The Role of Pathogenic Autoantibodies in Autoimmunity
Abstract
:1. Introduction
2. Evidence for Pathogenicity
Autoantigen | Disease | Induction of Disease by Autoantibody | In Vitro Effects | B Cell Depletion (Rituximab) | Plasmapheresis/Plasma Exchange/IvIg | |||
---|---|---|---|---|---|---|---|---|
Transplacental Transfer | Human to Human | Human to Animal | Animal to Animal | |||||
Erythrocytes | Autoimmune hemolytic anemia | yes [4] | yes [5] | |||||
Platelets | Autoimmune thrombocytopenic purpura | yes [6] | yes [7] | yes [8] | ||||
Desmogleins Dsg3, Dsg1 | Pemphigus vulgaris Pemphigus foliaceus | yes [9,10,11,12,13] | yes [14,15] | yes [16,17] | yes [18] | yes [19] | IvIg [20] | |
BP180/collagen XVII | Bullous pemphigoid Herpes gestationis | yes [21,22] | no [23] antigen differs | yes [24,25,26,27] | yes [28] Requires neutrophils | yes [29] IvIg [20] | ||
Collagen VII | Epidermolysis bullosa acquisita | yes [30] limited cross-reactivity | yes [31] | yes [32] Requires neutrophils | yes [33] IvIg [20] | |||
TSH receptor-stimulatory-blocking | Graves’ disease | yes [34] yes [35,36] | yes [37] | |||||
Intrinsic factor H+/K+ ATPase | Autoimmune gastritis | yes [38] | yes [39] | |||||
M3 muscarinic receptor | Sjögren’s syndrome | yes [40,41] | IvIg [42,43] | |||||
Acetylcholine receptors | Myasthenia gravis | yes [44,45] | yes [46,47] | yes [48] | yes [49] | yes [50,51] | ||
Presynaptic voltage-gated Ca++ channels | Lambert Eaton Syndrome | yes [52] | yes [53,54,55] | yes [51] | ||||
Collagen II | Rheumatoid arthritis | yes [56] | yes [57] | yes [58,59,60,61,62] | yes [63] | yes [64] Limited efficacy |
3. Mode of Action
3.1. Fab-Mediated Effects
3.2. Fc-Mediated Effects
IgG1 | IgG2 | IgG3 | IgG4 | |||
Proportion of total IgG | 66% | 23% | 7% | 4% | ||
Crosses placenta [79] | ++ | ± | + | + | ||
Complement activation | ++ | + | +++ | − | ||
C1q binding and activation [80] | + | − | +++ | − | ||
Complement–mediated hemolysis [80] | +++++ | − | ++ | − | ||
C4 activation [80] | +++++ | − | ++ | − | ||
Binding to Fcγ Receptors [81,82] | Major Function | Binding Affinities (M−1) | ||||
Fcγ R1 (CD64) “high affinity receptor” monocytes, macrophages, neutrophils, dendritic cells | Fcγ R1 | Activation | 6 × 107 | No binding | 6 × 107 | 3 × 107 |
Fcγ RII (CD32) “low affinity receptor” monocytes, macrophages, neutrophils, eosinophils, platelets, B cells, dendritic cells, endothelial cells | Fcγ RIIA | Activation | 5 × 106 | 4 × 105 | 9 × 105 | 2 × 105 |
Fcγ RIIB | Inhibition | 1 × 105 | 2 × 104 | 2 × 105 | 2 × 105 | |
Fcγ RIIC | Activation | 1 × 105 | 2 × 104 | 2 × 105 | 2 × 105 | |
Fcγ RIIIA (CD16) “low affinity receptor” neutrophils, eosinophils, macrophages, NK cells, subsets of T cells | Fcγ RIIIA | Activation | 2 × 105 | 7 × 104 | 1 × 107 | 2 × 105 |
3.3. Immune Complex Mediated Effects
3.4. Therapies that Modify Fc-Mediated Secondary Effects of Antibodies
4. Pathogenic Effects of Autoantibodies
4.1. Autoantibodies to Desmosomes and Hemidesmosomes
4.1.1. The Pemphigus Syndromes
4.1.2. The Pemphigoid Syndromes
4.2. Autoantibodies to H+/K+ ATPase and Gastric Intrinsic Factor
4.3. Autoantibodies to Collagen
MAb | CIIC1 | UL1 | M2139 | CIIF4 |
---|---|---|---|---|
IgG subclass | IgG2a | IgG2b | IgG2b | IgG2a |
Epitope location on CII (amino acids) [147] | 356–369 | 494–504 | 551–564 | 926–936 |
Sequence [147,148] | ARGLT | LVGPRGERGFP | MPGERRGAAGIAGPK | HRGFT |
Possible binding site on collagen | Chondroadherin | Integrin | Collagen IX/integrin | Stromelysin |
Arthritogenic in vivo (mouse) | Yes | Yes | Yes | No |
Antibodies in human arthritis | Yes, RA > OA | Yes, severe RA | Yes in RA (less frequent) | Yes, OA > RA |
Effects on fibrillogenesis in vitro [149] | Inhibition | Not tested | Inhibition | No effect |
Effects in chondrocyte cultures [58,59,62] | ||||
Chondrocytes | Normal | Vacuolated | Pleiomorphic | Normal |
Collagen fibrils | Thin | Normal | Thick, aggregated | Normal |
Matrix synthesis | Increased | Normal | Normal | Normal |
Effects in cartilage cultures [60,62] | ||||
Proteoglycan loss | Yes | Yes | Yes | No |
Collagen denaturation | Yes | Yes | Yes | No |
Collagen loss | Yes | Yes | Yes | No |
4.4. Autoantibodies to Muscarinic Receptors
5. Pathogenic Effects of Autoantibodies to Intracellular Antigens
6. Evidence for Pathogenicity of Autoantibodies to Intracellular Antigens
6.1. Autoantibodies to Glutamic Acid Decarboxylase
Type 1 Diabetes | SPS | |
---|---|---|
Autoantibody levels: serum | Low to moderate [209,210,211] | moderate to very high [209,210,212,213] |
CSF | Not detected | oligoclonal [209,212,213] |
Frequency: anti-GAD65 Anti-GAD67 | 70%–80% [214,215] 12% cross-reactive [216] | 70%–80% [217,218] 50%–60% [217,218] |
Immunofluorescence 1 | ||
Pancreas | GAD65 [219] | GAD65 only [219] |
Brain | Minimal [219] | GAD65, 67 [219] |
Enzyme inhibition | 2% [217] | 60% [210,217] |
Western blotting: | <10% [219,220,221] | GAD65 only [222] |
B cell epitopes: | ||
GAD65 conformational | Catalytic region [223] | Catalytic region [222] |
GAD65 N-terminal linear | None ascertained [210,224] | Amino acids 4–22 [210,224,225] |
GAD65 C-terminal linear | Rare | Amino acids 475–585 [222] |
GAD67 conformational | GAD67 or GAD65 [216] | GAD67 specific [210,224] |
Cross-inhibition (see text) | b96.11 > b78 [226] | b78 > b96.11 [210] |
Anti-GAD65 transfer to animals (see text) | Diabetes: no | Not recorded |
Neurological: yes [227,228,229,230,231] | ||
Other autoimmune diseases | Thyrogastric cluster [232] | Diabetes 30%–60% Thyrogastric cluster [207,208] |
IvIg Plasmapheresis Rituximab | …….. No effect [233] ……… | Effective [234,235] ……….. Varied [236,237,238,239,240] |
6.2. Autoantibodies to the E2 Subunit of the Pyruvate Dehydrogenase Complex (PDC-E2)
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Donath, J.; Landsteiner, J. Ueber paroxysmale Hämoglobinurie. Münch. Med. Wschr. 1904, 51, 1590–1593. [Google Scholar]
- Witebsky, E.; Rose, N.R.; Terplan, K.; Paine, J.R.; Egan, R.W. Chronic thyroiditis and autoimmunization. J. Am. Med. Assoc. 1957, 164, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Doniach, D.; Roitt, I.M. Auto-immunity in Hashimoto’s disease and its implications. J. Clin. Endocrinol. Metab. 1957, 17, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Baumann, R.; Rubin, H. Autoimmune hemolytic anemia during pregnancy with hemolytic disease in the newborn. Blood 1973, 41, 293–297. [Google Scholar] [PubMed]
- Shibata, T.; Berney, T.; Reininger, L.; Chicheportiche, Y.; Ozaki, S.; Shirai, T.; Izui, S. Monoclonal anti-erythrocyte autoantibodies derived from NZB mice cause autoimmune hemolytic anemia by two distinct pathogenic mechanisms. Int. Immunol. 1990, 2, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Robson, H.N.; Walker, C.H.M. Congenital and neonatal thrombocytopenic purpura. Arch. Dis. Child. 1951, 26, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Karpatkin, S. Autoimmune thrombocytopenic purpura. Blood 1980, 56, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Godeau, B.; Porcher, R.; Fain, O.; Lefrère, F.; Fenaux, P.; Cheze, S.; Vekhoff, A.; Chauveheid, M.-P.; Stirnemann, J.; Galicier, L.; et al. Rituximab efficacy and safety in adult splenectomy candidates with chronic immune thrombocytopenic purpura: Results of a prospective multicenter phase 2 study. Blood 2008, 112, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Green, D.; Maize, J.C. Maternal pemphigus vulgaris with in vivo bound antibodies in the stillborn fetus. J. Am. Acad. Dermatol. 1982, 7, 388–392. [Google Scholar] [CrossRef]
- Hup, J.M.; Bruinsma, R.A.; Boersma, E.R.; de Jong, M.C. Neonatal pemphigus vulgaris: Transplacental transmission of antibodies. Pediatr. Dermatol. 1986, 3, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Moncada, B.; Kettelsen, S.; Hernández-Moctezuma, J.L.; Ramirez, F. Neonatal pemphigus vulgaris: Role of passively transferred pemphigus antibodies. Br. J. Dermatol. 1982, 106, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Storer, J.S.; Galen, W.K.; Nesbitt, L.T.; DeLeo, V.A. Neonatal pemphigus vulgaris. J. Am. Acad. Dermatol. 1982, 6, 929–932. [Google Scholar] [CrossRef]
- Campo-Voegeli, A.; Muñiz, F.; Mascaró, J.M.; García, F.; Casals, M.; Arimany, J.L.; Amagai, M.; Camps, A. Neonatal pemphigus vulgaris with extensive mucocutaneous lesions from a mother with oral pemphigus vulgaris. Br. J. Dermatol. 2002, 147, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Anhalt, G.J.; Labib, R.S.; Voorhees, J.J.; Beals, T.F.; Diaz, L.A. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N. Engl. J. Med. 1982, 306, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Roscoe, J.T.; Diaz, L.; Sampaio, S.A.; Castro, R.M.; Labib, R.S.; Takahashi, Y.; Patel, H.; Anhalt, G.J. Brazilian pemphigus foliaceus autoantibodies are pathogenic to BALB/c mice by passive transfer. J. Invest. Dermatol. 1985, 85, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Amagai, M. Pemphigus vulgaris and its active disease mouse model. Curr. Dir. Autoimmun. 2008, 10, 167–181. [Google Scholar] [PubMed]
