Average | 3.09 | 4.74 |
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2017; Volume COM (2017), Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2017)490&lang=en (accessed on 12 December 2020).
- Jin, H.; Song, B.D.; Yih, Y.; Sutherland, J.W. A bi-objective network design for value recovery of neodymium-iron-boron magnets: A case study of the United States. J. Clean. Prod. 2019, 211, 257–269. [Google Scholar] [CrossRef]
- Guyonnet, D.; Lefebvre, G.; Menad, N. Rare earth elements and high-tech products. In Proceedings of the Circular Economy Coalition for Europe, Vienna, Austria, 20 September 2018; pp. 1–11. [Google Scholar]
- Jaroni, M.S.; Friedrich, B.; Letmathe, P. Economical feasibility of rare earth mining outside China. Minerals 2019, 9, 576. [Google Scholar] [CrossRef] [Green Version]
- Mancheri, N.A. World trade in rare earths, Chinese export restrictions, and implications. Resour. Policy 2015, 46, 262–271. [Google Scholar] [CrossRef]
- Mancheri, N.A.; Sprecher, B.; Bailey, G.; Ge, J.; Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 2019, 142, 101–112. [Google Scholar] [CrossRef]
- Habib, K. A product classification approach to optimize circularity of critical resources—The case of NdFeB magnets. J. Clean. Prod. 2019, 230, 90–97. [Google Scholar] [CrossRef]
- Du, X.; Graedel, T.E. Global Rare Earth In-Use Stocks in NdFeB Permanent Magnets. J. Ind. Ecol. 2011, 15, 836–843. [Google Scholar] [CrossRef]
- European Commission. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE) (recast). 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019 (accessed on 21 January 2021).
- Baldé, C.P.; Wagner, M.; Iattoni, G.; Kuehr, R. In-Depth Review of the WEEE Collection Rates and Targets in the EU-28, Norway, Switzerland, and Iceland; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)—Co-Hosting the SCYCLE Programme: Bonn, Germany, 2020. [Google Scholar]
- Abbondanza, M.N.M.; Souza, R.G. Estimating the generation of household e-waste in municipalities using primary data from surveys: A case study of Sao Jose dos Campos, Brazil. Waste Manag. 2019, 85, 374–384. [Google Scholar] [CrossRef]
- Shittu, O.S.; Williams, I.D.; Shaw, P.J. Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag. 2020, 120, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huisman, J.; Stevels, A.; Baldé, C.P. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis. Waste Manag. 2013, 33, 2397–2407. [Google Scholar] [CrossRef] [PubMed]
- Rademaker, J.H.; Kleijn, R.; Yang, Y. Recycling as a Strategy against Rare Earth Element Criticality: A Systemic Evaluation of the Potential Yield of NdFeB Magnet Recycling. J. Environ. Sci. Technol. 2013, 47, 10129–10136. [Google Scholar] [CrossRef]
- Schulze, R.; Weidema, B.P.; Schebek, L.; Buchert, M. Recycling and its effects on joint production systems and the environment—The case of rare earth magnet recycling—Part I—Production model. Resour. Conserv. Recycl. 2018, 134, 336–346. [Google Scholar] [CrossRef]
- Ciacci, L.; Vassura, I.; Cao, Z.; Liu, G.; Passarini, F. Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe. Resour. Conserv. Recycl. 2019, 142, 143–152. [Google Scholar] [CrossRef]
- Reimer, M.V.; Schenk-Mathes, H.Y.; Hoffmann, M.F.; Elwert, T. Recycling decisions in 2020, 2030, and 2040—When can substantial NdFeB extraction be expected in the EU? Metals 2018, 8, 867. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.G.; Magrini, A.; Mahler, C.F.; Bilitewski, B. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil. Waste Manag. 2012, 32, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Schulze, R.; Buchert, M. Estimates of global REE recycling potentials from NdFeB magnet material. Resour. Conserv. Recycl. 2016, 113, 12–27. [Google Scholar] [CrossRef]
