Photoluminescence Imaging of Whole Zircon Grains on a Petrographic Microscope—An Underused Aide for Geochronologic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whole-Grain Microscopy and Spectroscopy
2.2. Cross-Sectioned Grain Microscopy and Spectroscopy
2.3. SHRIMP-RG U/Pb and Trace Element Analysis
3. Results
3.1. Hickory Mine Detrital Sample
3.2. Nonewaug Granite (PB515)
PB515 (Figure 2) | GP1104 (Figure 5) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | 2d | 2e | 2e | 2f | 2g | 5d | 5e | 5e | 5f | 5f | 5f | 5g | 5g |
Al | 8 | 57 | 4 | 4 | 15 | 7 | 7 | 35 | 6 | 40 | 12 | 6 | 9 |
P | 1000 | 380 | 14 | 16 | 1800 | 250 | 280 | 280 | 70 | 300 | 43 | 270 | 67 |
Ca | 0.9 | 1 | 0.9 | 1 | 0.7 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 |
Sc | 220 | 68 | 23 | 27 | 790 | 10 | 9 | 18 | 2 | 19 | 10 | 20 | 1 |
48Ti | 6 | 10 | 0.7 | 6 | 5 | 4 | 4 | 6 | 4 | 2 | 3 | 3 | 3 |
49Ti | 6 | 11 | 0.7 | 5 | 5 | 4 | 4 | 6 | 3 | 3 | 4 | 2 | 3 |
Fe | 1 | 6 | 1 | 1 | 2 | 6 | 7 | 3 | 20 | 3 | 7 | 1 | 18 |
Y | 1500 | 1500 | 28 | 20 | 2900 | 1100 | 920 | 840 | 220 | 1200 | 180 | 1000 | 170 |
Nb | 5 | 29 | 3 | 2 | 14 | 20 | 14 | 9 | 3 | 3 | 5 | 4 | 2 |
La | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ce | 13 | 38 | 0 | 0 | 10 | 22 | 23 | 12 | 1 | 5 | 2 | 4 | 3 |
Nd | 2 | 1 | 0 | 0 | 1 | 0.9 | 0.5 | 0 | 0 | 3 | 0 | 0.7 | 0 |
Sm | 6 | 4 | 0 | 0 | 6 | 2 | 2 | 2 | 0 | 8 | 0 | 3 | 0 |
Eu | 0.9 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Gd | 55 | 35 | 0 | 0 | 81 | 22 | 18 | 19 | 1 | 51 | 4 | 27 | 2 |
Ho | 59 | 64 | 0.9 | 0.6 | 110 | 44 | 35 | 33 | 7 | 55 | 7 | 41 | 5 |
Tb | 17 | 13 | 0 | 0 | 32 | 8 | 7 | 7 | 0.7 | 15 | 1 | 9 | 0.7 |
Dy | 170 | 160 | 2 | 2 | 330 | 110 | 80 | 78 | 14 | 160 | 18 | 100 | 11 |
Er | 250 | 270 | 5 | 3 | 410 | 200 | 160 | 140 | 45 | 220 | 25 | 160 | 36 |
Tm | 53 | 58 | 1 | 0.6 | 82 | 46 | 33 | 27 | 14 | 43 | 5 | 32 | 11 |
Yb | 440 | 470 | 8 | 5 | 630 | 380 | 270 | 210 | 150 | 330 | 37 | 250 | 130 |
Lu | 82 | 92 | 2 | 1 | 120 | 70 | 47 | 36 | 41 | 65 | 7 | 45 | 37 |
Hf | 10,300 | 11,200 | 12,400 | 13,500 | 11,100 | 15,200 | 13,100 | 9900 | 13,600 | 8900 | 11,900 | 9400 | 10,700 |
Pb | 12 | 77 | 1 | 0.5 | 47 | 120 | 65 | 21 | 150 | 8 | 59 | 11 | 88 |
Th | 120 | 470 | 0 | 0 | 130 | 180 | 120 | 48 | 8 | 27 | 8 | 25 | 5 |
U | 180 | 1300 | 27 | 17 | 690 | 720 | 390 | 130 | 920 | 52 | 390 | 69 | 590 |
Age a | 430 ± 9 | 435 ± 11 | 381 ± 12 | 390 ± 8 | 442 ± 8 | 1167 ± 17 | 1116 ± 23 | 1132 ± 44 | 1083 ± 18 | 1129 ± 70 | 1034 ± 31 | 1222 ± 50 | 1116 ± 12 |
Dy3+(I) b | 17 ± 1 | 30 ± 1 | 17 ± 1 | 14 ± 1 | 38 ± 1 | 40 ± 1 | 35 ± 1 | 19 ± 1 | 35 ± 1 | 15 ± 1 | 29 ± 1 | 16 ± 1 | 36 ± 1 |
Dy3+(II) b | 27 ± 1 | 32 ± 1 | 31 ± 1 | 25 ± 1 | 35 ± 1 | 28 ± 1 | 30 ± 1 | 28 ± 1 | 36 ± 1 | 25 ± 1 | 30 ± 1 | 26 ± 1 | 32 ± 2 |
ν3SiO4 b | 5 ± 1 | 8 ± 1 | 5 ± 1 | 5 ± 1 | 9 ± 1 | 9 ± 3 | 8 ± 2 | 7 ± 1 | 12 ± 4 | 5 ± 1 | 10 ± 1 | 5 ± 1 | 13 ± 4 |