- Kawasaki, H.; Tsunoda, K.; Hata, T.; Ishii, K.; Yamada, T.; Amagai, M. Synergistic pathogenic effects of combined mouse monoclonal anti-desmoglein 3 IgG antibodies on pemphigus vulgaris blister formation. J. Invest. Dermatol. 2006, 126, 2621–2630. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Harada, R.; Matsuo, I.; Shirakata, Y.; Hashimoto, K.; Amagai, M. In vitro keratinocyte dissociation assay for evaluation of the pathogenicity of anti-desmoglein 3 IgG autoantibodies in pemphigus vulgaris. J. Invest. Dermatol. 2005, 124, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.R.; Spigelman, Z.; Cavacini, L.A.; Posner, M.R. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N. Engl. J. Med. 2006, 355, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Gürcan, H.M.; Jeph, S.; Ahmed, A.R. Intravenous immunoglobulin therapy in autoimmune mucocutaneous blistering diseases: A review of the evidence for its efficacy and safety. Am. J. Clin. Dermatol. 2010, 11, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Chorzelski, T.P.; Jablonska, S.; Beutner, E.H.; Maciejowska, E.; Jarzabek-Chorzelska, M. Herpes gestations with identical lesions in the newborn. Passive transfer of the disease? Arch. Dermatol. 1976, 112, 1129–1131. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Minto, J.O.; Toole, J.W.; Medwidsky, W. Immunopathologic study of herpes gestationis in mother and infant. Arch. Dermatol. 1977, 113, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Sams, W.M.; Gleich, G.J. Failure to transfer bullous pemphigoid with serum from patients. Proc. Soc. Exp. Biol. Med. 1971, 136, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, M.T.; Licarete, E.; Sas, A.G.; Rados, A.M.; Lupan, I.; Chiriac, A.M.; Speth, H.; Pop-Vancia, V.; Domsa, I.; Sesarman, A.; et al. Passive transfer of collagen XVII-specific antibodies induces sustained blistering disease in adult mice. Orphanet J. Rare Dis. 2013, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, L.; Li, Z.; Berkowitz, P.; Zhao, M.; Li, N.; Rubenstein, D.S.; Diaz, L.A.; Liu, Z. The C5a receptor on mast cells is critical for the autoimmune skin-blistering disease bullous pemphigoid. J. Biol. Chem. 2011, 286, 15003–15009. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Betsuyaku, T.; Heimbach, L.; Li, N.; Rubenstein, D.; Shapiro, S.D.; An, L.; Giudice, G.J.; Diaz, L.A.; Senior, R.M.; et al. Neutrophil elastase cleaves the murine hemidesmosomal protein BP180/type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid. Matrix Biol. 2012, 31, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Diaz, L.A.; Troy, J.L.; Taylor, A.F.; Emery, D.J.; Fairley, J.A.; Giudice, G.J. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J. Clin. Invest. 1993, 92, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Sitaru, C.; Schmidt, E.; Petermann, S.; Munteanu, L.S.; Bröcker, E.-B.; Zillikens, D. Autoantibodies to bullous pemphigoid antigen 180 induce dermal-epidermal separation in cryosections of human skin. J. Invest. Dermatol. 2002, 118, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Egan, C.A.; Meadows, K.P.; Zone, J.J. Plasmapheresis as a steroid saving procedure in bullous pemphigoid. Int. J. Dermatol. 2000, 39, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Woodley, D.T.; Ram, R.; Doostan, A.; Bandyopadhyay, P.; Huang, Y.; Remington, J.; Hou, Y.; Keene, D.R.; Liu, Z.; Chen, M. Induction of epidermolysis bullosa acquisita in mice by passive transfer of autoantibodies from patients. J. Invest. Dermatol. 2006, 126, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Sitaru, C.; Mihai, S.; Otto, C.; Chiriac, M.T.; Hausser, I.; Dotterweich, B.; Saito, H.; Rose, C.; Ishiko, A.; Zillikens, D. Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen. J. Clin. Invest. 2005, 115, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Sitaru, C.; Kromminga, A.; Hashimoto, T.; Bröcker, E.B.; Zillikens, D. Autoantibodies to type VII collagen mediate Fcgamma-dependent neutrophil activation and induce dermal-epidermal separation in cryosections of human skin. Am. J. Pathol. 2002, 161, 301–311. [Google Scholar] [CrossRef]
- Furue, M.; Iwata, M.; Yoon, H.I.; Kubota, Y.; Ohto, H.; Kawashima, M.; Tsuchida, T.; Oohara, K.; Tamaki, K.; Kukita, A. Epidermolysis bullosa acquisita: Clinical response to plasma exchange therapy and circulating anti-basement membrane zone antibody titer. J. Am. Acad. Dermatol. 1986, 14, 873–878. [Google Scholar] [CrossRef]
- Volpe, R. Thyrotropin Receptor Autoantibodies. In Autoantibodies; Peter, J.B., Shoenfeld, Y., Eds.; Elsevier Science B.V: Philadelphia, PA, USA, 1996; pp. 822–829. [Google Scholar]
- Weetman, A.P.; McGregor, A.M. Autoimmune thyroid disease: Further developments in our understanding. Endocr. Rev. 1994, 15, 788–830. [Google Scholar] [PubMed]
- Matsuura, N.; Yamada, Y.; Nohara, Y.; Konishi, J.; Kasagi, K.; Endo, K.; Kojima, H.; Wataya, K. Familial neonatal transient hypothyroidism due to maternal TSH-binding inhibitor immunoglobulins. N. Engl. J. Med. 1980, 303, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.D. Long-acting thyroid stimulator: How receptor autoimmunity was discovered. Autoimmunity 1988, 1, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Glass, V.B. Effect of prolonged administration of parietal cell antibodies from patients with atrophic gastritis and pernicious anemia on the parietal cell mass and hydrochloric acid output in rats. Gastroenterology 1970, 58, 482–494. [Google Scholar] [PubMed]
- Burman, P.; Mårdh, S.; Norberg, L.; Karlsson, F.A. Parietal cell antibodies in pernicious anemia inhibit H+, K+-adenosine triphosphatase, the proton pump of the stomach. Gastroenterology 1989, 96, 1434–1438. [Google Scholar] [PubMed]
- Robinson, C.P.; Brayer, J.; Yamachika, S.; Esch, T.R.; Peck, A.B.; Stewart, C.A.; Peen, E.; Jonsson, R.; Humphreys-Beher, M.G. Transfer of human serum IgG to nonobese diabetic Igmu null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjögren’s syndrome. Proc. Natl. Acad. Sci. USA 1998, 95, 7538–7543. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jackson, M.W.; Maughan, V.; Cavill, D.; Smith, A.J.; Waterman, S.A.; Gordon, T.P. Passive transfer of Sjogren’s syndrome IgG produces the pathophysiology of overactive bladder. Arthritis Rheum. 2004, 50, 3637–3645. [Google Scholar] [CrossRef] [PubMed]
- Cavill, D.; Waterman, S.A.; Gordon, T.P. Antiidiotypic antibodies neutralize autoantibodies that inhibit cholinergic neurotransmission. Arthritis Rheum. 2003, 48, 3597–3602. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Jackson, M.W.; Wang, F.; Cavill, D.; Rischmueller, M.; Gordon, T.P. Neutralization of muscarinic receptor autoantibodies by intravenous immunoglobulin in Sjögren syndrome. Hum. Immunol. 2005, 66, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Morel, E.; Eymard, B.; Vernet-der Garabedian, B.; Pannier, C.; Dulac, O.; Bach, J.F. Neonatal myasthenia gravis: A new clinical and immunologic appraisal on 30 cases. Neurology 1988, 38, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Vernet-der Garabedian, B.; Lacokova, M.; Eymard, B.; Morel, E.; Faltin, M.; Zajac, J.; Sadovsky, O.; Dommergues, M.; Tripon, P.; Bach, J.F. Association of neonatal myasthenia gravis with antibodies against the fetal acetylcholine receptor. J. Clin. Invest. 1994, 94, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Toyka, K.V.; Drachman, D.B.; Griffin, D.E.; Pestronk, A.; Winkelstein, J.A.; Fishbeck, K.H.; Kao, I. Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. N. Engl. J. Med. 1977, 296, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kordas, G.; Lagoumintzis, G.; Sideris, S.; Poulas, K.; Tzartos, S.J. Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS ONE 2014, 9, e108327. [Google Scholar] [CrossRef] [PubMed]
- Tzartos, S.; Hochschwender, S.; Vasquez, P.; Lindstrom, J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J. Neuroimmunol. 1987, 15, 185–194. [Google Scholar] [CrossRef]
- Benveniste, O.; Hilton-Jones, D. The role of rituximab in the treatment of myasthenia gravis. Eur. Neurol. Rev. 2010, 5, 95. [Google Scholar]
- Thorlacius, S.; Lefvert, A.K.; Aarli, J.A.; Gilhus, N.E.; Halvorsen, K.; Hofstad, H.; Matre, R.; Tönder, O. Plasma exchange in myasthenia gravis: Effect on anti-AChR antibodies and other autoantibodies. Acta Neurol. Scand. 1986, 74, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Gwathmey, K.; Balogun, R.A.; Burns, T. Neurologic indications for therapeutic plasma exchange: 2013 update. J. Clin. Apheresis 2014, 29, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Reuner, U.; Kamin, G.; Ramantani, G.; Reichmann, H.; Dinger, J. Transient neonatal Lambert-Eaton syndrome. J. Neurol. 2008, 255, 1827–1828. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, H.; Engel, A.G.; Lang, B.; Newsom-Davis, J.; Vincent, A. Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc. Natl. Acad. Sci. USA 1983, 80, 7636–7640. [Google Scholar] [CrossRef] [PubMed]
- Lang, B.; Newsom-Davis, J.; Peers, C.; Prior, C.; Wray, D.W. The effect of myasthenic syndrome antibody on presynaptic calcium channels in the mouse. J. Physiol. (Lond.) 1987, 390, 257–270. [Google Scholar] [CrossRef]
- Kim, Y.I. Passive transfer of the Lambert-Eaton myasthenic syndrome: Neuromuscular transmission in mice injected with plasma. Muscle Nerve 1985, 8, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Wooley, P.H.; Luthra, H.S.; Singh, S.K.; Huse, A.R.; Stuart, J.M.; David, C.S. Passive transfer of arthritis to mice by injection of human anti-type II collagen antibody. Mayo Clin. Proc. 1984, 59, 737–743. [Google Scholar] [CrossRef]
