Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria
Abstract
1. Introduction
2. Geological Setting
3. Sample Locality and Methods
3.1. Microscopy
3.2. Electron Probe Micro-Analyses (EMPA)
3.3. LA–ICP-MS U–Pb Apatite and Titanite Dating
4. Results
4.1. Petrography
4.2. U–Pb Geochronology
5. Discussion
5.1. Age Significance: Apatite vs. Titanite
5.2. Geotectonic Implications of the Apatite and Titanite Ages
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dewey, J.F.; Burke, K. Tibetan, Variscan and Precambrian basement reactivation: Products of continental collision. J. Geol. 1973, 81, 683–692. [Google Scholar] [CrossRef]
- Hsü, K.J.; Nachev, I.K.; Vuchev, V.T. Geologic evolution of Bulgaria in light of plate tectonics. Tectonophysics 1977, 40, 245–256. [Google Scholar] [CrossRef]
- Carrigan, C.W.; Mukasa, S.B.; Haydoutov, I.; Kolcheva, K. Age of Variscan magmatism from the Balkan sector of the orogen, central Bulgaria. Lithos 2005, 82, 125–147. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Altıner, D.; Cin, A.; Ustaömer, T.; Hsü, K.J. Origin and Assembly of the Tethyside Orogenic Collage at the Expense of Gondwana Land; Special Publications; Geological Society: London, UK, 1988; Volume 27, pp. 119–181. [Google Scholar] [CrossRef]
- Zanchi, A.; Berra, F.; Mattei, M.; Ghassemi, M.R.; Sabouri, J. Inversion tectonics in central Alborz, Iran. J. Struct. Geol. 2006, 28, 2023–2037. [Google Scholar] [CrossRef]
- Wilmsen, M.; Fürsich, F.T.; Seyed-Emami, K.; Majidifard, M.R.; Taheri, J. The Cimmerian Orogeny in northern Iran: Tectono-stratigraphic evidence from the foreland. Terra Nova 2009, 21, 211–218. [Google Scholar] [CrossRef]
- Angiolini, L.; Jadoul, F.; Leng, M.J.; Stephenson, M.H.; Rushton, J.; Chenery, S.; Crippa, G. How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells. J. Geol. Soc. 2009, 166, 933–945. [Google Scholar] [CrossRef]
- Cattò, S.; Cavazza, W.; Zattin, M.; Okay, A.I. No significant Alpine tectonic overprint on the Cimmerian Strandja Massif (SE Bulgaria and NW Turkey). Int. Geol. Rev. 2018, 60, 513–529. [Google Scholar] [CrossRef]
- Bonev, N.; Filipov, P.; Raicheva, R.; Moritz, R. Timing and tectonic significance of Paleozoic magmatism in the Sakar unit of the SakarStrandzha Zone, SE Bulgaria. Int. Geol. Rev. 2019, 61, 1957–1979. [Google Scholar] [CrossRef]
- Gerdjikov, I. Alpine Metamorphism and Granitoid Magmatism in the Strandja Zone: New Data from the Sakar Unit, SE Bulgaria. Turkish J. Earth Sci. 2005, 14, 167–183. [Google Scholar]
- Kamenov, B.K.; Vergilov, V.; Dabovski, C.; Vergiloc, I.; Ivchinova, L. The Sakar Batolithpetrology, geochemistry and magmatic evolution. Geochemistry. Mineral. Petrol. 2010, 48, 1–37. [Google Scholar]
- Pristavova, S.; Tzankova, N.; Gospodinov, N.; Filipov, P. Petrological study of metasomatic altered granitoids from Kanarata deposit, Sakar Mountain, southeastern Bulgaria. J. Min. Geol. Sci. 2019, 62, 53–61. [Google Scholar]
- Gerdjikov, I. Transformation of porphyritic granite into banded eye gneiss—An example from the NW margin of Sakar Pluton. C. R. Acad. Bulg. Sci. 2003, 56, 51–56. [Google Scholar]