- Liu, J.; Bai, H.; Zhang, Q.; Jing, Q.; Xu, H. Why are obsolete mobile phones difficult to recycle in China? Resour. Conserv. Recycl. 2019, 141, 200–210. [Google Scholar] [CrossRef]
- Moletsane, R. Management of Mobile Phones and Their Waste in the Developing Countries. In Proceedings of the 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 6–7 August 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Guo, X.; Yan, K. Estimation of obsolete cellular phones generation: A case study of China. Sci. Total Environ. 2017, 575, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, W.; He, W.; Li, G.; Huang, J. The situation of waste mobile phone management in developed countries and development status in China. Waste Manag. 2016, 58, 341–347. [Google Scholar] [CrossRef]
- Schluep, M.; Hagelueken, C.; Kuehr, R.; Magalini, F.; Maurer, C.; Meskers, C.; Mueller, E.; Wang, F. Recycling—From E-Waste to Resources; Swiss Federal Laboratories for Material Testing and Research (EMPA), Umicore Precious Metal Refining and the United Nations University (UNU), UNEP and the European Commission, Directorate-General for the Environment: Berlin, Germany, 2009. [Google Scholar]
- Singh, N.; Duan, H.; Yin, F.; Song, Q.; Li, J. Characterizing the Materials Composition and Recovery Potential from Waste Mobile Phones: A Comparative Evaluation of Cellular and Smart Phones. ACS Sustain. Chem. Eng. 2018, 6, 13016–13024. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Boscov, M.E.G.; Günther, W.M.R. Domestic flow of e-waste in São Paulo, Brazil: Characterization to support public policies. Waste Manag. 2020, 102, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, P. Investigating the reasons for storage of WEEE by residents—A potential for removal from households. Waste Manag. 2019, 87, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, J.; Zeng, A.Z. Exploring Chinese consumers’ attitude and behavior toward smartphone recycling. J. Clean. Prod. 2018, 188, 227–236. [Google Scholar] [CrossRef]
- Anatel Dados Telefonia Móvel 2010–2019. Available online: https://informacoes.anatel.gov.br/paineis/acessos/telefonia-movel (accessed on 4 August 2021).
- Zeqiri, R.; Idrizi, F.; Halimi, H. Comparison of Algorithms and Technologies 2G, 3G, 4G and 5G. In Proceedings of the 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 11–13 October 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Cavalcante, A.M.; Marquezini, M.V.; Mendes, L.; Moreno, C.S. 5G for Remote Areas: Challenges, Opportunities and Business Modeling for Brazil. IEEE Access 2021, 9, 10829–10843. [Google Scholar] [CrossRef]
- Steubing, B.; Böni, H.; Schluep, M.; Silva, U.; Ludwig, C. Assessing computer waste generation in Chile using material flow analysis. Waste Manag. 2010, 30, 473–482. [Google Scholar] [CrossRef]
- Veit, H.M.; Bernardes, A.M. Electronic Waste: Generation and Management. In Electronic Waste. Topics in Mining, Metallurgy and Materials Engineering; Veit, H., Moura, B.A., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Suresh, S.S.; Bonda, S.; Mohanty, S.; Nayak, S.K. A review on computer waste with its special insight to toxic elements, segregation and recycling techniques. Process. Saf. Environ. Prot. 2018, 116, 477–493. [Google Scholar] [CrossRef]
- Magalini, F.; Kuehr, R.; Baldé, C.P. E-Waste in Latin America—Statistical Analysis and Policy Recommendations; GSMA: London, UK; Bonn, Germany, November 2015. [Google Scholar]
- IBGE PNAD Contínua TIC 2018: Internet Chega A 79.1% Dos Domicílios Do País. Available online: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/27515-pnad-continua-tic-2018-internet-chega-a-79-1-dos-domicilios-do-pais (accessed on 30 November 2020).
- TigerMobiles.com Evolution of the Mobile Phone. Available online: https://www.tigermobiles.com/evolution/ (accessed on 27 September 2020).