3.3. Charnockite Gneiss at Pharaoh Mountain (GP1104)
3.4. Granitoid at Beauty Spot (HD-18-1)
3.5. Correlations Across Methods
4. Discussion
4.1. Photoluminescence Response: General Observations
4.2. Origins of the Visible PL Color
4.3. Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Foster, W.R. Useful aspects of the fluorescence of accessory-mineral-zircon. Am. Mineral. 1948, 33, 724–735. [Google Scholar]
- Wilson, A.F. Fluorescent feldspar and zircon as petrological aids. Mineral. Mag. J. Mineral. Soc. 1950, 29, 225–233. [Google Scholar] [CrossRef]
- Grosz, A.E.; San Juan, F.C., Jr.; Reid, J.C. Heavy-Mineral Concentrations Associated with Some Gamma-ray Aeroradiometric Anomalies over Cretaceous Sediments in North Carolina: Implications for Locating Placer Mineral Deposits Near the Fall Zone; U.S. Geological Survey Open-File Report 92-396; U.S. Geological Survey: Reston, VA, USA, 1992; p. 27. [Google Scholar]
- Nasdala, L.; Grambole, D.; Götze, J.; Kempe, U.; Váczi, T. Helium irradiation study on zircon. Contrib. Mineral. Petrol. 2011, 161, 777–789. [Google Scholar] [CrossRef]
- Shinno, I. Three types of photo-luminescence in natural zircon. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1986, 81, 433–445. [Google Scholar] [CrossRef]
- Shinno, I.; Hayashi, M. Measurement of photo-luminescence of zircon and its application. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1984, 79, 33–45. [Google Scholar] [CrossRef]
- Gaft, M. Application of thermal treatment of zircon for the interpretation of luminescence centers. J. Therm. Anal. Calorim. 1992, 38, 2281–2290. [Google Scholar] [CrossRef]
- Nicholas, J.V. Origin of the luminescence in natural zircon. Nature 1967, 215, 1476. [Google Scholar] [CrossRef]
- Gaft, M.; Shinno, I.; Panczer, G.; Reisfeld, R. Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Mineral. Petrol. 2002, 76, 235–246. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Kayama, M.; Nishido, H.; Noumi, Y. Cathodoluminescence of synthetic zircon implanted by He+ ion. Geochronometria 2017, 44, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Nasdala, L.; Irmer, G.; Wolf, D. The degree of metamictization in zircon: A Raman spectroscopic study. Eur. J. Mineral. 1995, 7, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Nasdala, L.; Wenzel, M.; Vavra, G.; Irmer, G.; Wenzel, T.; Kober, B. Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 2001, 141, 125–144. [Google Scholar] [CrossRef]
- Nasdala, L.; Zhang, M.; Kempe, U.; Panczer, G.; Gaft, M.; Andrut, M.; Plötze, M. Spectroscopic methods applied to zircon. Rev. Mineral. Geochem. 2003, 53, 427–467. [Google Scholar] [CrossRef]
- Nasdala, L.; Reiners, P.W.; Garver, J.I.; Kennedy, A.K.; Stern, R.A.; Balan, E.; Wirth, R. Incomplete retention of radiation damage in zircon from Sri Lanka. Am. Mineral. 2004, 89, 219–231. [Google Scholar] [CrossRef]
