Village Level Provisioning Ecosystem Services and Their Values to Local Communities in the Peri-Urban Areas of Manila, The Philippines
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Methods
3. Results and Discussion
3.1. Multiple Provisioning Services from Peri-Urban Village Landscapes
3.2. Unique Challenges Faced in the Case Study
3.3. Drivers and Pressures of Changes of Provisioning Services in the Watershed
3.4. Policy Implications and Towards Pathways for Conservation
- Restoration and maintenance of peri-urban watershed environment depend on restoring the social-ecological relationships in the peri-urban landscape. Our results, through a case study of provisioning services, show that in order to achieve sustainable development in urban and peri-urban areas, local ES needs to be incorporated into land-use planning. This is indicated by the finding that the two villages in Jala-Jala entail a considerable diversity of resource use that in turn provides multiple benefits from the ecosystems for the local population. It is thus desirable that present accounting systems try to include this value of direct provisioning to the local communities to reduce the domino effect of the ever-expanding urbanization and/or land use changes such as sweeping mono-culture of cultured fisheries that feed urban areas.
- Mixed livelihood and agricultural practices in the lowlands of the tributary watersheds are supported by multiple provisioning services that still exist in degraded and fragmented agricultural and brush-land landscapes around Manila. It is therefore recommended that while planning from village levels, tributary watersheds be given adequate conservation measures for basin management with an ES approach. Moreover, it is reasonable to maintain and restore such mixed agricultural and brush-land landscapes in other parts of the Philippines as well to maintain the natural capital they possess for the balanced development in these areas.
3.5. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. Ecosyst. Ecol. New Synth. 2010, 1, 110–139. [Google Scholar]
- Avtar, R.; Suzuki, R.; Sawada, H. Natural Forest Biomass Estimation Based on Plantation Information Using PALSAR Data. PLoS ONE 2014, 9, e86121. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.; Martin, A. Assessing the contribution of ecosystem services to human wellbeing: A disaggregated study in western Rwanda. Ecol. Econ. 2015, 117, 62–72. [Google Scholar] [CrossRef]
- Avtar, R.; Kharrazi, A. Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources 2019, 8, 149. [Google Scholar] [CrossRef]
- Jax, K.; Barton, D.N.; Chan, K.M.; De Groot, R.; Doyle, U.; Eser, U.; Görg, C.; Gómez-Baggethun, E.; Griewald, Y.; Haber, W. Ecosystem services and ethics. Ecol. Econ. 2013, 93, 260–268. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Avtar, R.; Kumar, P.; Oono, A.; Saraswat, C.; Dorji, S.; Hlaing, Z. Potential application of remote sensing in monitoring ecosystem services of forests, mangroves and urban areas. Geocarto Int. 2016, 32, 874–885. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 30 September 2019).
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef]
- Marrero, M.; Puerto, M.; Rivero-Camacho, C.; Freire-Guerrero, A.; Solís-Guzmán, J. Assessing the economic impact and ecological footprint of construction and demolition waste during the urbanization of rural land. Resour. Conserv. Recycl. 2017, 117, 160–174. [Google Scholar] [CrossRef]
- Sukhdev, P.; Wittmer, H.; Schröter-Schlaack, C.; Nesshöver, C.; Bishop, J.; Brink, P.T.; Gundimeda, H.; Kumar, P.; Simmons, B. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; UNEP: Ginebra, Switzerland, 2010; ISBN 3-9813410-3-1. [Google Scholar]
- Ramaiah, M.; Avtar, R. Urban Green Spaces and Their Need in Cities of Rapidly Urbanizing India: A Review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef]
- Douglas, I. Environmental Change in Peri-Urban Areas and Human and Ecosystem Health. Geogr. Compass 2008, 2, 1095–1137. [Google Scholar] [CrossRef]