- Nandakumar, K.S.; Svensson, L.; Holmdahl, R. Collagen type II-specific monoclonal antibody-induced arthritis in mice: Description of the disease and the influence of age, sex, and genes. Am. J. Pathol. 2003, 163, 1827–1837. [Google Scholar] [CrossRef]
- Amirahmadi, S.F.; Whittingham, S.; Crombie, D.E.; Nandakumar, K.S.; Holmdahl, R.; Mackay, I.R.; van Damme, M.-P.; Rowley, M.J. Arthritogenic anti-type II collagen antibodies are pathogenic for cartilage-derived chondrocytes independent of inflammatory cells. Arthritis Rheum. 2005, 52, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Amirahmadi, S.F.; Pho, M.H.; Gray, R.E.; Crombie, D.E.; Whittingham, S.F.; Zuasti, B.B.; van Damme, M.-P.; Rowley, M.J. An arthritogenic monoclonal antibody to type II collagen, CII-C1, impairs cartilage formation by cultured chondrocytes. Immunol. Cell Biol. 2004, 82, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Crombie, D.E.; Turer, M.; Zuasti, B.B.; Wood, B.; McNaughton, D.; Nandakumar, K.S.; Holmdahl, R.; van Damme, M.-P.; Rowley, M.J. Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro. Arthritis Res. Ther. 2005, 7, R927–R937. [Google Scholar] [CrossRef] [PubMed]
- Croxford, A.M.; Crombie, D.; McNaughton, D.; Holmdahl, R.; Nandakumar, K.S.; Rowley, M.J. Specific antibody protection of the extracellular cartilage matrix against collagen antibody-induced damage. Arthritis Rheum. 2010, 62, 3374–3384. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, K.S.; Bajtner, E.; Hill, L.; Böhm, B.; Rowley, M.J.; Burkhardt, H.; Holmdahl, R. Arthritogenic antibodies specific for a major type II collagen triple-helical epitope bind and destabilize cartilage independent of inflammation. Arthritis Rheum. 2008, 58, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.C.W.; Szczepanski, L.; Szechinski, J.; Filipowicz-Sosnowska, A.; Emery, P.; Close, D.R.; Stevens, R.M.; Shaw, T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2572–2581. [Google Scholar] [CrossRef] [PubMed]
- Dwosh, I.L.; Giles, A.R.; Ford, P.M.; Pater, J.L.; Anastassiades, T.P. Plasmapheresis therapy in rheumatoid arthritis. A controlled, double-blind, crossover trial. N. Engl. J. Med. 1983, 308, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.D.; Fastier, F.N.; Howie, J.B.; Kennedy, T.H.; Kilpatrick, J.A.; Stewart, R.D. Stimulation of the human thyroid by infusions of plasma containing LATS protector. J. Clin. Endocrinol. Metab. 1974, 39, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Appel, S.H.; Engelhardt, J.I.; Garcia, J.; Stefani, E. Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. Proc. Natl. Acad. Sci. USA 1991, 88, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Terato, K.; Hasty, K.A.; Reife, R.A.; Cremer, M.A.; Kang, A.H.; Stuart, J.M. Induction of arthritis with monoclonal antibodies to collagen. J. Immunol. 1992, 148, 2103–2108. [Google Scholar] [PubMed]
- Anhalt, G.J.; Till, G.O.; Diaz, L.A.; Labib, R.S.; Patel, H.P.; Eaglstein, N.F. Defining the role of complement in experimental pemphigus vulgaris in mice. J. Immunol. 1986, 137, 2835–2840. [Google Scholar] [PubMed]
- España, A.; Diaz, L.A.; Mascaró, J.M.; Giudice, G.J.; Fairley, J.A.; Till, G.O.; Liu, Z. Mechanisms of acantholysis in pemphigus foliaceus. Clin. Immunol. Immunopathol. 1997, 85, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.S.; Ishii, K.; Kacir, S.; Lin, C.; Li, H.; Hanakawa, Y.; Tsunoda, K.; Amagai, M.; Stanley, J.R.; Siegel, D.L. Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. J. Clin. Invest. 2005, 115, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Rock, B.; Labib, R.S.; Diaz, L.A. Monovalent Fab’ immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice. J. Clin. Invest. 1990, 85, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Graus, Y.F.; de Baets, M.H.; van Breda Vriesman, P.J.; Burton, D.R. Anti-acetylcholine receptor Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. Immunol. Lett. 1997, 57, 59–62. [Google Scholar] [CrossRef]
- Graus, Y.F.; de Baets, M.H.; Parren, P.W.; Berrih-Aknin, S.; Wokke, J.; van Breda Vriesman, P.J.; Burton, D.R. Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J. Immunol. 1997, 158, 1919–1929. [Google Scholar] [PubMed]
- Nagel, A.; Engel, A.G.; Lang, B.; Newsom-Davis, J.; Fukuoka, T. Lambert-Eaton myasthenic syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann. Neurol. 1988, 24, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Peers, C.; Johnston, I.; Lang, B.; Wray, D. Cross-linking of presynaptic calcium channels: A mechanism of action for Lambert-Eaton myasthenic syndrome antibodies at the mouse neuromuscular junction. Neurosci. Lett. 1993, 153, 45–48. [Google Scholar] [CrossRef]
- Burkovitz, A.; Sela-Culang, I.; Ofran, Y. Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity. FEBS J. 2014, 281, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.A.; Ganesan, S.; Papp, S.; van Vlijmen, H.W.T. Trends in antibody sequence changes during the somatic hypermutation process. J. Immunol. 2006, 177, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Hampe, C.S. Protective role of anti-idiotypic antibodies in autoimmunity—Lessons for type 1 diabetes. Autoimmunity 2012, 45, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Hashira, S.; Okitsu-Negishi, S.; Yoshino, K. Placental transfer of IgG subclasses in a Japanese population. Pediatr. Int. 2000, 42, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Bindon, C.I.; Hale, G.; Brüggemann, M.; Waldmann, H. Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J. Exp. Med. 1988, 168, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Bruhns, P.; Iannascoli, B.; England, P.; Mancardi, D.A.; Fernandez, N.; Jorieux, S.; Daëron, M. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 2009, 113, 3716–3725. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Bruhns, P.; Saeys, Y.; Hammad, H.; Lambrecht, B.N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 2014, 14, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.R.; Winter, G. The binding site for C1q on IgG. Nature 1988, 332, 738–740. [Google Scholar] [CrossRef] [PubMed]
- Karsten, C.M.; Köhl, J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 2012, 217, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Nimmerjahn, F.; Ravetch, J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Azeredo da Silveira, S.; Kikuchi, S.; Fossati-Jimack, L.; Moll, T.; Saito, T.; Verbeek, J.S.; Botto, M.; Walport, M.J.; Carroll, M.; Izui, S. Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J. Exp. Med. 2002, 195, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Baudino, L.; Azeredo da Silveira, S.; Nakata, M.; Izui, S. Molecular and cellular basis for pathogenicity of autoantibodies: Lessons from murine monoclonal autoantibodies. Springer Semin. Immunopathol. 2006, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Fossati-Jimack, L.; Reininger, L.; Chicheportiche, Y.; Clynes, R.; Ravetch, J.V.; Honjo, T.; Izui, S. High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. J. Exp. Med. 1999, 190, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Fossati-Jimack, L.; Ioan-Facsinay, A.; Reininger, L.; Chicheportiche, Y.; Watanabe, N.; Saito, T.; Hofhuis, F.M.; Gessner, J.E.; Schiller, C.; Schmidt, R.E.; et al. Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcgamma receptor III. J. Exp. Med. 2000, 191, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.A.; Mosier, D.R.; Zou, L.L.; Siklós, L.; Alexianu, M.E.; Engelhardt, J.I.; Beers, D.R.; Le, W.; Appel, S.H. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons. J. Neurosci. Res. 2002, 69, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Okun, E.; Mattson, M.P.; Arumugam, T.V. Involvement of Fc Receptors in Disorders of the Central Nervous System. NeuroMol. Med. 2010, 12, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Kaetzel, C.S. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 2005, 206, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Shah, U.; Dickinson, B.L.; Blumberg, R.S.; Simister, N.E.; Lencer, W.I.; Walker, W.A. Distribution of the IgG Fc receptor, FcRn, in the human fetal intestine. Pediatr. Res. 2003, 53, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Simister, N.E. Placental transport of immunoglobulin G. Vaccine 2003, 21, 3365–3369. [Google Scholar] [CrossRef]
- Kuo, T.T.; Baker, K.; Yoshida, M.; Qiao, S.-W.; Aveson, V.G.; Lencer, W.I.; Blumberg, R.S. Neonatal Fc receptor: From immunity to therapeutics. J. Clin. Immunol. 2010, 30, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Vaglio, A.; Bruschi, M.; Sinico, R.A.; Cavagna, L.; Moroni, G.; Franceschini, F.; Allegri, L.; Pratesi, F.; Migliorini, P.; et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmun. Rev. 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Galetti, M.; Sinico, R.A.; Moroni, G.; Bonanni, A.; Radice, A.; Tincani, A.; Pratesi, F.; Migliorini, P.; Murtas, C.; et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo (2): Planted antigens. J. Am. Soc. Nephrol. 2015, 26. [Google Scholar] [CrossRef] [PubMed]
- Mannik, M.; Merrill, C.E.; Stamps, L.D.; Wener, M.H. Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J. Rheumatol. 2003, 30, 1495–1504. [Google Scholar] [PubMed]
- Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2002, 2, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Amagai, M.; Nishikawa, T.; Nousari, H.C.; Anhalt, G.J.; Hashimoto, T. Antibodies against desmoglein 3 (pemphigus vulgaris antigen) are present in sera from patients with paraneoplastic pemphigus and cause acantholysis in vivo in neonatal mice. J. Clin. Invest. 1998, 102, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Ishiko, A.; Ota, T.; Tsunoda, K.; Amagai, M.; Nishikawa, T. IgG binds to desmoglein 3 in desmosomes and causes a desmosomal split without keratin retraction in a pemphigus mouse model. J. Invest. Dermatol. 2004, 122, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Seiffert-Sinha, K.; Yang, R.; Fung, C.K.; Lai, K.W.; Patterson, K.C.; Payne, A.S.; Xi, N.; Sinha, A.A. Nanorobotic investigation identifies novel visual, structural and functional correlates of autoimmune pathology in a blistering skin disease model. PLoS ONE 2014, 9, e106895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Aoki, V.; Hans-Filho, G.; Rivitti, E.A.; Diaz, L.A. The role of intramolecular epitope spreading in the pathogenesis of endemic pemphigus foliaceus (fogo selvagem). J. Exp. Med. 2003, 197, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, M.; Futei, Y.; Fujii, Y.; Iwasaki, T.; Nishikawa, T.; Amagai, M. Dominant autoimmune epitopes recognized by pemphigus antibodies map to the N-terminal adhesive region of desmogleins. J. Immunol. 2001, 167, 5439–5448. [Google Scholar] [CrossRef] [PubMed]
- Bhol, K.C.; Ahmed, A.R. Production of non-pathogenic human monoclonal antibodies to desmoglein 3 from pemphigus vulgaris patient. Autoimmunity 2002, 35, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.-W.; Cavacini, L.A.; Bhol, K.C.; Lin, M.-S.; Kumar, M.; Duval, M.; Posner, M.R.; Ahmed, A.R. Pathogenic human monoclonal antibody against desmoglein 3. Clin. Immunol. 2006, 120, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.P.; Anderson, J.E.; Borgwardt, J.E.; Hashimoto, T.; Stanley, J.R.; Green, K.J. Pemphigus sera recognize conformationally sensitive epitopes in the amino-terminal region of desmoglein-1. J. Invest. Dermatol. 1995, 105, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Giudice, G.J.; Emery, D.J.; Diaz, L.A. Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP180. J. Invest. Dermatol. 1992, 99, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Giudice, G.J.; Emery, D.J.; Zelickson, B.D.; Anhalt, G.J.; Liu, Z.; Diaz, L.A. Bullous pemphigoid and herpes gestationis autoantibodies recognize a common non-collagenous site on the BP180 ectodomain. J. Immunol. 1993, 151, 5742–5750. [Google Scholar] [CrossRef]
- Lin, M.S.; Gharia, M.; Fu, C.L.; Olague-Marchan, M.; Hacker, M.; Harman, K.E.; Bhogal, B.S.; Black, M.M.; Diaz, L.A.; Giudice, G.J. Molecular mapping of the major epitopes of BP180 recognized by herpes gestationis autoantibodies. Clin. Immunol. 1999, 92, 285–292. [Google Scholar]
- Zillikens, D.; Rose, P.A.; Balding, S.D.; Liu, Z.; Olague-Marchan, M.; Diaz, L.A.; Giudice, G.J. Tight clustering of extracellular BP180 epitopes recognized by bullous pemphigoid autoantibodies. J. Invest. Dermatol. 1997, 109, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Woodley, D.T.; Chen, M. Epidermolysis bullosa acquisita. Clin. Dermatol. 2012, 30, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Borradori, L.; Caldwell, J.B.; Briggaman, R.A.; Burr, C.E.; Gammon, W.R.; James, W.D.; Yancey, K.B. Passive transfer of autoantibodies from a patient with mutilating epidermolysis bullosa acquisita induces specific alterations in the skin of neonatal mice. Arch. Dermatol. 1995, 131, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, T.; Nashiro, K.; Tsuchida, T.; Seki, Y.; Tamaki, K. Administration of IgG fraction of epidermolysis bullosa acquisita (EBA) serum into mice. J. Dermatol. 1988, 15, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Csorba, K.; Chiriac, M.T.; Florea, F.; Ghinia, M.G.; Licarete, E.; Rados, A.; Sas, A.; Vuta, V.; Sitaru, C. Blister-inducing antibodies target multiple epitopes on collagen VII in mice. J. Cell. Mol. Med. 2014, 18, 1727–1739. [Google Scholar] [CrossRef] [PubMed]
- Sitaru, C.; Mihai, S.; Zillikens, D. The relevance of the IgG subclass of autoantibodies for blister induction in autoimmune bullous skin diseases. Arch. Dermatol. Res. 2007, 299, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.C.; Hamilton, R.G.; Jordon, R.E. Subclass distribution of human IgG autoantibodies in pemphigus. J. Clin. Immunol. 1988, 8, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Rock, B.; Martins, C.R.; Theofilopoulos, A.N.; Balderas, R.S.; Anhalt, G.J.; Labib, R.S.; Futamura, S.; Rivitti, E.A.; Diaz, L.A. The pathogenic effect of IgG4 autoantibodies in endemic pemphigus foliaceus (fogo selvagem). N. Engl. J. Med. 1989, 320, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.; Thoma-Uszynski, S.; Hunziker, T.; Bernard, P.; Koebnick, C.; Stauber, A.; Schuler, G.; Borradori, L.; Hertl, M. Severity and phenotype of bullous pemphigoid relate to autoantibody profile against the NH2- and COOH-terminal regions of the BP180 ectodomain. J. Invest. Dermatol. 2002, 119, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, F.A.; Burman, P.; Lööf, L.; Mårdh, S. Major parietal cell antigen in autoimmune gastritis with pernicious anemia is the acid-producing H+,K+-adenosine triphosphatase of the stomach. J. Clin. Invest. 1988, 81, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Toh, B.H.; Gleeson, P.A.; Simpson, R.J.; Moritz, R.L.; Callaghan, J.M.; Goldkorn, I.; Jones, C.M.; Martinelli, T.M.; Mu, F.T.; Humphris, D.C. The 60- to 90-kDa parietal cell autoantigen associated with autoimmune gastritis is a beta subunit of the gastric H+/K(+)-ATPase (proton pump). Proc. Natl. Acad. Sci. USA 1990, 87, 6418–6422. [Google Scholar] [CrossRef] [PubMed]
- Guéant, J.L.; Safi, A.; Aimone-Gastin, I.; Rabesona, H.; Bronowicki, J.P.; Plénat, F.; Bigard, M.A.; Haertlé, T. Autoantibodies in pernicious anemia type I patients recognize sequence 251–256 in human intrinsic factor. Proc. Assoc. Am. Phys. 1997, 109, 462–469. [Google Scholar] [PubMed]
- Andersen, C.B.F.; Madsen, M.; Storm, T.; Moestrup, S.K.; Andersen, G.R. Structural basis for receptor recognition of vitamin-B(12)-intrinsic factor complexes. Nature 2010, 464, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Schade, S.G.; Feick, P.; Muckerheide, M.; Schilling, R.F. Occurrence in gastric juice of antibody to a complex of intrinsic factor and vitamin B12. N. Engl. J. Med. 1966, 275, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.S.; Chanarin, I. Dissociation of intrinsic factor from its antibody: Application to study of pernicious anaemia gastric juice specimens. Br. Med. J. 1969, 1, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Burman, P.; Kämpe, O.; Kraaz, W.; Lööf, L.; Smolka, A.; Karlsson, A.; Karlsson-Parra, A. A study of autoimmune gastritis in the postpartum period and at a 5-year follow-up. Gastroenterology 1992, 103, 934–942. [Google Scholar] [PubMed]
- Alonso, N.; Granada, M.L.; Soldevila, B.; Salinas, I.; Joaquin, C.; Reverter, J.L.; Juncà, J.; Martínez Cáceres, E.M.; Sanmartí, A. Serum autoimmune gastritis markers, pepsinogen I and parietal cell antibodies, in patients with type 1 diabetes mellitus: A 5-year prospective study. J. Endocrinol. Invest. 2011, 34, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Toh, B.-H.; Chan, J.; Kyaw, T.; Alderuccio, F. Cutting edge issues in autoimmune gastritis. Clin. Rev. Allergy Immunol. 2012, 42, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Di Sabatino, A.; Lenti, M.V.; Giuffrida, P.; Vanoli, A.; Corazza, G.R. New insights into mechanisms underlying autoimmune diseases of the gastrointestinal tract. Autoimmun. Rev. 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- Van Venrooij, W.J.; Zendman, A.J.W.; Pruijn, G.J.M. Autoantibodies to citrullinated antigens in (early) rheumatoid arthritis. Autoimmun. Rev. 2006, 6, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.D.; Rowley, M.J.; Stockman, A.; Muirden, K.D.; Mackay, I.R. Specificity of antibodies to type II collagen in early rheumatoid arthritis. J. Rheumatol. 1994, 21, 1186–1191. [Google Scholar] [PubMed]
- Cook, A.D.; Gray, R.; Ramshaw, J.; Mackay, I.R.; Rowley, M.J. Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Res. Ther. 2004, 6, R477–R483. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Tsuji, M.; Kitamura, A.; Murota, K. The diagnostic significance of anti-type II collagen antibody assay in rheumatoid arthritis. Int. Orthop. 1992, 16, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.S.; Black, C.M.; Duance, V.C.; Jones, V.E.; Jacoby, R.K.; Welsh, K.I. Disappearing collagen antibodies in rheumatoid arthritis. Lancet 1985, 2, 501–502. [Google Scholar] [CrossRef]
- Stuart, J.M.; Dixon, F.J. Serum transfer of collagen-induced arthritis in mice. J. Exp. Med. 1983, 158, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Holmdahl, R.; Rubin, K.; Klareskog, L.; Larsson, E.; Wigzell, H. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis Rheum. 1986, 29, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Kagari, T.; Tanaka, D.; Doi, H.; Shimozato, T. Essential role of Fc gamma receptors in anti-type II collagen antibody-induced arthritis. J. Immunol. 2003, 170, 4318–4324. [Google Scholar] [CrossRef] [PubMed]