- Nasdala, L.; Hanchar, J.M.; Kronz, A.; Whitehouse, M.J. Long-term stability of alpha particle damage in natural zircon. Chem. Geol. 2005, 220, 83–103. [Google Scholar] [CrossRef]
- Zhang, M.; Salje, E.K.H.; Capitani, G.C.; Leroux, H.; Clark, A.M.; Schlüter, J.; Ewing, R.C. Annealing of alpha -decay damage in zircon: A Raman spectroscopic study. J. Phys. Condens. Matter 2000, 12, 3131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Salje, E.K.H.; Farnan, I.; Graeme-Barber, A.; Daniel, P.; Ewing, R.C.; Clark, A.M.; Leroux, H. Metamictization of zircon: Raman spectroscopic study. J. Phys. Condens. Matter 2000, 12, 1915. [Google Scholar] [CrossRef]
- Marsellos, A.E.; Garver, J.I. Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. Am. Mineral. 2010, 95, 1192–1201. [Google Scholar] [CrossRef]
- Lenz, C.; Nasdala, L. A photoluminescence study of REE3+ emissions in radiation-damaged zircon. Am. Mineral. 2015, 100, 1123–1133. [Google Scholar] [CrossRef] [Green Version]
- Lenz, C.; Nasdala, L.; Talla, D.; Hauzenberger, C.; Seitz, R.; Kolitsch, U. Laser-induced REE3+ photoluminescence of selected accessory minerals—An “advantageous artefact” in Raman spectroscopy. Chem. Geol. 2015, 415, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Geisler, T.; Burakov, B.E.; Zirlin, V.; Nikolaeva, L.; Pöml, P. A Raman spectroscopic study of high-uranium zircon from the Chernobyl. Eur. J. Mineral. 2006, 17, 883–894. [Google Scholar] [CrossRef]
- Danišík, M.; McInnes, B.I.A.; Kirkland, C.L.; McDonald, B.J.; Evans, N.J.; Becker, T. Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Sci. Adv. 2017, 3, e1601121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgers, J. Bedrock geological map of Connecticut; Connecticut Natural Resources Atlas Series; Connecticut Geological and Natural History Survey: Hartford, CT, USA, 1985; pp. 1–2. [Google Scholar]
- Baranger, R.; Martinez, L.; Pittion, J.L.; Pouleau, J. A new calibration procedure for fluorescence measurements of sedimentary organic matter. Org. Geochem. 1991, 17, 467–475. [Google Scholar] [CrossRef]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. Rev. Econ. Geol. 1998, 7, 1–35. [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Ludwig, K.R. SQUID 2 (rev. 2.50), A user’s manual; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2009. [Google Scholar]
- Coble, M.A.; Vazquez, J.A.; Barth, A.P.; Wooden, J.; Burns, D.; Kylander-Clark, A.; Jackson, S.; Vennari, C.E. Trace Element Characterisation of MAD-559 Zircon reference material for ion microprobe analysis. Geostand. Geoanal. Res. 2018, 42, 481–497. [Google Scholar] [CrossRef]
- Ireland, T.R. Ion microprobe mass spectrometry: Techniques and applications in cosmochemistry, geochemistry, and geochronology. Adv. Anal. Geochem. 1995, 2, 1–118. [Google Scholar]