- Okay, A.I.; Satur, M.; Tüysüz, O.; Akyüz, S.; Chen, F. The tectonics of Strandja Massif: Late-Variscan and mid-Mesozoic deformation and metamorphism in the northern Aegean. Int. J. Earth Sci. 2001, 90, 217–233. [Google Scholar] [CrossRef]
- Natal’in, B.; Sunal, G.; Gün, E.; Wang, B.; Zhiqing, Y. Precambrian to Early Cretaceous rocks of the Strandja Massif (northwestern Turkey): Evolution of a long lasting magmatic arc. Can. J. Earth Sci. 2016, 53, 1312–1335. [Google Scholar] [CrossRef]
- Bedi, Y.; Vasilev, E.; Dabovski, C.; Ergen, A.; Okuyucu, C.; Dogan, A.; Kagan Tekin, U.; Ivanova, D.; Boncheva, I.; Lakova, I.; et al. New age data from the tectonostratigraphic units of the Istranca “Massif” in NW Turkey: A correlation with SE Bulgaria. Geol. Carpath. 2013, 64, 255–277. [Google Scholar] [CrossRef]
- Dabovski, C.; Zagorchev, I. Bulgarian lands in the Alpine tectonic models of the Balkan Peninsula and Eastern Mediterranean region. In Geology of Bulgaria; Mesozoic, G., Zagorchev, I., Dabovski, C., Nikolov, T., Eds.; Prof. Marin Drinov Academic Publishing House: Sofia, Bulgaria, 2009; Volume 2, pp. 15–20. (In Bulgarian) [Google Scholar]
- Dabovski, C.; Boyanov, I.; Khrischev, K.; Nikolov, T.; Sapounov, L.; Yanev, Y.; Zagorchev, I. Structure and Alpine evolution of Bulgaria. Geol. Balc. 2002, 32, 9–15. [Google Scholar]
- Gerdjikov, I.; Gautier, P.; Cherneva, Z.; Kostopoulos, D. Tectonic setting of ultrahigh-pressure metamorphic rocks form the Chepelare area, Central Rhodope. In Proceedings of the Bulgarian Geological Society Annual Conference, Sofia, Bulgaria, 4–5 November 2003; pp. 44–45. [Google Scholar]
- Zagorchev, I. Alpine evolution of the pre-Alpine amphibolites facies basement in south Bulgaria. Mitt. Österr. Geol. Ges. 1993, 86, 9–23. [Google Scholar]
- Lilov, P. Rb-Sr and K-Ar dating of the Sakar granitoid pluton. Geol. Balc. 1990, 20, 53–60. (In Russian) [Google Scholar]
- Skenderov, G.; Skenderova, T. Subduction of the Vardar oceanic crust at the end of Jurassic and its role for the Alpine tectonic-magmatic development of parts of the Balkan Peninsula. Rev. Bulg. Geol. Soc. 1995, 56, 45–63. (In Russian) [Google Scholar]
- Ivanov, Z.; Gerdjikov, I.; Kounov, A. New data and considerations about structure and tectonic evolution of Sakar region, SE Bulgaria. Annu. Univ. Sofia Geol. Geogr. 2001, 91, 35–80. (In Bulgarian) [Google Scholar]
- Palshin, I.; Skenderov, G.; Bojkov, I.; Michailov, Y.; Kotov, E.; Bedrinov, I.; Ivanov, I. New geochronological data for the Cimmeridian and Alpine magmatic and hydrothermal products in the Srednogorie and Stara Planina Zones in Bulgaria. Rev. Bulg. Geol. Soc. 1989, 50, 75–92. (In Bulgarian) [Google Scholar]
- Skenderov, G.; Palshin, I.; Michailov, Y.; Bojkov, I.; Savova, L. On the age of the Sakar granite pluton (South-Eastern Srednogorie). Geochem. Mineral. Petrol. 1986, 22, 69–81. (In Russian) [Google Scholar]
- Boyadjiev, S.; Lilov, P. On the K-Ar dating of the South Bulgarian granitoids from Srednogorie and Sakar-Strandja Zones. Proceedings of the Geological Institute, ser. Geochem. Mineral. Petrogr. 1972, 26, 121–220. (In Bulgarian) [Google Scholar]
