A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System
Abstract
:1. Introduction
2. Elements for a Conceptual Model of Coupled Human–Environment Systems for Land Systems Science
- (i)
- Consideration of not only environmental and socio-economic driving factors that affect land, but also the various (and multi-scale) social, economic, cultural and environmental activities and processes that have an impact on land and on its use, cover, function and dynamics [30].
- (ii)
- Recognition of both the funds and flows associated with land: stocks and funds include various types of capitals (natural, financial, social, human, physical [31]), as well as the funds of biodiversity [32], and land itself (both use and cover) located in a geographic space. Flows include a variety of goods, services, and other materials as well as ideas, innovation, and values.
- (iii)
- (iv)
- Recognition and inclusion of the range of benefits derived from land use, cover and management, typically now formalized as ecosystem goods and services [37,38], and problems such as pollution, environmental impacts, biodiversity loss, and other negative consequences of land use, change and management.
- (v)
- Emphasis on the place-based nature of land use and global change [38,39] and its relevance to the specific architectures of landscapes and communities [3,40] across various geographic and temporal scales [41]. This also includes appreciation and understanding of the complex responses of human and environment systems, drivers and processes to geographical heterogeneity and variability in environmental conditions [38].
- (1)
- Behavior of people (agency) and society (structure), and the uses to which land is put, as well as feedbacks between these elements.
- (2)
- (3)
- Incorporation of the extent to which people and pixels are connected to the broader world in which they exist, both past and present. This is partly the scope of study of teleconnections in land systems [29].
- (4)
3. Systems Model
- (i)
- A holistic framework within which descriptions, models and analyses that focus on various components of land can be placed to describe and explain land systems and land system changes.
- (ii)
- A guide for the development of more fully integrated and interdisciplinary understanding, analysis and study of land use and land cover dynamics with explicit focus on relationships between human and natural systems.
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gutman, G.; Justice, C.O.; Sheffner, E.; Loveland, T. The NASA Land-Cover and Land-Use Change program. In Land Change Science; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., II, Cochrane, M.A., Eds.; Kluwer Academic Publishers: Dordrech, The Netherlands, 2004; pp. 17–29. [Google Scholar]
- Lambin, E.F.; Geist, H. (Eds.) Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer: Berlin, Germany, 2006; p. 222. [Google Scholar]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Mather, A.S. Land Use; Longman: Harlow, UK, 1986. [Google Scholar]
- Aspinall, R.J.; Hill, M.J. (Eds.) Land Use Change: Science, Policy and Management; CRC Press: Baton Rouge, LA, USA, 2008; p. 185. [Google Scholar]
- Lambin, E.F.; Baulies, X.; Bockstael, N.; Fischer, G.; Krug, T.; Leemans, R.; Moran, E.F.; Rindfuss, R.R.; Sato, Y.; Skole, D.; et al. Land-Use and Land-Cover Change (LUCC): Implementation Strategy. In IGBP Report No. 48, IHDP Report No. 10; International Geosphere-Biospehere Programme: Stockholm, Sweden, 1999; p. 125. [Google Scholar]
- Justice, C.O.; Gutman, G.; Vadrevu, K.P. NASA Land Cover nad Land Use Change (LCLUC): An interdicisplinary research program. J. Environ. Manag. 2015, 148, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Department of Interior: Washington, DC, USA, 1976.
- Comber, A.J. Land use or land cover? J. Land Use Sci. 2008, 3, 199–201. [Google Scholar] [CrossRef]
- Comber, A.J.; Wadsworth, R.A.; Fisher, P.F. Using semantics to clarify the conceptual confusion between land cover and land use: The example of ‘forest’. J. Land Use Sci. 2008, 3, 185–198. [Google Scholar] [CrossRef]
- Jansen, L.J.M. Harmonization of land use class sets to facilitate compatibility and comparability of data across space and time. J. Land Use Sci. 2006, 1, 127–156. [Google Scholar] [CrossRef]
- Jansen, L.J.M.; Groom, G.; Carrai, G. Land-cover harmonisation and semantic similarity: Some methodological issues. J. Land Use Sci. 2008, 3, 131–160. [Google Scholar] [CrossRef]
- Gutman, G.; Janetos, A.C.; Justice, C.O.; Moran, E.F.; Mustard, J.F.; Rindfuss, R.R.; Skole, D.; Turner, B.L.; Cochrane, M.A. (Eds.) Land Change Science. Observing, Monitoring and Undertanding Trajectories of Change on the Earth’s Surface; Kluwer Academic Publishers: Dordrech, The Netherlands; Boston, MA, USA; London, UK, 2004; p. 457. [Google Scholar]
- Global Land Project. Science Plan and Implementation Strategy. In IGBP Report No. 53/IHDP Report No. 19; IGBP Secretariat: Stockholm, Sweden, 2005; p. 64. [Google Scholar]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Foresight Land Use Futures Project. Land Use Futures: Making the Most of Land in the 21st Century. Final Project Report; The Government Office for Science: London, UK, 2010; p. 323.