- Kagari, T.; Doi, H.; Shimozato, T. The importance of IL-1 beta and TNF-alpha, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J. Immunol. 2002, 169, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, D.; Kagari, T.; Doi, H.; Shimozato, T. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 2006, 119, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kristan, J.; Hao, L.; Lenkoski, C.S.; Shen, Y.; Matis, L.A. A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J. Immunol. 2000, 164, 4340–4347. [Google Scholar] [CrossRef] [PubMed]
- Watson, W.C.; Brown, P.S.; Pitcock, J.A.; Townes, A.S. Passive transfer studies with type II collagen antibody in B10.D2/old and new line and C57Bl/6 normal and beige (Chediak-Higashi) strains: Evidence of important roles for C5 and multiple inflammatory cell types in the development of erosive arthritis. Arthritis Rheum. 1987, 30, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.P.; Picarella, D.; Burwell, T.; Delaney, T.; Croci, A.; Avitahl, N.; Humbles, A.A.; Gutierrez-Ramos, J.-C.; Briskin, M.; Gerard, C.; et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J. Exp. Med. 2002, 196, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Manivel, V.A.; Sohrabian, A.; Wick, M.C.; Mullazehi, M.; Håkansson, L.D.; Rönnelid, J. Anti-type II collagen immune complex-induced granulocyte reactivity is associated with joint erosions in RA patients with anti-collagen antibodies. Arthritis Res. Ther. 2015, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Mullazehi, M.; Mathsson, L.; Lampa, J.; Rönnelid, J. Surface-bound anti-type II collagen-containing immune complexes induce production of tumor necrosis factor alpha, interleukin-1beta, and interleukin-8 from peripheral blood monocytes via Fc gamma receptor IIA: A potential pathophysiologic mechanism for humoral anti-type II collagen immunity in arthritis. Arthritis Rheum. 2006, 54, 1759–1771. [Google Scholar] [PubMed]
- Mullazehi, M.; Mathsson, L.; Lampa, J.; Rönnelid, J. High anti-collagen type-II antibody levels and induction of proinflammatory cytokines by anti-collagen antibody-containing immune complexes in vitro characterise a distinct rheumatoid arthritis phenotype associated with acute inflammation at the time of disease onset. Ann. Rheum. Dis. 2007, 66, 537–541. [Google Scholar] [PubMed]
- Schulte, S.; Unger, C.; Mo, J.A.; Wendler, O.; Bauer, E.; Frischholz, S.; von der Mark, K.; Kalden, J.R.; Holmdahl, R.; Burkhardt, H. Arthritis-related B cell epitopes in collagen II are conformation-dependent and sterically privileged in accessible sites of cartilage collagen fibrils. J. Biol. Chem. 1998, 273, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Kraetsch, H.G.; Unger, C.; Wernhoff, P.; Schneider, C.; Kalden, J.R.; Holmdahl, R.; Burkhardt, H. Cartilage-specific autoimmunity in rheumatoid arthritis: Characterization of a triple helical B cell epitope in the integrin-binding-domain of collagen type II. Eur. J. Immunol. 2001, 31, 1666–1673. [Google Scholar] [CrossRef]
- Gray, R.E.; Seng, N.; Mackay, I.R.; Rowley, M.J. Measurement of antibodies to collagen II by inhibition of collagen fibril formation in vitro. J. Immunol. Methods 2004, 285, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.J.; Nandakumar, K.S.; Holmdahl, R. The role of collagen antibodies in mediating arthritis. Mod. Rheumatol. 2008, 18, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Hutamekalin, P.; Saito, T.; Yamaki, K.; Mizutani, N.; Brand, D.D.; Waritani, T.; Terato, K.; Yoshino, S. Collagen antibody-induced arthritis in mice: Development of a new arthritogenic 5-clone cocktail of monoclonal anti-type II collagen antibodies. J. Immunol. Methods 2009, 343, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, K.S.; Holmdahl, R. Efficient promotion of collagen antibody induced arthritis (CAIA) using four monoclonal antibodies specific for the major epitopes recognized in both collagen induced arthritis and rheumatoid arthritis. J. Immunol. Methods 2005, 304, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Bajtner, E.; Nandakumar, K.S.; Engström, A.; Holmdahl, R. Chronic development of collagen-induced arthritis is associated with arthritogenic antibodies against specific epitopes on type II collagen. Arthritis Res. Ther. 2005, 7, R1148–R1157. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, H.; Koller, T.; Engström, A.; Nandakumar, K.S.; Turnay, J.; Kraetsch, H.G.; Kalden, J.R.; Holmdahl, R. Epitope-specific recognition of type II collagen by rheumatoid arthritis antibodies is shared with recognition by antibodies that are arthritogenic in collagen-induced arthritis in the mouse. Arthritis Rheum. 2002, 46, 2339–2348. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Yamada, R.; Suzuki, A.; Sawada, T.; Yoshino, S.; Tokuhiro, S.; Yamamoto, K. Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxf.) 2005, 44, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Foulquier, C.; Sebbag, M.; Clavel, C.; Chapuy-Regaud, S.; Badine, R.A.; Méchin, M.-C.; Vincent, C.; Nachat, R.; Yamada, M.; Takahara, H.; et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007, 56, 3541–3553. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, P.K.; Silver, J.; Winchester, R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987, 30, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Heesters, B.A.; Chatterjee, P.; Kim, Y.-A.; Gonzalez, S.F.; Kuligowski, M.P.; Kirchhausen, T.; Carroll, M.C. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 2013, 38, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Sokolove, J.; Johnson, D.S.; Lahey, L.J.; Wagner, C.A.; Cheng, D.; Thiele, G.M.; Michaud, K.; Sayles, H.; Reimold, A.M.; Caplan, L.; et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheum. 2014, 66, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Manoussakis, M.; Talal, N.; Moutsopoulos, H.M. Sjogren’s Syndrome. In The Autoimmune Diseases, 2nd ed.; Rose, N.R., Mackay, I.R., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 381–404. [Google Scholar]
- Gordon, T.P.; Greer, M.; Reynolds, P.; Guidolin, A.; McNeilage, L.J. Estimation of amounts of anti-La(SS-B) antibody directed against immunodominant epitopes of the La(SS-B) autoantigen. Clin. Exp. Immunol. 1991, 85, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Bacman, S.; Sterin-Borda, L.; Camusso, J.J.; Arana, R.; Hubscher, O.; Borda, E. Circulating antibodies against rat parotid gland M3 muscarinic receptors in primary Sjögren’s syndrome. Clin. Exp. Immunol. 1996, 104, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Waterman, S.A.; Gordon, T.P.; Rischmueller, M. Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjögren’s syndrome. Arthritis Rheum. 2000, 43, 1647–1654. [Google Scholar] [CrossRef]
- Jackson, M.W.; Gordon, T.P.; Waterman, S.A. Disruption of intestinal motility by a calcium channel-stimulating autoantibody in type 1 diabetes. Gastroenterology 2004, 126, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.J.; Stanbury, J.; Venn, N.; Hasdimir, B.; Rogers, S.N.; Smith, P.M. Antimuscarinic antibodies in primary Sjögren’s syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 2006, 54, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, H.; Matsumoto, I.; Wakamatsu, E.; Nakamura, Y.; Iizuka, M.; Hayashi, T.; Goto, D.; Ito, S.; Sumida, T. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren’s syndrome. Clin. Exp. Immunol. 2010, 162, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, N.-Y.; Li, J.; Hwang, S.-M.; Choi, S.-Y.; Lee, S.J.; Oh, S.-B.; Kim, J.-S.; Lee, E.B.; Song, Y.W.; Park, K. Functional epitope of muscarinic type 3 receptor which interacts with autoantibodies from Sjogren’s syndrome patients. Rheumatology (Oxf.) 2008, 47, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Shin, Y.; Choi, S.; Namkoong, E.; Kim, M.; Lee, J.; Song, Y.; Park, K. Effect of antimuscarinic autoantibodies in primary Sjögren’s syndrome. J. Dent. Res. 2015, 94, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Park, S.; Jackson, M.W. The inhibitory effects of antimuscarinic autoantibodies in the sera of primary Sjogren syndrome patients on the gastrointestinal motility. Mol. Immunol. 2013, 56, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Lennon, V.A. Neural antigen-specific autoimmune disorders. Immunol. Rev. 2012, 248, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Fregeau, D.R.; Davis, P.A.; Danner, D.J.; Ansari, A.; Coppel, R.L.; Dickson, E.R.; Gershwin, M.E. Antimitochondrial antibodies of primary biliary cirrhosis recognize dihydrolipoamide acyltransferase and inhibit enzyme function of the branched chain alpha-ketoacid dehydrogenase complex. J. Immunol. 1989, 142, 3815–3820. [Google Scholar] [PubMed]
- Stacey, D.W.; Skelly, S.; Watson, T.; Elkon, K.; Weissbach, H.; Brot, N. The inhibition of protein synthesis by IgG containing anti-ribosome P autoantibodies from systemic lupus erythematosus patients. Arch. Biochem. Biophys. 1988, 267, 398–403. [Google Scholar] [PubMed]
- Uibo, R.; Mackay, I.R.; Rowley, M.; Humphries, P.; Armstrong, J.M.; McNeilage, J. Inhibition of enzyme function by human autoantibodies to an autoantigen pyruvate dehydrogenase E2: Different epitope for spontaneous human and induced rabbit autoantibodies. Clin. Exp. Immunol. 1990, 80, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.L.; Katz, M.E.; Ogata, K.; Tan, E.M.; Cohen, S. Inhibition of nuclear DNA synthesis by an autoantibody to proliferating cell nuclear antigen/cyclin. Cell. Immunol. 1987, 110, 443–448. [Google Scholar] [CrossRef]
