1. Introduction
Throughout the centuries, European mountain areas have been shaped gradually by human activities, resulting in diverse landscapes. Then, the 20th century brought rapid socio-economic transformation. Thus, land use and land cover change are now intense in spatial and temporal terms, presenting a break to the long steadiness of landscape evolution [
1]. Examples of sudden changes range from land abandonment after the collapse of the Soviet Union [
2], substantial expansion of urban areas after the introduction of a market-based economy [
3], to illegal logging due to warfare and corruption [
4]. In mountains, we see a tremendous decline in agriculture, improved accessibility through new infrastructure and the increased development of recreational areas [
5,
6,
7].
These land cover changes can have strong impacts on human well-being on a broader scale, since mountains provide many services, e.g., water provision, agricultural production, hazard prevention and others [
6,
8,
9]. One main concern is that land cover changes can lead to increased hazard risks, e.g., through local changes of the runoff dynamics [
8,
9]. Another important trend is that of land abandonment and natural reforestation in hilly and mountain areas, combined with the removal of riparian vegetation and urbanization in the valleys, contributing to habitat loss, lower biodiversity and a more homogenous mountain landscape [
1,
10,
11].
The strong link of mountain land cover change to human well-being has recently led to an increased interest of policy makers and planners in the causes and consequences of these changes [
12]. Researchers call for increased efforts to monitor and analyze land cover changes, especially in areas affected by high rates of socio-economic changes [
13].
The main goal of this study was to investigate land cover changes in two major European mountain areas: the mountain community of Gemonese, Canal del Ferro and Val Canale in the Italian Alps, and the Carpathians of Buzau County in Romania. The areas were selected due to their particular socio-economic trajectories since 1989 and their representativeness in terms of physical and biogeographic characteristics for the Alps and Carpathians, respectively. The Alps and the Carpathians are two major mountain areas in Europe. Here, the main European rivers originate, providing water and energy to a large portion of the European population. Both are acknowledged as major European biodiversity hotspots [
14,
15]. The Alps are considered to be one of the first tourist destinations, and here, tourism is a major economic factor [
16]. In the Romanian Carpathians, tourism is still underdeveloped, however, with major potential [
17].
In general, there is more research on land use and cover changes in the Alps than in the Carpathians. Focusing on the Italian Alps, the research undertaken so far ranges from identifying changes to the forest cover [
18], land abandonment [
19], the main drivers of land cover change [
11], the role of socio-economic and natural characteristics [
7] and the consequences of land cover changes on biodiversity [
10]. However, there is a lack of research investigating the consequences for land cover of the significant socio-economic changes linked to the industrialization of Europe: migrations to the lowlands and the expansion of traffic routes due to mechanization [
16,
20]. Our Alpine study area lies in the Eastern Italian Alps, which have been experiencing the highest depopulation rates and decreases in economic activities in the last three decades [
21].
In the Carpathian region, research focuses on the abandonment of grasslands and cropland and the expansion of forests as the most widespread land cover changes [
22,
23,
24,
25,
26]. Though more rapid in nature, these changes are in line with the long-term trends for all European mountain areas, including the Alps [
27]. However, there is another interesting process that is particular to the Carpathian region: the increase in the quantity of (illegal) logging, as well as changes in the spatial pattern of the logging [
28,
29,
30,
31,
32]. Processes like this are linked to the fall of Communism since 1989 and the expansion of the European Union in the years after 2000. Their effects on land cover and the related consequences are as yet understudied.
For both case study areas, our main research interests were related to land cover changes as a possible result of sudden socio-economic changes. More importantly, we were interested in which land cover changes were most significant in terms of consequences to the environment and human activities. To map and analyze land cover changes, we used applied remote sensing techniques. To study the driving forces behind land cover changes more in depth, we performed a series of interviews with stakeholders and experts.
5. Discussion
Drastic socio-economic changes since 1989 have had a significant effect on land cover changes in both areas. Even though the processes differ in spatial and relative terms between both case study areas, we could observe some surprising land cover processes, when relating them to socio-economic trends, especially depopulation in both areas. Examples of that are the significant increases of human influences in the form of urban expansion in Italy and deforestation in Romania. Further reasons behind these processes are discussed in this section.
Despite the decline in population and economic activities, a notable expansion of the urban land cover occurred in the Italian case study area. This can be associated with an increase in infrastructural and real estate development since the end of the 1980s. Three factors worked together to result in urban expansion: policy-makers encouraging real estate building to promote economic activity and wellbeing in the area, people building real estate as a form of investment and people building secondary homes due to the region’s recreational and aesthetic value. In our area, all three factors were at work, while the last one, encouragement by policy-makers and real estate as investment, seem to have been dominant. As one interviewee stated:
“Policy-makers in the last few decades promoted construction, due to its influence on other economic activities, and saw it as a way to increase the living standard. Construction firms were engaging in housing and infrastructure projects, resulting in a large number of empty objects and possibly over-dimensioned infrastructure. Moreover, the emergence of secondary homes did not occur solely due to the attractive landscape in the area, but also as it was endorsed as a good way to save money through real estate.”
(Researcher in human geography)
Two other changes in the Italian site are more intuitively consistent with the decline of population and economic activity: land abandonment and reforestation. Both started after the Second World War, starting at the higher elevation areas: until 1989 most of the grassland areas at higher elevations had already been reforested, resulting in the doubling of the forest cover since 1950, as explained by the forestry officials.