- Livesley, S.; Escobedo, F.; Morgenroth, J. The biodiversity of urban and peri-urban forests and the diverse ecosystem services they provide as socio-ecological systems. Forests 2016, 7, 291. [Google Scholar] [CrossRef]
- De Bon, H.; Parrot, L.; Moustier, P. Sustainable urban agriculture in developing countries. A review. Agron. Sustain. Dev. 2010, 30, 21–32. [Google Scholar] [CrossRef]
- Avtar, R.; Tripathi, S.; Kumar Aggarwal, A.; Kumar, P. Population-Urbanization-Energy Nexus: A Review. Resources 2019, 8, 136. [Google Scholar] [CrossRef]
- Nagendra, H.; Elinor, O. Applying the social-ecological system framework to the diagnosis of urban lake commons in Bangalore, India. Ecol. Soc. 2014, 19, 1–18. [Google Scholar] [CrossRef]
- Torres-Lima, P.; Pinel, S.L.; Conway-Gómez, K. Adaptive Governance for Resilience of Peri-Urban Socioecological Systems. In Urban Resilience for Risk and Adaptation Governance; Springer: Cham, Switzerland, 2019; pp. 43–58. [Google Scholar]
- Bernholt, H.; Kehlenbeck, K.; Gebauer, J.; Buerkert, A. Plant species richness and diversity in urban and peri-urban gardens of Niamey, Niger. Agrofor. Syst. 2009, 77, 159. [Google Scholar] [CrossRef]
- Nfotabong-Atheull, A.; Din, N.; Koum, L.G.E.; Satyanarayana, B.; Koedam, N.; Dahdouh-Guebas, F. Assessing forest products usage and local residents’ perception of environmental changes in peri-urban and rural mangroves of Cameroon, Central Africa. J. Ethnobiol. Ethnomedicine 2011, 7, 41. [Google Scholar] [CrossRef]
- Vejre, H.; Jensen, F.S.; Thorsen, B.J. Demonstrating the importance of intangible ecosystem services from peri-urban landscapes. Ecol. Complex. 2010, 7, 338–348. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional peri-urban agriculture—A review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- ESPA. Ecosystem Services for Poverty Alleviation. Available online: https://www.espa.ac.uk/ (accessed on 30 September 2019).
- Ernstson, H. The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landsc. Urban Plan. 2013, 109, 7–17. [Google Scholar] [CrossRef]
- Pascual, U.; Balvanera, P.; Díaz, S.; Pataki, G.; Roth, E.; Stenseke, M.; Watson, R.T.; Dessane, E.B.; Islar, M.; Kelemen, E. Valuing nature’s contributions to people: The IPBES approach. Curr. Opin. Environ. Sustain. 2017, 26, 7–16. [Google Scholar] [CrossRef]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- Avtar, R.; Tripathi, S.; Aggarwal, K.A. Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India. Land 2019, 8, 124. [Google Scholar] [CrossRef]
- Avtar, R.; Tsusaka, K.; Herath, S. REDD+ Implementation in Community-Based Muyong Forest Management in Ifugao, Philippines. Land 2019, 8, 164. [Google Scholar] [CrossRef]
- Chan, K.M.; Goldstein, J.; Satterfield, T.; Hannahs, N.; Kikiloi, K.; Naidoo, R.; Vadeboncoeur, N.; Woodside, U. Cultural services and non-use values. In Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: New York, NY, USA, 2011; pp. 206–228. [Google Scholar]
- Bateman, I.J.; Mace, G.M.; Fezzi, C.; Atkinson, G.; Turner, K. Economic analysis for ecosystem service assessments. Environ. Resour. Econ. 2011, 48, 177–218. [Google Scholar] [CrossRef]
- Hara, Y.; Yamaji, K.; Yokota, S.; Thaitakoo, D.; Sampei, Y. Dynamic wetland mosaic environments and Asian openbill habitat creation in peri-urban Bangkok. Urban Ecosyst. 2018, 21, 305–322. [Google Scholar] [CrossRef]
- Lee, R.H.; Cheung, K.; Fellowes, J.R.; Guenard, B. Insights Into the Chinese Pangolin’s (Manis pentadactyla) Diet in a Peri-Urban Habitat: A Case Study From Hong Kong. Trop. Conserv. Sci. 2017, 10, 1940082917709648. [Google Scholar] [CrossRef]
- Kumar, A. Ethno-Botanical Diversity and Conservation Status of Medicinal Flora at High Terrains of Garhwal (Uttarakhand) Himalaya, India: A Case Study in Context to Multifarious Tourism Growth and Peri-Urban Encroachments. World Acad. Sci. Eng. Technol. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2017, 11, 361–366. [Google Scholar]