- Firsov, L. On the age of South-Bulgarian granites in the Rhodopes, Srednogorie and Sakar-Strandja areas. Geol. Geophys. 1975, 1, 27–34. (In Russian) [Google Scholar]
- Peytcheva, I.; Georgiev, S.; von Quadt, A. U/Pb ID-TIMS dating of zircons from the Sakar-Strandzha Zone: New data and old questions about the Variscan orogeny in SE Europe. In Proceedings of the Annual Conference of the Bulgaria Geological Society “Geosciences 2016”, Sofia, Bulgaria, 7–8 December 2016; Bulgarian Geological Society: Sofia, Bulgaria, 2016; pp. 71–72. [Google Scholar]
- Zagorchev, I.; Lilov, P.; Moorbath, S. Results of the Rubidium-Strontium and Potassium-Argon radiogeochronological studies on the metamorphic and magmatic rocks in South Bulgaria. Geol. Balc. 1989, 19, 41–54. [Google Scholar]
- Dencheva, S. Apatite from Sakar Mountain, Bulgaria—Morphology and physical properties. In Proceedings of the National Conference with International Participation “Geosciences 2017”, Sofia, Bulgaria, 7–8 December 2017; Bulgarian Geological Society: Sofia, Bulgaria, 2017; pp. 21–22. [Google Scholar]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Paton, C.; Helistrom, J.; Paul, B.; Woodhead, J.; Herqt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 2012, 13, Q0AA21. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the Ar-40/Ar-39 standard MMhb. Contrib. Mineral. Petrol. 2006, 151, 615–630. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Spandler, C.; Hammerli, J.; Sha, P.; Hilbert-Wolf, H.; Hu, Y.; Roberts, E.; Schmitz, M. MKED1: A new titanite standard for in situ analysis of Sm-Nd isotopes and U–Pb geochronology. Chem. Geol. 2016, 425, 110–126. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Kamo, S.L.; Nasdala, L.; Timms, N.E. Grenville skarn titanite: Potential reference material for SIMS U–Th–Pb analysis. Can. Mineral. 2010, 48, 1423–1443. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Wintsch, R.; Tollo, R.P.; Unruh, D.M.; Fanning, C.M.; Schmitz, M.D. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England. Am. J. Sci. 2007, 307, 63–118. [Google Scholar] [CrossRef]
- Bailey, S.W. Structures of Layer Silicates: In Crystal Structures of Clay Minerals and Their X-Ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society: London, UK, 1980; pp. 1–123. [Google Scholar]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Jowett, E. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In Abstract Book. In Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, ON, Canada, 27–29 May 1991; Volume 16, p. A62. [Google Scholar]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Tilton, G.R.; Grünenfelder, M. Sphene: Uranium-lead ages. Science 1968, 159, 1458–1461. [Google Scholar] [CrossRef]
- Tucker, R.D.; Raheim, A.; Krogh, T.E.; Corfu, F. Uranium-lead zircon and titanite ages from the northern portion of the Western Gneiss region, south-central Norway. EPSL 1987, 81, 203–211. [Google Scholar] [CrossRef]
- Heaman, L.; Parrish, R. U-Pb geochronology of accessory minerals. In Applications of Radiometric Isotope Systems to Problems in Geology; Heaman, L., Ludden, J.N., Eds.; Mineralogical Association of Canada: Quebec, QC, Canada, 1991; Volume 19, pp. 59–102. [Google Scholar]