At the same time, we identified deforestation as a minor land cover change process in the Italian area. According to our spatial analysis, 63.2% of this deforestation was due to the expansion of recreational areas (ski resorts) or energy infrastructure (gas pipelines, high voltage power lines), which occurred after 1989. Therefore, we attributed deforestation partly to the changes in the last 20 years.
In the Romanian area, the majority of land cover changes can be attributed to the sudden political changes and the consequent socio-economic and legislative difficulties. For example, after 1989, Romania introduced three land ownership reforms, where previously seized land is returned, with the 247/2005 restitution law being the latest [
37]. Whereas most of the agricultural land is now under private ownership, the majority of the forest is still owned by the government (
Table 7). As the following quote implies, ownership changes are among the most significant causes of deforestation:
“The Romanian forest code itself promotes sustainable forestry. The difficulties in its implementation and insufficient monitoring, together with the interplay between unemployment, poverty and chaotic land ownership legislation (three different reforms), lead to illegal logging.”
(Private forestry official)
Remaining land cover processes, such as land abandonment and consequential reforestation, are associated with the collapse of former agricultural associations, the evident decline of agricultural activities and the fragmented new land ownership pattern (
Table 7). This made the management of the existent agricultural land nearly impossible, resulting in land abandonment and reforestation. On the other hand, the emergence of subsistence farms increased the pressure on slopes. This phenomenon, basically unknown to most European mountain areas, has been identified in the field, as the scale of the process (individual gardens and fields) prevents it from being identified by accessible data. Nevertheless, it is significant, as the potential side effects of steep slope farming are known to be severe (soil erosion, increased hazard occurrence) [
54].
In both areas, the most extensive land cover change process was reforestation. It is well recognized in societies that experience economic development with urbanization and industrialization [
55,
56] and typical for European mountain areas. As summarized in
Table 9, land cover change processes in Italy (except for urban expansion) were mostly following long-term trends, as opposed to Romania, where most of the processes can be attributed to socio-economic changes in the last 20 years,
i.e., what we consider short term. Interviewees in both areas agreed that it is difficult to cope with and manage external influences. What is more, they argued that external influences are the prevailing cause behind the negative consequences of land cover change (e.g., landscape degradation, increased risk).
Furthermore, for both study areas, the proportion of the area that changed (below 5%) might seem unimportant. Pontius
et al. [
49], however, noted that scientists should resist indicating the importance of land use/cover change processes solely due to their statistical importance. Therefore, we argue that the observed land cover changes are significant, when putting them into the context of changes to ecosystem services provisioning and the short analyzed time frame of a little over 20 years. Both case study areas are defined by complex physical-geographic characteristics, where deforestation and settlement expansion could have led to soil erosion and the increased occurrence or consequences of hydro-meteorological hazards, Moreover, land abandonment and forest expansion can have a significant effect on the landscape image and biodiversity of the areas.
This study has shown how a brief analysis of land cover change might lead to ignoring processes of land cover change, which occur on a smaller spatial extent, that, however, have significant consequences. Furthermore, while some processes (e.g., forest expansion) might be following a long-term trend typical for European mountain areas, others might be experiencing a rapid change that can be attributed solely to the context of the case study area. We demonstrated how necessary it is to recognize these particular processes of land cover change and to try to identify the possible driving forces behind them. Overall driving forces, such as depopulation and general economic development, are not enough to describe land cover changes, as they might result in contrasting and unanticipated results. Other driving forces, such as external investors (in real estate), political decisions on the national level (infrastructural projects), changes to policy (land ownership, forest management) and the uncertainty connected with all these driving forces might prevail, especially in a time of transition. What is more, these external driving forces are beyond the abilities of local decision makers to cope with the pressures to the land cover. This is especially important in mountain areas, as they have to deal with the possible negative consequences of these changes, for example, in the form of increased risk or degradation of the landscape.
6. Conclusions
Socio-economic changes in Europe after the end of the 1980s resulted in a variety of land cover changes in the Alps and the Carpathians. In relative terms, the most widespread land cover process in both of the analyzed mountain areas was the expansion of forest cover. The spatial and temporal rate of this long-term process is similar to most European mountain areas. This process goes along with the loss of important habitats for biodiversity, such as grasslands, and changes in traditional forms of agriculture, such as sheep and goat pastures.
Other observed land cover changes show how local processes differ from general trends. The Eastern Italian Alps area witnessed a substantial expansion of urban areas, among others, due to secondary housing, tourism and traffic infrastructure. In the Romanian Carpathians, deforestation was identified as one of the most significant land cover change processes. Results in both areas pose new questions on the possible increase of risk to hydro-meteorological hazards due to the observed land cover changes. Another important potential consequence to the land cover changes includes soil degradation due to erosion.
The complex relationship between socio-economic changes as driving forces, and land cover changes as a consequence, is difficult to describe and analyze. Therefore, different types of data and methods, i.e., quantitative remote sensing analysis and qualitative interviews, have been used and integrated. In this way, we were able to portray a broader picture of land cover changes in a time of intense socio-economic changes. The revealed mismatches between stakeholders’ perceptions and the results of spatial data analysis represent an added value to the spatial research results, particularly in answering the possible causes behind land cover changes and in understanding the importance of particular changes that seem relatively small, as, for example, in the Romanian site.
It is a continuing challenge in studies of local land cover changes and socio-economic transitions to integrate all observations, in order to understand the driving forces of land cover changes in a more comprehensive and systematic way. From our experiences in both study areas, we suspect that a continuous, long-term and inclusive transdisciplinary process may best help define scientific questions and support politicians and decision makers in understanding and managing the expected land cover changes in European mountain areas.