- Walters, G.; Ndjabounda, E.N.; Ikabanga, D.; Biteau, J.P.; Hymas, O.; White, L.; Obiang, A.-M.N.; Ondo, P.N.; Jeffery, K.J.; Lachenaud, O. Peri-urban conservation in the Mondah forest of Libreville, Gabon: Red List assessments of endemic plant species, and avoiding protected area downsizing. Oryx 2016, 50, 419–430. [Google Scholar] [CrossRef]
- Nardi, M.; Lira-Guedes, A.C.; Cunha, A.; Ferreira, H.; Guedes, M.C.; Mustin, K.; Gomes, S.C.P. Artisanal extraction and traditional knowledge associated with medicinal use of crabwood oil (Carapa guianensis Aublet.) in a Peri-Urban Várzea environment in the Amazon estuary. Evid.-Based Complement. Altern. Med. 2016, 2016, 5828021. [Google Scholar] [CrossRef] [PubMed]
- Peroni, N.; Hanazaki, N.; Begossi, A.; Zuchiwschi, E.; Lacerda, V.D.; Miranda, T.M. Homegardens in a micro-regional scale: Contributions to agrobiodiversity conservation in an urban-rural context. Ethnobiol. Conserv. 2016, 5, 1–17. [Google Scholar] [CrossRef]
- Pauchard, A.; Aguayo, M.; Peña, E.; Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 2006, 127, 272–281. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Austin, Z.; McVittie, A.; McCracken, D.; Moxey, A.; Moran, D.; White, P.C. The co-benefits of biodiversity conservation programmes on wider ecosystem services. Ecosyst. Serv. 2016, 20, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Douglas, I. Peri-urban ecosystems and societies: Transitional zones and contrasting values. In The Peri-Urban Interface; Routledge: New York, NY, USA, 2012; pp. 41–52. [Google Scholar]
- Tekken, V.; Spangenberg, J.H.; Burkhard, B.; Escalada, M.; Stoll-Kleemann, S.; Truong, D.T.; Settele, J. “Things are different now”: Farmer perceptions of cultural ecosystem services of traditional rice landscapes in Vietnam and the Philippines. Ecosyst. Serv. 2017, 25, 153–166. [Google Scholar] [CrossRef]
- Tilliger, B.; Rodríguez-Labajos, B.; Bustamante, J.; Settele, J. Disentangling values in the interrelations between cultural ecosystem services and landscape conservation—A case study of the Ifugao Rice Terraces in the Philippines. Land 2015, 4, 888–913. [Google Scholar] [CrossRef] [Green Version]
- Settele, J.; Spangenberg, J.H.; Heong, K.L.; Burkhard, B.; Bustamante, J.V.; Cabbigat, J.; Van Chien, H.; Escalada, M.; Grescho, V.; Harpke, A. Agricultural landscapes and ecosystem services in South-East Asia—The LEGATO-Project. Basic Appl. Ecol. 2015, 8, 661–664. [Google Scholar] [CrossRef]
- Thompson, B.S.; Primavera, J.H.; Friess, D.A. Governance and implementation challenges for mangrove forest Payments for Ecosystem Services (PES): Empirical evidence from the Philippines. Ecosyst. Serv. 2017, 23, 146–155. [Google Scholar] [CrossRef]
- Thompson, B.S.; Clubbe, C.P.; Primavera, J.H.; Curnick, D.; Koldewey, H.J. Locally assessing the economic viability of blue carbon: A case study from Panay Island, the Philippines. Ecosyst. Serv. 2014, 8, 128–140. [Google Scholar] [CrossRef]
- Leimona, B.; van Noordwijk, M.; de Groot, R.; Leemans, R. Fairly efficient, efficiently fair: Lessons from designing and testing payment schemes for ecosystem services in Asia. Ecosyst. Serv. 2015, 12, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Santos-Borja, A.; Nepomuceno, D. Laguna de bay: Experience and lessons learned brief. World Lake Database 2006, 15, 225–258. [Google Scholar]
- Tamayo-Zafaralla, M.; Santos, R.; Orozco, R.; Elegado, G. The ecological status of lake Laguna de Bay, philippines. Aquat. Ecosyst. Health Manag. 2002, 5, 127–138. [Google Scholar] [CrossRef]
- Aquino, L.M.G.; Tango, J.M.; Canoy, R.J.C.; Fontanilla, I.K.C.; Basiao, Z.U.; Ong, P.S.; Quilang, J.P. DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA 2011, 22, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Lasco, R.D.; Espaldon, M.V.O.E.; Tapia, M.A. Ecosystems and People: The Philippine Millennium Ecosystem Assessment (MA) Sub-Global Assessment: Synthesis Report; Environmental Forestry Programme, College of Forestry and Natural Resources: Los Baños, the Philippines, 2005. [Google Scholar]
- Laguna Lake Development Authority Hydrological Map. Available online: http://llda.gov.ph/hydrological-map/ (accessed on 9 November 2019).
