Potential Uranium Migration within the Geochemical Gradient of the Opalinus Clay System at the Mont Terri
Abstract
:1. Introduction
2. Methods
2.1. Geological and Hydro-Geological Evolution of the Mont Terri Anticline
2.2. Initial Model Conditions
2.3. Geochemical System and Present-Day Pore Water Profiles
2.4. Incorporated Sorption Processes
2.5. Modelling Single-Component Diffusion
2.6. Modelling Multi-Component Diffusion
2.7. Uranium Source Term
3. Model Calibration and Validation
3.1. Chloride Profile at Mont Terri
3.2. Diffusion Experiment with Uranium
4. Results
4.1. Simulation of Pore Water Profiles Using Single- and Multi-Component Diffusion
4.2. Simulation of Potential Uranium Migration within a Geochemical Gradient
5. Discussion
5.1. Diffusion and Mineral Interaction Control Pore Water Profiles
5.2. Geochemical System Governs Uranium Migration
6. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDL | Diffuse double layer |
Effective diffusion coefficient (m/s) | |
Pore water diffusion coefficient (m/s) | |
Self-diffusion coefficient in water (m/s) | |
Porosity (-) | |
Distribution coefficient (m/kg) | |
MC | Multi-component |
n | medium-specific, empirical exponent in Archie’s law (n) |
Partial pressure of carbon dioxide (bar) | |
SC | Single-component |
TJB | Triassic-Jurassic-Boundary |
References
- IAEA. Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes; Technical Report; International Atomic Energy Agency: Vienna, Austria, 2003. [Google Scholar]
- Van Loon, L.R.; Soler, J.M.; Jakob, A.; Bradbury, M.H. Effect of confining pressure on the diffusion of HTO, 36Cl− and 125I− in a layered argillaceous rock (Opalinus Clay): Diffusion perpendicular to the fabric. Appl. Geochem. 2003, 18, 1653–1662. [Google Scholar] [CrossRef]
- Van Loon, L.R.; Wersin, P.; Soler, J.M.; Eikenberg, J.; Gimmi, T.; Hernán, P.; Dewonck, S.; Savoye, S. In-situ diffusion of HTO, 22Na+, Cs+ and I− in Opalinus Clay at the Mont Terri underground rock laboratory. Radiochim. Acta 2004, 92, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Wersin, P.; Soler, J.M.; Van Loon, L.; Eikenberg, J.; Baeyens, B.; Grolimund, D.; Gimmi, T.; Dewonck, S. Diffusion of HTO, Br−, I−, Cs+, 85Sr2+ and 60Co2+ in a clay formation: Results and modelling from an in situ experiment in Opalinus Clay. Appl. Geochem. 2008, 23, 678–691. [Google Scholar] [CrossRef]
- Leupin, O.X.; Van Loon, L.R.; Gimmi, T.; Wersin, P.; Soler, J.M. Exploring diffusion and sorption processes at the Mont Terri rock laboratory (Switzerland): Lessons learned from 20 years of field research. Swiss J. Geosci. 2017, 110, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Noseck, U.; Brendler, V.; Flügge, J.; Stockmann, M.; Britz, S.; Lampe, M.; Schikora, J.; Schneider, A. Realistic Integration of Sorption Processes in Transport Codes for Long-Term Safety Assessments; Gesellschaft fuer Anlagen-und Reaktorsicherheit mbH (GRS): Berlin, Germany, 2012. [Google Scholar]
- Ma, B.; Charlet, L.; Fernandez-Martinez, A.; Kang, M.; Madé, B. A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems. Appl. Geochem. 2019, 100, 414–431. [Google Scholar] [CrossRef]
- Hennig, T.; Kühn, M. Surrogate model for multi-component diffusion of uranium through Opalinus Clay on the host rock scale. Appl. Sci. 2021, 11, 786. [Google Scholar] [CrossRef]
- Nagra. Project Opalinus Clay—Safety Report. Nagra Tech. Rep. 2002, NTB 02-05, 472.