- Fontana, D.; Pietrantonio, M.; Pucciarmati, S.; Rao, C.; Forte, F. A comprehensive characterization of End-of-Life mobile phones for secondary material resources identification. Waste Manag. 2019, 99, 22–30. [Google Scholar] [CrossRef]
- Pan, S. Rare Earth Permanent-Magnet Alloys’ High Temperature Phase Transformation; Springer: Beijing, China, 2013; ISBN 978-3-642-36387-0. [Google Scholar]
- Paulick, H.; Machacek, E. The global rare earth element exploration boom: An analysis of resources outside of China and discussion of development perspectives. Resour. Policy 2017, 52, 134–153. [Google Scholar] [CrossRef]
- Schulze, R. Reducing Environmental Impacts of the Global Rare Earth Production for Use in Nd-Fe-B Magnets—How Much Can Recycling Contribute? Ph.D. Thesis, Techniche Universität Darmstadt, Darmstadt, Germany, 2018. [Google Scholar]
- Smith, B.J.; Eggert, R.G. Multifaceted Material Substitution: The Case of NdFeB Magnets, 2010–2015. JOM 2016, 68, 1964–1971. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Liu, B.; Chang, C. Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manag. 2017, 65, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Dias, P.; Machado, A.; Huda, N.; Bernardes, A.M. Waste electric and electronic equipment (WEEE) management: A study on the Brazilian recycling routes. J. Clean. Prod. 2018, 174, 7–16. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Moura, J.M.B.M.; Gohr Pinheiro, I.; Lischeski, D.; Valle, J.A.B. Relation of Brazilian institutional users and technical assistances with electronics and their waste: What has changed? Resour. Conserv. Recycl. 2017, 127, 68–75. [Google Scholar] [CrossRef]
- Souza, R.G. E-Waste Situation and Current Practices in Brazil. In Handbook of Electronic Waste Management; Butterworth-Heinemann: Oxford, UK, 2019; ISBN 9780128170304. [Google Scholar]
- Ocharán, J.S.; Lima, F.M.S.; Alvarado, L.M.T.; Lovón, G.C.; Sampaio, M.S. Modelagem E Análise De Cenários Do Mercado De Ímãs De Terras-Raras Na Energia Eólica Nacional. In Proceedings of the XXVIII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, Belo Horizonte, Brasil, 4–8 November 2019; pp. 2–9. [Google Scholar]
- Leslie, H.F.; Nordvig, M.; Brink, S. Critical Materials Strategy 2011; DIANE Publishing: Collingdale, PA, USA, 2011. [Google Scholar]
- ISE, Instituts für Seltene Erden und Strategische Metalle. Rare Earth Prices in November 2020. Available online: https://en.institut-seltene-erden.de/our-service-2/Metal-prices/rare-earth-prices/ (accessed on 23 November 2020).
- Habib, K.; Parajuly, K.; Wenzel, H. Tracking the Flow of Resources in Electronic Waste—The Case of End-of-Life Computer Hard Disk Drives. Environ. Sci. Technol. 2015, 49, 12441–12449. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Neto, J.F.; Silva, M.M.; Machado Santos, S. A Mini-Review of E-Waste Management in Brazil: Perspectives and Challenges. Clean—Soil Air Water 2019, 47, 1900152. [Google Scholar] [CrossRef]
- Meirelles, F.S. Pesquisa. Available online: https://eaesp.fgv.br/producao-intelectual/pesquisa-anual-uso-ti (accessed on 20 October 2020).
- Abinee Economic Overview and Performance of the Sector 2020. São Paulo, Brasil, 2020. Available online: http://www.abinee.org.br/ing/informac/panorama.htm (accessed on 12 November 2020).
- Echegaray, F. Consumers’ reactions to product obsolescence in emerging markets: The case of Brazil. J. Clean. Prod. 2016, 134, 191–203. [Google Scholar] [CrossRef]
- Idec Ciclo de Vida de Eletroeletrônicos. Available online: http://www.idec.org.br/uploads/testes_pesquisas/pdfs/market_analysis.pdf (accessed on 11 December 2020).
EoL Device RPE | Nd | Pr | Dy | Tb | REEs Sum |
---|---|---|---|---|---|
HDD | 40.12 | 5.88 | 3.05 | 1.40 | 50.45 |
MP | 130.76 | 21.01 | 6.59 | 2.49 | 160.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
München, D.D.; Stein, R.T.; Veit, H.M. Rare Earth Elements Recycling Potential Estimate Based on End-of-Life NdFeB Permanent Magnets from Mobile Phones and Hard Disk Drives in Brazil. Minerals 2021, 11, 1190. https://doi.org/10.3390/min11111190
München DD, Stein RT, Veit HM. Rare Earth Elements Recycling Potential Estimate Based on End-of-Life NdFeB Permanent Magnets from Mobile Phones and Hard Disk Drives in Brazil. Minerals. 2021; 11(11):1190. https://doi.org/10.3390/min11111190
Chicago/Turabian StyleMünchen, Daniel Dotto, Ronei Tiago Stein, and Hugo Marcelo Veit. 2021. "Rare Earth Elements Recycling Potential Estimate Based on End-of-Life NdFeB Permanent Magnets from Mobile Phones and Hard Disk Drives in Brazil" Minerals 11, no. 11: 1190. https://doi.org/10.3390/min11111190
APA StyleMünchen, D. D., Stein, R. T., & Veit, H. M. (2021). Rare Earth Elements Recycling Potential Estimate Based on End-of-Life NdFeB Permanent Magnets from Mobile Phones and Hard Disk Drives in Brazil. Minerals, 11(11), 1190. https://doi.org/10.3390/min11111190