- Yasuto, T.; Ross, J.; Keizrul, A.; Mohd, N.b.M. Catalogue of Rivers for Southeast Asia and the Pacific. Available online: http://hywr.kuciv.kyoto-u.ac.jp/ihp/riverCatalogue/Vol_05/index.html (accessed on 1 September 2019).
- Chokkalingam, U. One Century of Forest Rehabilitation in the Philippines; CIFOR: Bogor, Indonesia, 2006; ISBN 979-24-4643-5. [Google Scholar]
- Lasco, R.; Visco, R.; Pulhin, J. Secondary forests in the Philippines: Formation and transformation in the 20th century. J. Trop. Forest Sci. 2001, 13, 652–670. [Google Scholar]
- Chakraborty, S. Watershed Based Analysis of Land Use Change in Laguna Lake Basin in the Philippines: Case Study from San Cristobal Micro-Watershed. Ph.D. Thesis, Ritsumeikan Asia Pacific University, Oita, Japan, 2011. [Google Scholar]
- Philippines Statistics Authority Population of Region IV-A-CALABARZON (Based on the 2015 Census of Population). Available online: https://psa.gov.ph/content/population-region-iv-calabarzon-based-2015-census-population (accessed on 20 January 2017).
- Hendriks, V.M.; Blanken, P.; Adriaans, N.F.P.; Hartnoll, R. Snowball Sampling: A Pilot Study on Cocaine Use; IVO, Instituut voor Verslavingsonderzoek, Erasmus Universiteit Rotterdam: Rotterdam, Netherlands, 1992; ISBN 90-74234-02-X. [Google Scholar]
- Russell, H.R. Research Methods in Anthropology: Qualitative and Quantitative Approaches; Lanham: Altamira, Spain, 2002; ISBN 0-7591-0148-5. [Google Scholar]
- Haines-Young, R.; Potschin, M. Common international classification of ecosystem services (CICES, Version 4.1). Eur. Environ. Agency 2012, 33, 107. [Google Scholar]
- Alley, W.M. Ground Water. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: Oxford, UK, 2009; pp. 684–690. ISBN 978-0-12-370626-3. [Google Scholar]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Grafius, D.R.; Siriwardena, G.M. Ecological connectivity networks in rapidly expanding cities. Heliyon 2017, 3, e00325. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, K.; Johnson, B.A.; Onishi, A.; Magcale-Macandog, D.B.; Endo, I.; Bragais, M. Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines. Land 2017, 6, 26. [Google Scholar] [CrossRef]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Roussel, F.; Schulp, C.J.; Verburg, P.H.; van Teeffelen, A.J. Testing the applicability of ecosystem services mapping methods for peri-urban contexts: A case study for Paris. Ecol. Indic. 2017, 83, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Borelli, S.; Conigliaro, M.; Quaglia, S.; Salbitano, F. Urban and Peri-urban Agroforestry as Multifunctional Land Use. In Agroforestry; Springer: Singapore, 2017; pp. 705–724. [Google Scholar]
- McGregor, D.; Simon, D.; Thompson, D. Peri-Urban Ecosystems and Societies: Transitional Zones and Contrasting Values; Earthscan: London, UK, 2006. [Google Scholar]
- McDonald, R.I.; Marcotullio, P.J.; Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 31–52. [Google Scholar]
- Philstar Rare Wild Boar Threatened. Available online: https://www.philstar.com/headlines/2008/09/26/403070/rare-wild-boar-threatened (accessed on 20 January 2017).