- Gaft, M.; Reisfeld, R.; Panczer, G. Modern Luminescence Spectroscopy of Minerals and Materials; Springer: Berlin/Heidelberg, Germany, 2015; p. 620. [Google Scholar]
- Tsuchiya, Y.; Kayama, M.; Nishido, H.; Noumi, Y. Annealing effects on cathodoluminescence of zircon. J. Mineral. Petrol. Sci. 2015, 110, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Hourigan, J.K.; Reiners, P.W.; Brandon, M.T. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochim. et Cosmochim. Acta 2005, 69, 3349–3365. [Google Scholar] [CrossRef]
- Reiners, P.W. Zircon (U-Th)/He Thermochronometry. Rev. Mineral. Geochem. 2005, 58, 151–179. [Google Scholar] [CrossRef]
- Bargnesi, E.A.; Stockli, D.F.; Hourigan, J.K.; Hager, C. Improved accuracy of zircon (U–Th)/He ages by rectifying parent nuclide zonation with practical methods. Chem. Geol. 2016, 426, 158–169. [Google Scholar] [CrossRef]
- Roden-Tice, M.K.; Wintsch, R.P. Early Cretaceous normal faulting in southern New England: Evidence from apatite and zircon fission-track ages. J. Geol. 2002, 110, 159–178. [Google Scholar] [CrossRef]
- Montario, M.J.; Marsellos, A.E.; Garver, J.I. Annealing of radiation damage in a Grenville zircon from the eastern Adirondacks, NY state. In Proceedings of the 11th International Conference on Thermochronometry, Anchorage, AK, USA, 15–19 September 2008; pp. 174–176. [Google Scholar]
- Naeser, C.W.; Naeser, N.D.; Newell, W.L.; Southworth, S.; Edwards, L.E.; Weems, R.E. Erosional and depositional history of the Atlantic passive margin as recorded in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal plain sediments. Am. J. Sci. 2016, 316, 110–168. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McAleer, R.J.; Jubb, A.M.; Hackley, P.C.; Walsh, G.J.; Merschat, A.J.; Regan, S.P.; Burton, W.C.; Vazquez, J.A. Photoluminescence Imaging of Whole Zircon Grains on a Petrographic Microscope—An Underused Aide for Geochronologic Studies. Minerals 2020, 10, 876. https://doi.org/10.3390/min10100876
McAleer RJ, Jubb AM, Hackley PC, Walsh GJ, Merschat AJ, Regan SP, Burton WC, Vazquez JA. Photoluminescence Imaging of Whole Zircon Grains on a Petrographic Microscope—An Underused Aide for Geochronologic Studies. Minerals. 2020; 10(10):876. https://doi.org/10.3390/min10100876
Chicago/Turabian StyleMcAleer, Ryan J., Aaron M. Jubb, Paul C. Hackley, Gregory J. Walsh, Arthur J. Merschat, Sean P. Regan, William C. Burton, and Jorge A. Vazquez. 2020. "Photoluminescence Imaging of Whole Zircon Grains on a Petrographic Microscope—An Underused Aide for Geochronologic Studies" Minerals 10, no. 10: 876. https://doi.org/10.3390/min10100876
APA StyleMcAleer, R. J., Jubb, A. M., Hackley, P. C., Walsh, G. J., Merschat, A. J., Regan, S. P., Burton, W. C., & Vazquez, J. A. (2020). Photoluminescence Imaging of Whole Zircon Grains on a Petrographic Microscope—An Underused Aide for Geochronologic Studies. Minerals, 10(10), 876. https://doi.org/10.3390/min10100876