- Zanger, U.M.; Hauri, H.P.; Loeper, J.; Homberg, J.C.; Meyer, U.A. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II. Proc. Natl. Acad. Sci. USA 1988, 85, 8256–8260. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chapman, G.V.; Chen, S.L.; Melick, G.; Penny, R.; Breit, S.N. Antibody penetration of viable human cells. I. Increased penetration of human lymphocytes by anti-RNP IgG. Clin. Exp. Immunol. 1991, 84, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Lisi, S.; Sisto, M.; Soleti, R.; Saponaro, C.; Scagliusi, P.; D’Amore, M.; Saccia, M.; Maffione, A.B.; Mitolo, V. Fcgamma receptors mediate internalization of anti-Ro and anti-La autoantibodies from Sjögren’s syndrome and apoptosis in human salivary gland cell line A-253. J. Oral Pathol. Med. 2007, 36, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Lisi, S.; D’Amore, M.; Lofrumento, D.; Mitolo, V.; Frassanito, M.A.; Dammacco, F.; Scagliusi, P.; Sisto, M. Modulation of the Fcgamma receptors induced by anti-Ro and anti-La autoantibodies: Observations in salivary gland cells. Rheumatol. Int. 2008, 28, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Segovia, D.; Llorente, L. Antibody penetration into living cells. IV. Different effects of anti-native DNA and anti-ribonucleoprotein IgG on the cell cycle of activated T gamma cells. Clin. Exp. Immunol. 1983, 52, 365–371. [Google Scholar] [PubMed]
- Portales-Pérez, D.; Alarcón-Segovia, D.; Llorente, L.; Ruíz-Argüelles, A.; Abud-Mendoza, C.; Baranda, L.; de la Fuente, H.; Ternynck, T.; González-Amaro, R. Penetrating anti-DNA monoclonal antibodies induce activation of human peripheral blood mononuclear cells. J. Autoimmun. 1998, 11, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Rivadeneyra-Espinoza, L.; Ruiz-Argüelles, A. Cell-penetrating anti-native DNA antibodies trigger apoptosis through both the neglect and programmed pathways. J. Autoimmun. 2006, 26, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-Argüelles, A.; Pérez-romano, B.; Llorente, L.; Alarcón-Segovia, D.; Castellanos, J.M. Penetration of anti-DNA antibodies into immature live cells. J. Autoimmun. 1998, 11, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-C.; Sun, G.-H.; Lee, T.-P.; Huang, J.C.; Yu, C.-L.; Chen, C.-H.; Tang, S.-J.; Sun, K.-H. Arginines in the CDR of anti-dsDNA autoantibodies facilitate cell internalization via electrostatic interactions. Eur. J. Immunol. 2008, 38, 3178–3190. [Google Scholar] [CrossRef] [PubMed]
- Koscec, M.; Koren, E.; Wolfson-Reichlin, M.; Fugate, R.D.; Trieu, E.; Targoff, I.N.; Reichlin, M. Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J. Immunol. 1997, 159, 2033–2041. [Google Scholar] [PubMed]
- Malmborg, A.C.; Shultz, D.B.; Luton, F.; Mostov, K.E.; Richly, E.; Leung, P.S.; Benson, G.D.; Ansari, A.A.; Coppel, R.L.; Gershwin, M.E.; et al. Penetration and co-localization in MDCK cell mitochondria of IgA derived from patients with primary biliary cirrhosis. J. Autoimmun. 1998, 11, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Adamus, G. Autoantibody-induced apoptosis as a possible mechanism of autoimmune retinopathy. Autoimmun. Rev. 2003, 2, 63–68. [Google Scholar] [CrossRef]
- Tezel, G.; Wax, M.B. The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J. Neurosci. 2000, 20, 3552–3562. [Google Scholar] [PubMed]
- Reichlin, M. Cellular dysfunction induced by penetration of autoantibodies into living cells: Cellular damage and dysfunction mediated by antibodies to dsDNA and ribosomal P proteins. J. Autoimmun. 1998, 11, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Adamus, G.; Machnicki, M.; Elerding, H.; Sugden, B.; Blocker, Y.S.; Fox, D.A. Antibodies to recoverin induce apoptosis of photoreceptor and bipolar cells in vivo. J. Autoimmun. 1998, 11, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.P.; Stavenhagen, J.B.; Teeling, J.L. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer’s Disease. Front. Neurosci. 2014, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.F.; Elliott, P.J.; Gill, R.; Iversen, S.D.; Iversen, L.L. Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Science 1985, 228, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, J.E.; Burns, J.B.; Rose, J.W.; Jaeckle, K.A.; Clawson, S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol. 1995, 89, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, J.E.; Clawson, S.A.; Hill, K.E.; Wood, B.; Clardy, S.L.; Tsunoda, I.; Carlson, N.G. Anti-Yo antibody uptake and Interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: A possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS ONE 2015, 10, e0123446. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.E.; Clawson, S.A.; Rose, J.W.; Carlson, N.G.; Greenlee, J.E. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: Implications for human neurological disease and immunotherapeutics. J. Neuroinflamm. 2009, 6. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, K.; Woo, M.; Son, Y.; Baudry, M.; Thompson, R.F. IgG-immunostaining in the intact rabbit brain: Variable but significant staining of hippocampal and cerebellar neurons with anti-IgG. Brain Res. 2002, 956, 53–66. [Google Scholar] [CrossRef]
- Ternynck, T.; Avrameas, A.; Ragimbeau, J.; Buttin, G.; Avrameas, S. Immunochemical, structural and translocating properties of anti-DNA antibodies from (NZBxNZW)F1 mice. J. Autoimmun. 1998, 11, 511–521. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Futaki, S.; Harashima, H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: Ways to overcome endosomal entrapment. AAPS J. 2009, 11, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Melikov, K.; Chernomordik, L.V. Arginine-rich cell penetrating peptides: From endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 2005, 62, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A. Autoantibodies, lupus and the science of sabotage. Rheumatology (Oxf.) 2004, 43, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Greidinger, E.L. Apoptosis in lupus pathogenesis. Front. Biosci. J. Virtual Libr. 2001, 6, D1392–D1402. [Google Scholar] [CrossRef]
- Navratil, J.S.; Liu, C.-C.; Ahearn, J.M. Apoptosis and autoimmunity. Immunol. Res. 2006, 36, 3–12. [Google Scholar] [CrossRef]
- Varley, J.; Vincent, A.; Irani, S.R. Clinical and experimental studies of potentially pathogenic brain-directed autoantibodies: Current knowledge and future directions. J. Neurol. 2015, 262, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Baekkeskov, S.; Aanstoot, H.J.; Christgau, S.; Reetz, A.; Solimena, M.; Cascalho, M.; Folli, F.; Richter-Olesen, H.; De Camilli, P.; Camilli, P.D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990, 347, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.J.; Mackay, I.R.; Chen, Q.Y.; Knowles, W.J.; Zimmet, P.Z. Antibodies to glutamic acid decarboxylase discriminate major types of diabetes mellitus. Diabetes 1992, 41, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Solimena, M.; Folli, F.; Denis-Donini, S.; Comi, G.C.; Pozza, G.; De Camilli, P.; Vicari, A.M. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N. Engl. J. Med. 1988, 318, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Solimena, M.; Folli, F.; Aparisi, R.; Pozza, G.; De Camilli, P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N. Engl. J. Med. 1990, 322, 1555–1560. [Google Scholar] [CrossRef] [PubMed]
- Pittock, S.J.; Yoshikawa, H.; Ahlskog, J.E.; Tisch, S.H.; Benarroch, E.E.; Kryzer, T.J.; Lennon, V.A. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin. Proc. 2006, 81, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Saiz, A.; Blanco, Y.; Sabater, L.; González, F.; Bataller, L.; Casamitjana, R.; Ramió-Torrentà, L.; Graus, F. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: Diagnostic clues for this association. Brain J. Neurol. 2008, 131, 2553–2563. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C.; Li, M.; Fujii, M.; Jacobowitz, D.M. Stiff person syndrome: Quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology 2001, 57, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Foote, J.; Banga, J.P.; Hall, T.R.; Padoa, C.J.; Dalakas, M.C.; Ortqvist, E.; Hampe, C.S. Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients. J. Immunol. 2005, 175, 7755–7762. [Google Scholar] [CrossRef] [PubMed]
- Skorstad, G.; Hestvik, A.L.; Torjesen, P.; Alvik, K.; Vartdal, F.; Vandvik, B.; Holmøy, T. GAD65 IgG autoantibodies in stiff person syndrome: Clonality, avidity and persistence. Eur. J. Neurol. 2008, 15, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Alexopoulos, H.; McMenamin, M.; Carvajal-González, A.; Alexander, S.K.; Deacon, R.; Erdelyi, F.; Szabó, G.; Gabor, S.; Lang, B.; et al. Neuronal surface and glutamic acid decarboxylase autoantibodies in Nonparaneoplastic stiff person syndrome. JAMA Neurol. 2013, 70, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Rakocevic, G.; Raju, R.; Dalakas, M.C. Anti-glutamic acid decarboxylase antibodies in the serum and cerebrospinal fluid of patients with stiff-person syndrome: Correlation with clinical severity. Arch. Neurol. 2004, 61, 902–904. [Google Scholar] [CrossRef] [PubMed]