- Erős, T.; Olden, J.D.; Schick, R.S.; Schmera, D.; Fortin, M.-J. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 2012, 27, 303–317. [Google Scholar] [CrossRef]
- Segurado, P.; Branco, P.; Ferreira, M.T. Prioritizing restoration of structural connectivity in rivers: A graph based approach. Landsc. Ecol. 2013, 28, 1231–1238. [Google Scholar] [CrossRef]
- Cote, D.; Kehler, D.G.; Bourne, C.; Wiersma, Y.F. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 2009, 24, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Ward, J. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Angela, C.-B.; Javier, C.-J.; Teresa, G.-M.; Marisa, M.-H. Hydrological evaluation of a peri-urban stream and its impact on ecosystem services potential. Glob. Ecol. Conserv. 2015, 3, 628–644. [Google Scholar] [CrossRef] [Green Version]
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Ward, J.V. An expansive perspective of riverine landscapes: Pattern and process across scales. GAIA-Ecol. Perspect. Sci. Soc. 1997, 6, 52–60. [Google Scholar] [CrossRef]
- Beveridge, M.C.; Ross, L.G.; Kelly, L.A. Aquaculture and biodiversity. Ambio 1994, 23, 497–502. [Google Scholar]
- Peng, Y.; Jian, Y.; Wang, J.; Ni, L. A comparative study on aquatic plant diversity in five largest lakes of Hubei Province in China. Acta Hydrobiol. Sin. 2004, 28, 464–470. [Google Scholar]
- Karki, M.; Sellamuttu, S.S.; Okayasu, S.; Suzuki, W.; Acosta, L.A.; Alhafedh, Y.; Anticamara, J.A.; Ausseil, A.-G.; Davies, K.; Gasparatos, A. The Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific: Summary for Policymaker; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2018. [Google Scholar]
- NEA, U. The UK National Ecosystem Assessment Follow-on: Synthesis of the Key Findings; UNEP-WCMC: Lwec, UK, 2014. [Google Scholar]
- Lopes, R.; Videira, N. A collaborative approach for scoping ecosystem services with stakeholders: The case of Arrabida Natural Park. Environ. Manag. 2016, 58, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.J.; Izac, A.-M.; van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
1 | Brushlands denote the degraded forest areas as a result of extensive logging that took place in the Laguna de Bay basin after the World War. However, although they denote a “degraded” state regarding the initial forest cover, they are also the “regenerative” and post extraction secondary type forests, except where they are altered further to non-forest areas. |
2 | PHP = Philippine Pesos (1 peso means approximately 0.020 USD) |
Analysis | Methods | Describes |
---|---|---|
1. Identification of different provisioning services, quantification among households 2. Villages covered 3. Main interviewees | Face to face household questionnaire (N = 90) in areas inland and areas near lakeshore Jala-Jala: Special District, Paalaman (N = 90) Farmers, fishermen, local businessmen | Provisioning services from peri-urban areas |
Socioeconomic Profiles | Special District | Paalaman |
---|---|---|
Total Households surveyed | 42 | 48 |
Men | 38 | 47 |
Women | 42 | 48 |
Total Respondents | 80 | 95 |
Age structure of respondents | ||
<20 | 2 | 3 |
20–40 | 26 | 16 |
41–60 | 45 | 58 |
>60 | 7 | 18 |
Main employment of the household | ||
Fisher | 29 | 19 |
Business | 6 | 14 |
Farmer | 4 | 7 |
Unemployed | 3 | 8 |
Average income (in thousand PHP) | ||
<10 | 21 | 31 |
10 to 20 | 17 | 11 |
21 to 30 | 4 | 3 |
31 to 40 | 0 | 2 |
>40 | 0 | 1 |
Highest educational Level in the household | ||
Elementary graduate | 27 | 31 |
Middle school graduate | 5 | 6 |
High school graduate | 7 | 11 |
No education | 27 | 31 |
Different ES and Their Color Codes | Number of Drivers | Specific Drivers | Legend for Drivers of Change | |
---|---|---|---|---|
Crops | 5 | A, B, E, F, G | A - Demographic | |
Firewood | 3 | A, B, I | B - Socioeconomic | |
Timber | 6 | A, B, C, D, G, I | C - Political | |
NTFP (fruits, mushrooms, honey) | 4 | B, D, G, I | D - Science & Technology | |
Livestock | 3 | A, B, E | E - Climatic variation | |
Freshwater | 7 | A, B, C, D, G, I, K | F - Natural disaster | |
Game | 5 | A, B, D, G, I | G - Land use change | |
Fish | 7 | A, B, D, G, H, I, K | H - Invasive species | |
Shellfish/clams | 6 | A, D, G, H, I, K | I - Overexploitation | |
Medicinal plants | 3 | A, G, J | J - Not adapted management | |
K - Pollution |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, S.; Avtar, R.; Raj, R.; Thu Minh, H.V. Village Level Provisioning Ecosystem Services and Their Values to Local Communities in the Peri-Urban Areas of Manila, The Philippines. Land 2019, 8, 177. https://doi.org/10.3390/land8120177
Chakraborty S, Avtar R, Raj R, Thu Minh HV. Village Level Provisioning Ecosystem Services and Their Values to Local Communities in the Peri-Urban Areas of Manila, The Philippines. Land. 2019; 8(12):177. https://doi.org/10.3390/land8120177
Chicago/Turabian StyleChakraborty, Shamik, Ram Avtar, Raveena Raj, and Huynh Vuong Thu Minh. 2019. "Village Level Provisioning Ecosystem Services and Their Values to Local Communities in the Peri-Urban Areas of Manila, The Philippines" Land 8, no. 12: 177. https://doi.org/10.3390/land8120177