- Scott, D.J.; St-Onge, M.R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations. Geology 1995, 23, 1123–1126. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M.; Ryerson, F.J. Diffusion of Sm, Sr and Pb in fluoroapatite. Geochim. Cosmochim. Acta 1985, 49, 1813–1823. [Google Scholar] [CrossRef]
- Chemiak, D.J.; Lanford, W.A.; Ryerson, F.J. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim. Cosmochim. Acta 1991, 55, 1663–1674. [Google Scholar]
- Chamberlain, K.R.; Bowring, S.A. Apatite–feldspar U–Pb thermochronometer: A reliable, mid-range (∼450 °C), diffusion-controlled system. Chem. Geol. 2000, 172, 173–200. [Google Scholar] [CrossRef]
- Stalder, H.A. Petrographische und mineralogische Untersu-chungen im Grimselgebiet (Mittleres Aarmassiv). Schweiz. Min. Alogischen Petrogr. Mitt. 1964, 44, 187–398. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Mullis, J. Fluid inclusion studies during very low-grade metamorphism. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie: London, UK, 1988; pp. 162–199. [Google Scholar]
- Mullis, J.; Dubessy, J.; Poty, B.; O’Neil, J. Fluid regimes during late stages of a continental collision: Physical, chemical, and stable isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochim. Cosmochim. Acta. 1994, 58, 2239–2267. [Google Scholar] [CrossRef]
- Taylor, R.P.; Fryer, B.J. Multiple-stage hydrothermal alteration in porphyry copper systems in northern Turkey: The temporal interplay of potassic, propylitic, and phyllic fluids. Can. J. Earth. Sci. 1980, 17, 901–926. [Google Scholar] [CrossRef]
- Elmas, A.; Yilmaz, I.; Yigitbas, E.; Ullrich, T. A Late Jurassic–Early Cretaceous metamorphic core complex, Strandja Massif, NW Turkey. Int. J. Earth Sci. 2011, 100, 1251–1263. [Google Scholar] [CrossRef]
- Stampfli, G.; Kozur, H. Europe from Variscan to the Alpine cycles. In European Lithosphere Dynamics, 32th ed.; Geological Society of London: London, UK, 2006; Volume 32, pp. 57–82. [Google Scholar]
- Stampfli, G.; Mosar, J.; Favre, P.; Pillevuit, A.; Vannay, J.-C. Permo-Mesozoic evolution of the western Tethyan realm: The Neotethys/EastMediterranean connection. In PeriTethys Memoir 6: Peritethyan Rift/Wrench Basins and Passive Margins; Me ´Moires du Museum Nationale d’Histoire; Ziegler, P., Cavazza, W., Robertson, A., Crasquinsoleau, S., Eds.; IGCP 369: Lisbon, Portugal, 2001; Volume 186, pp. 51–108. [Google Scholar]
- Golonka, J.; Krobicki, M.; Oszczypko, N.; Ślaczka, A.; Słomka, T. Geodynamic evolution and palaeogeoraphy of the Polish Carpathians and adjacent areas during Neo-Cimmerian and preceding events (latest Triassic-earliest cretaceous). Geol. Soc. Spec. Publ. 2003, 208, 138–158. [Google Scholar] [CrossRef]
- Szopa, K.; Włodyka, R.; Chew, D. LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geol. Carpathica 2014, 65, 273–284. [Google Scholar] [CrossRef]
- Gawęda, A.; Szopa, K.; Chew, D.; O’Sullivan, G.J.; Burda, J.; Klötzli, U.; Golonka, J. Variscan post-collisional cooling and uplift of the Tatra Mountains crystalline block constrained by integrated zircon, apatite and titanite LA-(MC)-ICP-MS U-Pb dating and rare earth element analyses. Chem. Geol. 2018, 484, 191–209. [Google Scholar] [CrossRef]