- Seissler, J.; Amann, J.; Mauch, L.; Haubruck, H.; Wolfahrt, S.; Bieg, S.; Richter, W.; Holl, R.; Heinze, E.; Northemann, W. Prevalence of autoantibodies to the 65- and 67-kD isoforms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J. Clin. Invest. 1993, 92, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Velloso, L.A.; Kämpe, O.; Hallberg, A.; Christmanson, L.; Betsholtz, C.; Karlsson, F.A. Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression. J. Clin. Invest. 1993, 91, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Jayakrishnan, B.; Hoke, D.E.; Langendorf, C.G.; Buckle, A.M.; Rowley, M.J. An analysis of the cross-reactivity of autoantibodies to GAD65 and GAD67 in diabetes. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Dinkel, K.; Meinck, H.M.; Jury, K.M.; Karges, W.; Richter, W. Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann. Neurol. 1998, 44, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Murinson, B.B. Stiff-person syndrome. Neurologist 2004, 10, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.; Seissler, J.; Northemann, W.; Wolfahrt, S.; Meinck, H.M.; Scherbaum, W.A. Cytoplasmic islet cell antibodies recognize distinct islet antigens in IDDM but not in stiff man syndrome. Diabetes 1993, 42, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Tuomi, T.; Rowley, M.J.; Knowles, W.J.; Chen, Q.Y.; McAnally, T.; Zimmet, P.Z.; Mackay, I.R. Autoantigenic properties of native and denatured glutamic acid decarboxylase: Evidence for a conformational epitope. Clin. Immunol. Immunopathol. 1994, 71, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, B.; Schlosser, M.; Lühder, F.; Strebelow, M.; Augstein, P.; Northemann, W.; Powers, A.C.; Ziegler, M. Murine monoclonal glutamic acid decarboxylase (GAD)65 antibodies recognize autoimmune-associated GAD epitope regions targeted in patients with type 1 diabetes mellitus and stiff-man syndrome. Acta Diabetol. 1996, 33, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.H.; Solimena, M.; Dirkx, R.; Hayday, A.; De Camilli, P. Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome. J. Exp. Med. 1993, 178, 2097–2106. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.; Shi, Y.; Baekkeskov, S. Autoreactive epitopes defined by diabetes-associated human monoclonal antibodies are localized in the middle and C-terminal domains of the smaller form of glutamate decarboxylase. Proc. Natl. Acad. Sci. USA 1993, 90, 2832–2836. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Namchuk, M.; Bugawan, T.; Fu, Q.; Jaffe, M.; Shi, Y.; Aanstoot, H.J.; Turck, C.W.; Erlich, H.; Lennon, V.; et al. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus. J. Exp. Med. 1994, 180, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Al-Bukhari, T.A.M.A.; Radford, P.M.; Bouras, G.; Davenport, C.; Trigwell, S.M.; Bottazzo, G.-F.; Lai, M.; Schwartz, H.L.; Tighe, P.J.; Todd, I. Distinct antigenic features of linear epitopes at the N-terminus and C-terminus of 65 kDa glutamic acid decarboxylase (GAD65): Implications for autoantigen modification during pathogenesis. Clin. Exp. Immunol. 2002, 130, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Padoa, C.J.; Banga, J.P.; Madec, A.-M.; Ziegler, M.; Schlosser, M.; Ortqvist, E.; Kockum, I.; Palmer, J.; Rolandsson, O.; Binder, K.A.; et al. Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs. Diabetes 2003, 52, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- Geis, C.; Weishaupt, A.; Grünewald, B.; Wultsch, T.; Reif, A.; Gerlach, M.; Dirkx, R.; Solimena, M.; Perani, D.; Heckmann, M.; et al. Human stiff-person syndrome IgG induces anxious behavior in rats. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Hampe, C.S.; Petrosini, L.; De Bartolo, P.; Caporali, P.; Cutuli, D.; Laricchiuta, D.; Foti, F.; Radtke, J.R.; Vidova, V.; Honnorat, J.; et al. Monoclonal antibodies to 65kDa glutamate decarboxylase induce epitope specific effects on motor and cognitive functions in rats. Orphanet J. Rare Dis. 2013, 8, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, N.; Grünewald, B.; Weishaupt, A.; Colaço, M.N.; Toyka, K.V.; Sommer, C.; Geis, C. Human Stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats. Exp. Neurol. 2013, 239, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Manto, M.; Honnorat, J.; Hampe, C.S.; Guerra-Narbona, R.; López-Ramos, J.C.; Delgado-García, J.M.; Saitow, F.; Suzuki, H.; Yanagawa, Y.; Mizusawa, H.; et al. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Front. Behav. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Manto, M.-U.; Laute, M.-A.; Aguera, M.; Rogemond, V.; Pandolfo, M.; Honnorat, J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann. Neurol. 2007, 61, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Whittingham, S.; Mathews, J.D.; Mackay, I.R.; Stocks, A.E.; Ungar, B.; Martin, F.I.R. Diabetes mellitus, autoimmunity, and ageing. Lancet 1971, 297, 763–767. [Google Scholar] [CrossRef]
- Marner, B.; Lernmark, A.; Ludvigsson, J.; MacKay, P.; Matsuba, I.; Nerup, J.; Rabinovitch, A. Islet cell antibodies in insulin-dependent (type 1) diabetic children treated with plasmapheresis. Diabetes Res. 1985, 2, 231–236. [Google Scholar] [PubMed]
- Dalakas, M.C.; Fujii, M.; Li, M.; Lutfi, B.; Kyhos, J.; McElroy, B. High-dose intravenous immune globulin for stiff-person syndrome. N. Engl. J. Med. 2001, 345, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Intravenous immunoglobulin in patients with anti-GAD antibody-associated neurological diseases and patients with inflammatory myopathies: Effects on clinicopathological features and immunoregulatory genes. Clin. Rev. Allergy Immunol. 2005, 29, 255–269. [Google Scholar] [CrossRef]
- Bacorro, E.A.; Tehrani, R. Stiff-person syndrome: Persistent elevation of glutamic acid decarboxylase antibodies despite successful treatment with rituximab. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2010, 16, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.R.; Das, M.; Isaacs, J.; Fawcett, P.R.W.; Bates, D. Treatment of stiff person syndrome with rituximab. J. Neurol. Neurosurg. Psychiatry 2005, 76, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Katoh, N.; Matsuda, M.; Ishii, W.; Morita, H.; Ikeda, S. Successful treatment with rituximab in a patient with stiff-person syndrome complicated by dysthyroid ophthalmopathy. Int. Med. Tokyo Jpn. 2010, 49, 237–241. [Google Scholar] [CrossRef]
- Rizzi, M.; Knoth, R.; Hampe, C.S.; Lorenz, P.; Gougeon, M.-L.; Lemercier, B.; Venhoff, N.; Ferrera, F.; Salzer, U.; Thiesen, H.-J.; et al. Long-lived plasma cells and memory B cells produce pathogenic anti-GAD65 autoantibodies in Stiff Person Syndrome. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Venhoff, N.; Rizzi, M.; Salzer, U.; Bossaller, L.; Thoden, J.; Eibel, H.; Walker, U.A. Monozygotic twins with stiff person syndrome and autoimmune thyroiditis: Rituximab inefficacy in a double-blind, randomised, placebo controlled crossover study. Ann. Rheum. Dis. 2009, 68, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Wu, H.; Osterhaus, G.; Wei, J.; Davis, K.; Sha, D.; Floor, E.; Hsu, C.-C.; Kopke, R.D.; Wu, J.-Y. Demonstration of functional coupling between gamma-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc. Natl. Acad. Sci. USA 2003, 100, 4293–4298. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.L.; Houser, C.R.; Tobin, A.J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 1991, 56, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Fenalti, G.; Law, R.H.P.; Buckle, A.M.; Langendorf, C.; Tuck, K.; Rosado, C.J.; Faux, N.G.; Mahmood, K.; Hampe, C.S.; Banga, J.P.; et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 2007, 14, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; de Graaf, R.A.; Martin, D.L.; Battaglioli, G.; Behar, K.L. Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo. J. Neurochem. 2006, 97, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Gresa-Arribas, N.; Ariño, H.; Martínez-Hernández, E.; Petit-Pedrol, M.; Sabater, L.; Saiz, A.; Dalmau, J.; Graus, F. Antibodies to inhibitory synaptic proteins in neurological syndromes associated with glutamic acid decarboxylase autoimmunity. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Piquer, S.; Belloni, C.; Lampasona, V.; Bazzigaluppi, E.; Vianello, M.; Giometto, B.; Bosi, E.; Bottazzo, G.F.; Bonifacio, E. Humoral autoimmune responses to glutamic acid decarboxylase have similar target epitopes and subclass that show titer-dependent disease association. Clin. Immunol. 2005, 117, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Madec, A.M.; Rousset, F.; Ho, S.; Robert, F.; Thivolet, C.; Orgiazzi, J.; Lebecque, S. Four IgG anti-islet human monoclonal antibodies isolated from a type 1 diabetes patient recognize distinct epitopes of glutamic acid decarboxylase 65 and are somatically mutated. J. Immunol. 1996, 156, 3541–3549. [Google Scholar] [PubMed]
- Richter, W.; Endl, J.; Eiermann, T.H.; Brandt, M.; Kientsch-Engel, R.; Thivolet, C.; Jungfer, H.; Scherbaum, W.A. Human monoclonal islet cell antibodies from a patient with insulin-dependent diabetes mellitus reveal glutamate decarboxylase as the target antigen. Proc. Natl. Acad. Sci. USA 1992, 89, 8467–8471. [Google Scholar] [CrossRef] [PubMed]
- Syren, K.; Lindsay, L.; Stoehrer, B.; Jury, K.; Lühder, F.; Baekkeskov, S.; Richter, W. Immune reactivity of diabetes-associated human monoclonal autoantibodies defines multiple epitopes and detects two domain boundaries in glutamate decarboxylase. J. Immunol. 1996, 157, 5208–5214. [Google Scholar] [PubMed]