- Lambin, E.F.; Geist, H.; Rindfuss, R.R. Introduction: Local processes with global impacts. In Land-Use and Land-Cover Change; Lambin, E.F., Geist, H., Eds.; Springer: Berlin, Germany, 2006; pp. 1–8. [Google Scholar]
- Geist, H. (Ed.) Our Earth’s Changng Land: An Encyclopedia of Land-Use and Land-Cover Change; Greenwood Press: Westport, CT, USA, 2006; p. 715. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- DeFries, R.S.; Asner, G.P.; Houghton, R.A. (Eds.) Ecosystems and Land Use Change; Geophysical Monograph No. 153; American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Earth System Sciences Committee NASA Advisory Council. Earth System Sciences Committee NASA Advisory Council. Earth systems science: Overview. A program for global change. In Report of the Earth System Sciences Committee NASA Advisory Council; NASA: Washington, DC, USA, 1986; p. 49. [Google Scholar]
- Earth System Sciences Committee NASA Advisory Council. Earth System Sciences Committee NASA Advisory Council. Earth systems science: A closer view. In Report of the Earth System Sciences Committee NASA Advisory Council; NASA: Washington, DC, USA, 1988; p. 209. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Dynamic causal patterns of desertification. Bioscience 2004, 54, 817–829. [Google Scholar] [CrossRef]
- Keys, E.; McConnell, W.J. Global change and the intensification of agriculture in the tropics. Glob. Environ. Chang. 2005, 15, 320–337. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munro, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Bebbington, A. Capitals and Capabilities: A framework for analyzing peasant viability, rural livelihoods and poverty. World Dev. 1999, 27, 2021–2044. [Google Scholar] [CrossRef]
- Diaz, S.; Farglone, J.; Chapin, F.S., III; Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 2006, 4, e277. [Google Scholar]
- Gibson, C.C.; Ostrom, E.; Ahn, T.K. The concept of scale and the human dimensions of global change: A survey. Ecol. Econ. 2000, 32, 217–239. [Google Scholar] [CrossRef]
- Berkes, F.; Hughes, T.P.; Steneck, R.S.; Wilson, J.A.; Bellwood, D.R.; Crona, B.; Folke, C.; Gunderson, L.H.; Leslie, H.M.; Norberg, J.; et al. Globalization, roving bandits, and marine resources. Science 2006, 311, 1557–1558. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, A.; Verburg, P.H.; Kok, K.; de Koning, G.H.J.; Priess, J.; Bergsma, A.R. The Need for Scale Sensitive Approaches in Spatially Explicit Land Use Change Modeling. Environ. Model. Assess. 2001, 6, 111–121. [Google Scholar] [CrossRef]
- Verburg, P.H.; Eickhout, B.; van Meijl, H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann. Reg. Sci. 2008, 42, 57–77. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; p. 137. [Google Scholar]
- Potschin, M.B.; Haines-Young, R.H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 2011, 35, 575–594. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Turner, B.L., II. Land system architecture for urban sustainability: New directions for land system science illustrated by application to the urban heat island problem. J. Land Use Sci. 2016, 11, 689–697. [Google Scholar] [CrossRef]
- Brown, D.G.; Walker, R.; Manson, S.; Seto, K.C. Modeling land-use and land-cover change. In Land Change Science; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., II, Cochrane, M.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 395–409. [Google Scholar]
- Geist, H.; McConnell, W.J.; Lambin, E.F.; Moran, E.F.; Alves, D.; Rudel, T. Causes and trajectories of land-use/cover change. In Land-Use and Land-Cover Change; Lambin, E.F., Geist, H., Eds.; Springer: Berlin, Germany, 2006; pp. 41–70. [Google Scholar]
- Travis, W.R. New Geographies of the American West: Land Use and the Changing Patterns of Place; Island Press: Washington, DC, USA, 2007. [Google Scholar]
- Aspinall, R.J. Modelling land use change with generalized linear models—A multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. J. Environ. Manag. 2004, 72, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Page, S.; Riolo, R.; Zellner, M.; Rand, W. Path dependence and the validation of agent-based spatial models of land use. Int. J. Geogr. Inf. Sci. 2005, 19, 153–174. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Allen, T.H.; Starr, T.B. Hierarchy: Perspectives for Ecological Complexity; University of Chicago Press: Chigao, IL, USA, 1982. [Google Scholar]
- Jenny, H. Factors of Soil Formation; McGraw Hill: New York, NY, USA, 1941; p. 281. [Google Scholar]
- Richter, D.; Yaalon, D.H. “The changing model of soil” revisited. Soil Sci. Socety Am. J. 2011, 76, 766–778. [Google Scholar] [CrossRef]
- Liu, S.A.; Costanza, R.; Troy, A.; D’Aagostino, J.; Mates, W. Valuing New Jersey‘s ecosystem services and natural capital: A spatially explicit benefit transfer approach. Environ. Manag. 2010, 45, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Monfreda, C.; Wackernagel, M.; Deumling, D. Establishing national natural capital accounts based on detailed—Ecological footprint and biological capacity assessments. Land Use Policy 2004, 21, 231–246. [Google Scholar] [CrossRef]