- Pearson, F.J.; Arcos, D.; Bath, A.; Boisson, J.Y.; Fernández, A.M.; Gäbler, H.E.; Gaucher, E.C.; Gautschi, A.; Griffault, L.; Hernán, P.; et al. Mont Terri Project—Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory; Technical Report 5; Federal Office for Water and Geology, FOWG: Bern, Switzerland, 2003. [Google Scholar]
- Wersin, P.; Gaucher, E.C.; Gimmi, T.; Leupin, O.X.; Mäder, U.K.; Pearson, F.J.; Thoenen, T.; Tournassat, C. Geochemistry of Pore Waters in Opalinus Clay at Mont Terri: Experimental Data and Modelling; Mont Terri Project, Technical Report; Mont Terri: Jura, Switzerland, 2009; Volume TR 2008-06. [Google Scholar]
- Lauper, B.; Jaeggi, D.; Deplazes, G.; Foubert, A. Multi-proxy facies analysis of the Opalinus Clay and depositional implications (Mont Terri rock laboratory, Switzerland). Swiss J. Geosci. 2018, 111, 383–398. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, M.; Alt-Epping, P.; Bath, A.; Gimmi, T.; Niklaus Waber, H.; Buschaert, S.; Cannière, P.D.; Craen, M.D.; Gautschi, A.; Savoye, S.; et al. Natural tracer profiles across argillaceous formations. Appl. Geochem. 2011, 26, 1035–1064. [Google Scholar] [CrossRef]
- Freivogel, M.; Huggenberger, P. Modellierung bilanzierter Profile im Gebiet Mont Terri—La Croix (Kanton Jura). In Reports of the FOWG, Geology Series, No 4.: Mont Terri Project—Geology, Paleohydrology and Stress Field of the Mont Terri Region; FOWG: Bern, Switzerland, 2003; pp. 7–44. [Google Scholar]
- Metz, V.; Geckeis, H.; González-Robles, E.; Loida, A.; Bube, C.; Kienzler, B. Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel. Radiochim. Acta 2012, 100, 699–713. [Google Scholar] [CrossRef]
- Hennig, T.; Stockmann, M.; Kühn, M. Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay. Appl. Geochem. 2020, 123. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for PHREEQC Version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In U.S. Geological Survey Techniques and Methods; US Geological Survey: Reston, VA, USA, 2013; Volume 6, Chapter A43; p. 497. [Google Scholar]
- Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. The PSI/NAGRA Chemical Thermodynamic Database 12/07; Technical Report; Paul Scherrer Institute (PSI): Villigen, Switzerland, 2014. [Google Scholar]
- Mazurek, M.; Alt-Epping, P.; Bath, A.; Gimmi, T.; Waber, H. Natural Tracer Profiles Across Argillaceous Formations: The CLAYTRAC Project; Technical Report; Nuclear Energy Agency: Paris, France, 2009. [Google Scholar]
- Joseph, C.; Van Loon, L.R.; Jakob, A.; Steudtner, R.; Schmeide, K.; Sachs, S.; Bernhard, G. Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid. Geochim. Cosmochim. Acta 2013, 109, 74–89. [Google Scholar] [CrossRef]
- Wersin, P.; Mazurek, M.; Mäder, U.K.; Gimmi, T.; Rufer, D.; Lerouge, C.; Traber, D. Constraining pore water chemistry in a 250 m thick argillaceous rock sequence. Chem. Geol. 2016, 434, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Bossart, P.; Thury, M. Characteristics of the Opalinus Clay at Mont Terri. Reports of the Swiss Geological Survey; No. 3; Mont Terri: Wabern, Switzerland, 2008. [Google Scholar]
- Koroleva, M.; Mazurek, M. Natural Tracer Profile Mont Russelin (NT) Experiment: Natural Tracer Profiles in the Mont Russelin Anticline; Mont Terri Project Technic Note; Mont Terri: Jura, Switzerland, 2009; Volume 2006-24. [Google Scholar]
- Horita, J.; Zimmermann, H.; Holland, H.D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 2002, 66, 3733–3756. [Google Scholar] [CrossRef]
- Steinthorsdottir, M.; Jeram, A.J.; McElwain, J.C. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 418–432. [Google Scholar] [CrossRef]