- Tremble, J.; Morgenthaler, N.G.; Vlug, A.; Powers, A.C.; Christie, M.R.; Scherbaum, W.A.; Banga, J.P. Human B cells secreting immunoglobulin G to glutamic acid decarboxylase-65 from a nondiabetic patient with multiple autoantibodies and Graves’ disease: A comparison with those present in type 1 diabetes. J. Clin. Endocrinol. Metab. 1997, 82, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Fenalti, G.; Hampe, C.S.; Arafat, Y.; Law, R.H.P.; Banga, J.P.; Mackay, I.R.; Whisstock, J.C.; Buckle, A.M.; Rowley, M.J. COOH-terminal clustering of autoantibody and T-cell determinants on the structure of GAD65 provide insights into the molecular basis of autoreactivity. Diabetes 2008, 57, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Zimmet, P.; Mackay, I.R.; Koskela, P.; Vidgren, G.; Toivanen, L.; Tuomilehto-Wolf, E.; Kohtamäki, K.; Stengård, J.; Rowley, M.J. Antibodies to glutamic acid decarboxylase as predictors of insulin-dependent diabetes mellitus before clinical onset of disease. Lancet 1994, 343, 1383–1385. [Google Scholar] [CrossRef]
- Ishida, K.; Mitoma, H.; Song, S.Y.; Uchihara, T.; Inaba, A.; Eguchi, S.; Kobayashi, T.; Mizusawa, H. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann. Neurol. 1999, 46, 263–267. [Google Scholar] [CrossRef]
- Ishida, K.; Mitoma, H.; Mizusawa, H. Reversibility of cerebellar GABAergic synapse impairment induced by anti-glutamic acid decarboxylase autoantibodies. J. Neurol. Sci. 2008, 271, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, H.; Song, S.Y.; Ishida, K.; Yamakuni, T.; Kobayashi, T.; Mizusawa, H. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J. Neurol. Sci. 2000, 175, 40–44. [Google Scholar] [CrossRef]
- Mitoma, H.; Ishida, K.; Shizuka-Ikeda, M.; Mizusawa, H. Dual impairment of GABAA- and GABAB-receptor-mediated synaptic responses by autoantibodies to glutamic acid decarboxylase. J. Neurol. Sci. 2003, 208, 51–56. [Google Scholar] [CrossRef]
- Takenoshita, H.; Shizuka-Ikeda, M.; Mitoma, H.; Song, S.; Harigaya, Y.; Igeta, Y.; Yaguchi, M.; Ishida, K.; Shoji, M.; Tanaka, M.; et al. Presynaptic inhibition of cerebellar GABAergic transmission by glutamate decarboxylase autoantibodies in progressive cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry 2001, 70, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Gershwin, M.E.; Mackay, I.R.; Sturgess, A.; Coppel, R.L. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J. Immunol. 1987, 138, 3525–3531. [Google Scholar] [PubMed]
- Csepregi, A.; Szodoray, P.; Zeher, M. Do autoantibodies predict autoimmune liver disease in primary Sjögren’s syndrome? Data of 180 patients upon a 5 year follow-up. Scand. J. Immunol. 2002, 56, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Kisand, K.E.; Metsküla, K.; Kisand, K.V.; Kivik, T.; Gershwin, M.E.; Uibo, R. The follow-up of asymptomatic persons with antibodies to pyruvate dehydrogenase in adult population samples. J. Gastroenterol. 2001, 36, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.V.; Mitchison, H.C.; Palmer, J.M.; Jones, D.E.; Bassendine, M.F.; James, O.F. Natural history of early primary biliary cirrhosis. Lancet 1996, 348, 1399–1402. [Google Scholar] [CrossRef]
- Mitchison, H.C.; Bassendine, M.F.; Hendrick, A.; Bennett, M.K.; Bird, G.; Watson, A.J.; James, O.F. Positive antimitochondrial antibody but normal alkaline phosphatase: Is this primary biliary cirrhosis? Hepatology 1986, 6, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Lleo, A.; Invernizzi, P.; Mackay, I.-R.; Prince, H.; Zhong, R.-Q.; Gershwin, M.-E. Etiopathogenesis of primary biliary cirrhosis. World J. Gastroenterol. 2008, 14, 3328–3337. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.Y.; Naiyanetr, P.; Shu, S.-A.; Wang, J.; Yang, G.-X.; Kenny, T.P.; Guggenheim, K.C.; Butler, J.D.; Bowlus, C.; Tao, M.-H.; et al. Antimitochondrial antibody heterogeneity and the xenobiotic etiology of primary biliary cirrhosis. Hepatology 2013, 57, 1498–1508. [Google Scholar] [CrossRef] [PubMed]
- Rowley, M.J.; Maeda, T.; Mackay, I.R.; Loveland, B.E.; McMullen, G.L.; Tribbick, G.; Bernard, C.C. Differing epitope selection of experimentally-induced and natural antibodies to a disease-specific autoantigen, the E2 subunit of pyruvate dehydrogenase complex (PDC-E2). Int. Immunol. 1992, 4, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Van de Water, J.; Fregeau, D.; Davis, P.; Ansari, A.; Danner, D.; Leung, P.; Coppel, R.; Gershwin, M.E. Autoantibodies of primary biliary cirrhosis recognize dihydrolipoamide acetyltransferase and inhibit enzyme function. J. Immunol. 1988, 141, 2321–2324. [Google Scholar] [PubMed]
- Van de Water, J.; Gerson, L.B.; Ferrell, L.D.; Lake, J.R.; Coppel, R.L.; Batts, K.P.; Wiesner, R.H.; Gershwin, M.E. Immunohistochemical evidence of disease recurrence after liver transplantation for primary biliary cirrhosis. Hepatology 1996, 24, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Yip, T.T.; van de Water, J.; Gershwin, M.E.; Coppel, R.L.; Hutchens, T.W. Cryptic antigenic determinants on the extracellular pyruvate dehydrogenase complex/mimeotope found in primary biliary cirrhosis. A probe by affinity mass spectrometry. J. Biol. Chem. 1996, 271, 32825–32833. [Google Scholar] [CrossRef] [PubMed]
- Nishio, A.; van de Water, J.; Leung, P.S.; Joplin, R.; Neuberger, J.M.; Lake, J.; Björkland, A.; Tötterman, T.H.; Peters, M.; Worman, H.J.; et al. Comparative studies of antimitochondrial autoantibodies in sera and bile in primary biliary cirrhosis. Hepatology 1997, 25, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.M.; Doshi, M.; Kirby, J.A.; Yeaman, S.J.; Bassendine, M.F.; Jones, D.E. Secretory autoantibodies in primary biliary cirrhosis (PBC). Clin. Exp. Immunol. 2000, 122, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-Paz, S.; Leung, P.S.; van de Water, J.; Tanaka, A.; Munoz, S.; Bass, N.; Lindor, K.; Donald, P.J.; Coppel, R.L.; Ansari, A.A.; et al. Evidence for a locally driven mucosal response and the presence of mitochondrial antigens in saliva in primary biliary cirrhosis. Hepatology 2000, 31, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Nalbandian, G.; Leung, P.S.; Benson, G.D.; Munoz, S.; Findor, J.A.; Branch, A.D.; Coppel, R.L.; Ansari, A.A.; Gershwin, M.E. Mucosal immunity and primary biliary cirrhosis: Presence of antimitochondrial antibodies in urine. Hepatology 2000, 32, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Nezu, S.; Uegaki, S.; Mikami, M.; Okuyama, S.; Kawamura, N.; Aiso, M.; Gershwin, M.E.; Takahashi, S.-I.; Selmi, C.; et al. The clinical significance of IgA antimitochondrial antibodies in sera and saliva in primary biliary cirrhosis. Ann. NY Acad. Sci. 2007, 1107, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; van de Water, J.; Leung, P.; Odin, J.A.; Yamamoto, K.; Gores, G.J.; Mostov, K.; Ansari, A.A.; Coppel, R.L.; Shiratori, Y.; et al. Caspase induction by IgA antimitochondrial antibody: IgA-mediated biliary injury in primary biliary cirrhosis. Hepatology 2004, 39, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Selmi, C.; Meroni, P.L.; Gershwin, M.E. Primary biliary cirrhosis and Sjögren’s syndrome: Autoimmune epithelitis. J. Autoimmun. 2012, 39, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Tsuneyama, K.; van de Water, J.; Nakanuma, Y.; Cha, S.; Ansari, A.; Coppel, R.; Gershwin, M.E. Human combinatorial autoantibodies and mouse monoclonal antibodies to PDC-E2 produce abnormal apical staining of salivary glands in patients with coexistent primary biliary cirrhosis and Sjögren’s syndrome. Hepatology 1994, 20, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Lleo, A.; Selmi, C.; Invernizzi, P.; Podda, M.; Coppel, R.L.; Mackay, I.R.; Gores, G.J.; Ansari, A.A.; van de Water, J.; Gershwin, M.E. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009, 49, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.; Zhong, R.; Lleo, A.; Leung, P.S.C.; Bowlus, C.L.; Yang, G.-X.; Yang, C.-Y.; Coppel, R.L.; Ansari, A.A.; Cuebas, D.A.; et al. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology 2011, 54, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, P.K.; Behrens, T.W. Genetics of autoimmune diseases--disorders of immune homeostasis. Nat. Rev. Genet. 2006, 7, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Gregersen, P.K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 2011, 365, 1612–1623. [Google Scholar] [PubMed]
- Damoiseaux, J.; Andrade, L.E.; Fritzler, M.J.; Shoenfeld, Y. Autoantibodies 2015: From diagnostic biomarkers towards prediction, prognosis and prevention. Autoimmun. Rev. 2015, 14, 555–563. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowley, M.J.; Whittingham, S.F. The Role of Pathogenic Autoantibodies in Autoimmunity. Antibodies 2015, 4, 314-353. https://doi.org/10.3390/antib4040314
Rowley MJ, Whittingham SF. The Role of Pathogenic Autoantibodies in Autoimmunity. Antibodies. 2015; 4(4):314-353. https://doi.org/10.3390/antib4040314
Chicago/Turabian StyleRowley, Merrill J., and Senga F. Whittingham. 2015. "The Role of Pathogenic Autoantibodies in Autoimmunity" Antibodies 4, no. 4: 314-353. https://doi.org/10.3390/antib4040314
APA StyleRowley, M. J., & Whittingham, S. F. (2015). The Role of Pathogenic Autoantibodies in Autoimmunity. Antibodies, 4(4), 314-353. https://doi.org/10.3390/antib4040314