- Van Keulen, H. Quantitative analyses of natural resource management options at different scales. Agric. Syst. 2007, 94, 768–783. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Aspinall, R. Editorial. J. Land Use Sci. 2006, 1, 1–4. [Google Scholar] [CrossRef]
- Müller, D.; Munroe, D.K. Current and future challenges in land-use science. J. Land Use Sci. 2014, 9, 133–142. [Google Scholar] [CrossRef]
- Chen, Y.; Bakker, M.M.; Ligtenberg, A.; Bregt, A.K. How are feedbacks represented in land models? Land 2016, 5, 29. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.F.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenko, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Committee on Needs and Research Requirements for Land Change Modeling. Advancing Land Change Modeling: Opportunities and Research Requirements; National Research Council: Washington, DC, USA, 2013; p. 146. [Google Scholar]
- Meyfroidt, P. Approaches and terminology for causal analysis in land systems science. J. Land Use Sci. 2016, 11, 501–522. [Google Scholar] [CrossRef]
- Dobson, J.E. Spatial logic in paleogeography and the explanation of continental drift. Ann. Assoc. Am. Geogr. 1992, 82, 187–206. [Google Scholar] [CrossRef]
- Parker, D.C.; Entwisle, B.; Rindfuss, R.R.; Vanwey, L.K.; Manson, S.M.; Moran, E.; An, L.; Deadman, P.; Evans, T.P.; Linderman, M.; et al. Case studies, cross-site comparisons, and the challenge of generalization: Comparing agent-based models of land-use change in frontier regions. J. Land Use Sci. 2008, 3, 41–72. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.A. The problem of pattern and scale in ecology: The Robert H. MacArthur Award Lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Wu, J. Hierarchy and scaling: Extrapolating information along a scaling ladder. Can. J. Remote Sens. 1999, 25, 367–380. [Google Scholar] [CrossRef]
- Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Aeview and Assessment of Land-Use Change Models: Dynamics of Space, Time and Human Choice; Center for the Study of Institutions, Population and Environmental Change, Indiana University: Indiana, IN, USA, 2002; p. 81. [Google Scholar]
- Evans, T.P.; Robinson, D.; Schmitt-Harsh, M. Limitations, challenges, and solutions to integrating carbon dynamics with land-use models. In Land Use and the Carbon Cycle: Advances in Integrated Science, Management, and Policy; Brown, D.G., Robinson, D.T., French, N.H.F., Reed, B.C., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 178–208. [Google Scholar]
- Tian, Q.; Brown, D.G.; Zheng, L.; Qi, S.; Liu, Y.; Jiang, L. The role of cross-scale and environmental contexts in household-level land-use decisions. Ann. Assoc. Am. Geogr. 2015, 105, 1240–1259. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, R.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Carpenter, S.R.; Elmqvist, R.; Gunderson, L.H.; Holling, C.S.; Walker, B. Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio 2002, 31, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Schumm, S.A. To Interpret the Earth: 10 Ways to Be Wrong; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
1. | The terms ‘coupled natural and environment system’, ‘coupled human-natural system’, and ‘socio-ecological system’ are considered equivalent for the purposes of this paper. |
Factors | Enabling (Why) | Driving (How) | Shaping (Where) |
---|---|---|---|
Demographic | Natural increment Migration Population density Population distribution Life-cycle features | Infrastructure Extension Transport Markets Settlements Public Service Private Company Social trigger events | Demographics |
Economic | Market Growth Commercialization Economic structures Urbanization and Industrialization Special Variables | Agricultural expansion Permanent cultivation Shifting cultivation Cattle ranching Colonization Economic shocks | Finance, Capital |
Technological | Agro-technical change Applications in the wood sector Agricultural production factors | Wood extraction Commercial Fuel wood Pole wood Charcoal production | Education |
Policy and Institutional | Formal policies Policy climate Property rights | Land ownership Policy shifts | Governance, ownership, tenure |
Cultural | Public attitudes, values and beliefs Individual and household behaviors | Leisure Tourism Protected areas | History, Culture, Tradition |
Environment | Resources | Biophysical drivers/trigger events e.g., floods | Pre-disposing environmental factors; land characteristics (soil quality, topography, etc.) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aspinall, R.; Staiano, M. A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System. Land 2017, 6, 81. https://doi.org/10.3390/land6040081
Aspinall R, Staiano M. A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System. Land. 2017; 6(4):81. https://doi.org/10.3390/land6040081
Chicago/Turabian StyleAspinall, Richard, and Michele Staiano. 2017. "A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System" Land 6, no. 4: 81. https://doi.org/10.3390/land6040081
APA StyleAspinall, R., & Staiano, M. (2017). A Conceptual Model for Land System Dynamics as a Coupled Human–Environment System. Land, 6(4), 81. https://doi.org/10.3390/land6040081