- Pearson, F.J.; Tournassat, C.; Gaucher, E.C. Biogeochemical processes in a clay formation in situ experiment: Part E—Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri underground research laboratory, Switzerland. Appl. Geochem. 2011, 26, 990–1008. [Google Scholar] [CrossRef] [Green Version]
- Wersin, P.; Leupin, O.X.; Mettler, S.; Gaucher, E.C.; Mäder, U.; De Cannière, P.; Vinsot, A.; Gäbler, H.E.; Kunimaro, T.; Kiho, K.; et al. Biogeochemical processes in a clay formation in situ experiment: Part A—Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri underground research laboratory, Switzerland. Appl. Geochem. 2011, 26, 931–953. [Google Scholar] [CrossRef]
- Marion, G.M.; Millero, F.J.; Camões, M.F.; Spitzer, P.; Feistel, R.; Chen, C.T. pH of seawater. Mar. Chem. 2011, 126, 89–96. [Google Scholar] [CrossRef]
- Möller, P.; De Lucia, M. The impact of Mg2+ ions on equilibration of Mg-Ca carbonates in groundwater and brines. Geochemistry 2020, 80, 125611. [Google Scholar] [CrossRef]
- Marques Fernandes, M.; Vér, N.; Baeyens, B. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl. Geochem. 2015, 59, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, M.; Schikora, J.; Becker, D.A.; Flügge, J.; Noseck, U.; Brendler, V. Smart Kd-values, their uncertainties and sensitivities—Applying a new approach for realistic distribution coefficients in geochemical modelling of complex systems. Chemosphere 2017, 187, 277–285. [Google Scholar] [CrossRef]
- Dzombak, D.A.; Morel, F.M.M. Surface Complexation Modelling: Hydrous Feric Oxide; John Wiley and Sons: New York, NY, USA, 1990; p. 393. [Google Scholar]
- Joseph, C.; Stockmann, M.; Schmeide, K.; Sachs, S.; Brendler, V.; Bernhard, G. Sorption of U(VI) onto Opalinus Clay: Effects of pH and humic acid. Appl. Geochem. 2013, 36, 104–117. [Google Scholar] [CrossRef]
- Hyun, S.P.; Cho, Y.H.; Hahn, P.S.; Kim, S.J. Sorption mechanism of U(VI) on a reference montmorillonite: Binding to the internal and external surfaces. J. Radioanal. Nucl. Chem. 2001, 250, 55–62. [Google Scholar] [CrossRef]
- Reisdorf, A.G.; Hostettler, B.; Jaeggi, D.; Deplazes, G.; Bläsi, H.; Morard, A.; Feist-Burkhardt, S.; Waltschew, A.; Dietze, V.; Menkfeld-Gfeller, U. Litho- and biostratigraphy of the 250 m-deep Mont Terri BDB-1 borehole through the Opalinus Clay and bounding formations, St-Ursanne, Switzerland. In Mont Terri Project, Technical Report; Mont Terri: Jura, Switzerland, 2016; Volume 2. [Google Scholar]
- Van Loon, L.R.; Soler, J.M.; Bradbury, M.H. Diffusion of HTO, 36Cl− and 125I− in Opalinus Clay samples from Mont Terri: Effect of confining pressure. J. Contam. Hydrol. 2003, 61, 73–83. [Google Scholar] [CrossRef]
- Wigger, C.; Van Loon, L.R. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks. J. Contam. Hydrol. 2018, 213, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Wersin, P. Multicomponent diffusion modelling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay. Environ. Sci. Technol. 2007, 41, 5002–5007. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Van Loon, L.R.; Wersin, P. Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochim. Cosmochim. Acta 2010, 74, 1201–1219. [Google Scholar] [CrossRef]
- Van Loon, L.R.; Glaus, M.A.; Müller, W. Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Appl. Geochem. 2007, 22, 2536–2552. [Google Scholar] [CrossRef]
- Kerisit, S.; Liu, C. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution. Geochim. Cosmochim. Acta 2010, 74, 4937–4952. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Zachara, J.M. Multispecies diffusion models: A study of uranyl species diffusion. Water Resour. Res. 2011, 47, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wigger, C.; Kennell-Morrison, L.; Jensen, M.; Glaus, M.; Van Loon, L. A comparative anion diffusion study on different argillaceous, low permeability sedimentary rocks with various pore waters. Appl. Geochem. 2018, 92, 157–165. [Google Scholar] [CrossRef]