- Ballato, P.; Nowaczyk, N.R.; Landgraf, A.; Strecker, M.R.; Friedrich, A.; Tabatabaei, S.H. Tectonic control on sedimentary facies pattern and sediment accumulation rates in the Miocene foreland basin of the southern Alborz mountains, northern Iran. Tectonics 2008, 27, TC6001. [Google Scholar] [CrossRef]
- Şengör, A.M.C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 1979, 279, 590–593. [Google Scholar] [CrossRef]
- Stampfli, G.; Borel, G. The TRANSMED transects in space and time: Constraints on the Paleotectonic evolution of the Mediterranean Domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Ziegler, P., Eds.; Springer: Berlin, Germany, 2004; pp. 53–80. [Google Scholar]
- Stampfli, G.; Hochard, C. Plate tectonics of the Alpine realm. Geol. Soc. London. In Ancient Orogens and Modern Analogues; Special Publications; The Geological Society of London: London, UK, 2009; Volume 327, pp. 89–111. [Google Scholar]
- Okay, A.I.; Sunal, G.; Sherlock, S.; Altiner, D.; Tüysüz, O.; Kylander-Clark, A.R.C.; Aygül, M. Early Cretaceous sedimentation and orogeny on the southern active margin of Eurasia: Central Pontides, Turkey. Tectonics 2013, 32, 1247–1271. [Google Scholar] [CrossRef]
- Okay, A.I.; Altiner, D.; Kiliç, A.M. Triassic limestone, turbidites and serpentinite–the Cimmeride orogeny in the Central Pontides. Geol. Mag. 2015, 152, 460–479. [Google Scholar] [CrossRef]
- Topuz, G.; Göçmengil, G.; Rolland, Y.; Çelic, Ö.F.; Zack, T.; Schmitt, A.K. Jurassic accretionary complex and ophiolite from northeast Turkey: No evidence for the Cimmerian continental ribbon. Geology 2013, 41, 255–258. [Google Scholar] [CrossRef]
- Hrubcová, P.; Środa, P.; Grad, M.; Geissler, W.H.; Guterch, A.; Vozár, J.; Hegedűs, E. From the Variscan to the Alpine Orogeny: Crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data 2010. Geophys. J. Int. 2010, 183, 611–633. [Google Scholar] [CrossRef]
- Georgiev, S.; von Quadt, A.; Heinrich, C.A.; Peytcheva, I.; Marchev, P. Time evolution of a rifted continental arc: Integrated ID-TIMS and LA-ICPMS study of magmatic zircons from the Eastern Srednogorie, Bulgaria. Lithos 2012, 154, 53–67. [Google Scholar] [CrossRef]
- Lips, A.; White, S.; Wijbrans, J. Middle-Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodin. Acta 2000, 13, 281–292. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
CaO (wt.%) | 55.69 | 55.82 | 55.57 | 55.57 | 55.83 | 55.77 | 55.75 | 56.13 | 56.11 | 56.26 |
SiO2 | 0.23 | 0.10 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
P2O5 | 41.51 | 42.32 | 41.83 | 42.56 | 42.58 | 42.31 | 41.87 | 42.61 | 42.42 | 42.07 |
SO3 | 0.12 | 0.13 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
F | 2.83 | 2.82 | 3.05 | 2.55 | 2.27 | 2.88 | 1.99 | 2.79 | 2.64 | 2.40 |
H2O | 0.39 | 0.41 | 0.27 | 0.54 | 0.68 | 0.37 | 0.80 | 0.43 | 0.50 | 0.61 |
O=F,Cl | 1.19 | 1.19 | 1.29 | 1.07 | 0.96 | 1.22 | 0.84 | 1.18 | 1.11 | 1.01 |
Total | 99.58 | 100.42 | 99.44 | 100.14 | 100.41 | 100.11 | 99.57 | 100.79 | 100.56 | 100.33 |