- Wersin, P.; Gimmi, T.; Mazurek, M.; Alt-Epping, P.; Pȩkala, M.; Traber, D. Multicomponent diffusion in a 280 m thick argillaceous rock sequence. Appl. Geochem. 2018, 95, 110–123. [Google Scholar] [CrossRef]
- Keesmann, S.; Noseck, U.; Buhmann, D.; Fein, E.; Schneider, A. Modellrechnungen zur Langzeitsicherheit von Endlagern in Salz- und Granitformationen; Technical Report GRS-206; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH: Berlin, Germany, 2005. [Google Scholar]
- Van Loon, L.R.; Leupin, O.X.; Cloet, V. The diffusion of in Opalinus Clay: Measurements of effective diffusion coefficients and evaluation of their importance in view of microbial mediated reactions in the near field of radioactive waste repositories. Appl. Geochem. 2018, 95, 19–24. [Google Scholar] [CrossRef]
- Mazurek, M.; Gautschi, A.; Marschall, P.; Vigneron, G.; Lebon, P.; Delay, J. Transferability of geoscientific information from various sources (study sites, underground rock laboratories, natural analogues) to support safety cases for radioactive waste repositories in argillaceous formations. Phys. Chem. Earth 2008, 33, S95–S105. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Huang, Z.; Du, L.; Tan, Z.; Fu, Y.; Wang, X. Sorption and desorption of uranium(VI) on GMZ bentonite: Effect of pH, ionic strength, foreign ions and humic substances. J. Radioanal. Nucl. Chem. 2016, 308, 877–886. [Google Scholar] [CrossRef]
- Saleh, A.S.; Yun, J.I. Equilibrium and kinetics of calcium–uranyl–carbonate adsorption on silica nanoparticles. J. Radioanal. Nucl. Chem. 2017, 314, 93–103. [Google Scholar] [CrossRef]
- Tournassat, C.; Tinnacher, R.M.; Grangeon, S.; Davis, J.A. Modelling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochim. Cosmochim. Acta 2018, 220, 291–308. [Google Scholar] [CrossRef]
- Fox, P.M.; Davis, J.A.; Zachara, J.M. The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim. Cosmochim. Acta 2006, 70, 1379–1387. [Google Scholar] [CrossRef] [Green Version]
- Bachmaf, S.; Planer-Friedrich, B.; Merkel, B.J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behaviour onto bentonite. Radiochim. Acta 2008, 96, 359–366. [Google Scholar] [CrossRef]
- Philipp, T.; Shams Aldin Azzam, S.; Rossberg, A.; Huittinen, N.; Schmeide, K.; Stumpf, T. U (VI) sorption on Ca-bentonite at (hyper)alkaline conditions—Spectroscopic investigations of retention mechanisms. Sci. Total Environ. 2019, 676, 469–481. [Google Scholar] [CrossRef] [Green Version]
Parameter | Scenario 1R | Scenario 2J | Dogger Limestone | Liassic Limestone |
---|---|---|---|---|
402 | 413 | 0.8 | 1.3 | |
522 | 508 | 0.08 | 0.2 | |
46 | 26 * | 1.9 | 2.1 | |
41 | 33 * | 2.7 | 0.7 | |
31 | 14 * | 0.9 | 0.5 | |
1.2 | 10.2 * | 0.4 | 0.1 | |
0.8 | 0.6 | 0.2 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennig, T.; Kühn, M. Potential Uranium Migration within the Geochemical Gradient of the Opalinus Clay System at the Mont Terri. Minerals 2021, 11, 1087. https://doi.org/10.3390/min11101087
Hennig T, Kühn M. Potential Uranium Migration within the Geochemical Gradient of the Opalinus Clay System at the Mont Terri. Minerals. 2021; 11(10):1087. https://doi.org/10.3390/min11101087
Chicago/Turabian StyleHennig, Theresa, and Michael Kühn. 2021. "Potential Uranium Migration within the Geochemical Gradient of the Opalinus Clay System at the Mont Terri" Minerals 11, no. 10: 1087. https://doi.org/10.3390/min11101087
APA StyleHennig, T., & Kühn, M. (2021). Potential Uranium Migration within the Geochemical Gradient of the Opalinus Clay System at the Mont Terri. Minerals, 11(10), 1087. https://doi.org/10.3390/min11101087