Ca (a.p.f.u.) | 10.37 | 10.27 | 10.36 | 10.20 | 10.21 | 10.31 | 10.26 | 10.29 | 10.30 | 10.34 |
Si | 0.04 | 0.02 | - | - | - | - | - | - | - | - |
P | 6.11 | 6.15 | 6.16 | 6.18 | 6.15 | 6.18 | 6.09 | 6.17 | 6.15 | 6.11 |
S | 0.02 | 0.02 | - | - | - | - | - | - | - | - |
XF | 1.55 | 1.53 | 1.68 | 1.38 | 1.22 | 1.57 | 1.08 | 1.51 | 1.43 | 1.30 |
XOH | 0.45 | 0.47 | 0.32 | 0.62 | 0.78 | 0.43 | 0.92 | 0.49 | 0.57 | 0.70 |
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 (wt.%) | 30.20 | 30.19 | 29.93 | 30.18 | 30.04 | 30.12 | 30.31 | 30.19 | 30.23 | 29.91 |
TiO2 | 38.65 | 38.47 | 38.47 | 36.88 | 38.38 | 38.81 | 38.21 | 38.54 | 38.54 | 38.59 |
CaO | 28.33 | 28.26 | 28.07 | 28.24 | 28.25 | 28.41 | 28.24 | 28.24 | 28.26 | 28.21 |
Al2O3 | 1.11 | 1.23 | 1.02 | 1.75 | 0.95 | 0.87 | 1.18 | 1.03 | 0.84 | 0.86 |
MnO | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.12 | 0.12 | b.d.l. | b.d.l. |
Fe2O3 | 0.68 | 0.60 | 0.76 | 0.64 | 0.61 | 0.74 | 0.71 | 0.34 | 0.76 | 0.43 |
Y2O3 | 0.13 | 0.16 | 0.11 | 0.16 | 0.17 | b.d.l. | 0.14 | 0.15 | 0.14 | |
V2O5 | 0.19 | 0.25 | 0.27 | 0.26 | 0.30 | 0.24 | 0.29 | 0.19 | 0.31 | 0.24 |
F | 0.24 | 0.18 | 0.10 | 0.41 | 0.12 | 0.02 | 0.22 | 0.16 | 0.26 | 0.10 |
O=F | 0.10 | 0.08 | 0.04 | 0.17 | 0.05 | 0.01 | 0.09 | 0.07 | 0.11 | 0.04 |
Total | 99.42 | 99.25 | 98.69 | 98.35 | 98.78 | 99.21 | 99.32 | 98.88 | 99.09 | 98.44 |
Si (a.p.f.u.) | 3.58 | 3.58 | 3.57 | 3.62 | 3.58 | 3.57 | 3.60 | 3.60 | 3.60 | 3.58 |
Ti | 3.45 | 3.43 | 3.45 | 3.33 | 3.44 | 3.46 | 3.41 | 3.45 | 3.45 | 3.47 |
Ca | 3.60 | 3.59 | 3.58 | 3.63 | 3.61 | 3.61 | 3.59 | 3.60 | 3.60 | 3.61 |
Al | 0.16 | 0.17 | 0.14 | 0.25 | 0.13 | 0.12 | 0.17 | 0.14 | 0.12 | 0.12 |
Mn | - | - | - | - | - | - | 0.01 | 0.01 | - | - |
Fe | 0.06 | 0.05 | 0.07 | 0.06 | 0.06 | 0.07 | 0.06 | 0.03 | 0.07 | 0.04 |
Y | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ||
V | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
F | 0.09 | 0.07 | 0.04 | 0.16 | 0.04 | 0.01 | 0.08 | 0.06 | 0.10 | 0.04 |
Total | 10.96 | 10.92 | 10.87 | 11.08 | 10.90 | 10.85 | 10.96 | 10.92 | 10.95 | 10.88 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szopa, K.; Sałacińska, A.; Gumsley, A.P.; Chew, D.; Petrov, P.; Gawȩda, A.; Zagórska, A.; Deput, E.; Gospodinov, N.; Banasik, K. Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals 2020, 10, 266. https://doi.org/10.3390/min10030266
Szopa K, Sałacińska A, Gumsley AP, Chew D, Petrov P, Gawȩda A, Zagórska A, Deput E, Gospodinov N, Banasik K. Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals. 2020; 10(3):266. https://doi.org/10.3390/min10030266
Chicago/Turabian StyleSzopa, Krzysztof, Anna Sałacińska, Ashley P. Gumsley, David Chew, Petko Petrov, Aleksandra Gawȩda, Anna Zagórska, Ewa Deput, Nikolay Gospodinov, and Kamila Banasik. 2020. "Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria" Minerals 10, no. 3: 266. https://doi.org/10.3390/min10030266
APA StyleSzopa, K., Sałacińska, A., Gumsley, A. P., Chew, D., Petrov, P., Gawȩda, A., Zagórska, A., Deput, E., Gospodinov, N., & Banasik, K. (2020). Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals, 10(3), 266. https://doi.org/10.3390/min10030266