Power Spectra’s Perspective on Meteorological Drivers of Snow Depth Multiscale Behavior over the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tibetan Plateau
2.2. Snow Depth Product
2.3. Meteorological Reanalysis
2.4. Scaling Analysis
2.5. Kullback–Leibler Distance
3. Results
3.1. Spatio-Temporal Variations
3.2. Power Spectra
3.3. Spectral Divergence
3.4. Spatial Heterogeneity Across Scales
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, J. China: The Third Pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef]
- Wu, T.-W.; Qian, Z.-A. The Relation between the Tibetan Winter Snow and the Asian Summer Monsoon and Rainfall: An Observational Investigation. J. Clim. 2003, 16, 2038–2051. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Feng, L.; Kuang, X.; Zheng, C.; Liu, J.; Chen, D.; Tian, Y.; Yao, Y. Divergent and Changing Importance of Glaciers and Snow as Natural Water Reservoirs in the Eastern and Southern Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, e2021JD035888. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, N.; Dai, Y.; Yao, T. Reversal in Snow Mass Trends on the Tibetan Plateau and Their Climatic Causes. J. Hydrol. 2023, 620, 129438. [Google Scholar] [CrossRef]
- Xu, W.; Ma, L.; Ma, M.; Zhang, H.; Yuan, W. Spatial–Temporal Variability of Snow Cover and Depth in the Qinghai–Tibetan Plateau. J. Clim. 2017, 30, 1521–1533. [Google Scholar] [CrossRef]
- Guo, D.; Pepin, N.; Yang, K.; Sun, J.; Li, D. Local Changes in Snow Depth Dominate the Evolving Pattern of Elevation-Dependent Warming on the Tibetan Plateau. Sci. Bull. 2021, 66, 1146–1150. [Google Scholar] [CrossRef]
- Orsolini, Y.; Wegmann, M.; Dutra, E.; Liu, B.; Balsamo, G.; Yang, K.; de Rosnay, P.; Zhu, C.; Wang, W.; Senan, R.; et al. Evaluation of Snow Depth and Snow Cover over the Tibetan Plateau in Global Reanalyses Using in Situ and Satellite Remote Sensing Observations. Cryosphere 2019, 13, 2221–2239. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Ren, G.; Fraedrich, K.; Pepin, N.; Yan, Y.; Ma, L. Observed Changes in Snow Depth and Number of Snow Days in the Eastern and Central Tibetan Plateau. Clim. Res. 2011, 46, 171–183. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, R.; Zhao, P.; Yao, S.; Jia, X. Formation of Snow Cover Anomalies Over the Tibetan Plateau in Cold Seasons. J. Geophys. Res. Atmos. 2019, 124, 4873–4890. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar]
- Dai, L.; Che, T.; Xie, H.; Wu, X. Estimation of Snow Depth over the Qinghai-Tibetan Plateau Based on AMSR-E and MODIS Data. Remote Sens. 2018, 10, 1989. [Google Scholar] [CrossRef]
- Dai, L.; Che, T.; Ding, Y.; Hao, X. Evaluation of Snow Cover and Snow Depth on the Qinghai–Tibetan Plateau Derived from Passive Microwave Remote Sensing. Cryosphere 2017, 11, 1933–1948. [Google Scholar]
- Yan, D.; Ma, N.; Zhang, Y. Development of a Fine-Resolution Snow Depth Product Based on the Snow Cover Probability for the Tibetan Plateau: Validation and Spatial–Temporal Analyses. J. Hydrol. 2022, 604, 127027. [Google Scholar]
- Wei, P.; Zhang, T.; Zhou, X.; Yi, G.; Li, J.; Wang, N.; Wen, B. Reconstruction of Snow Depth Data at Moderate Spatial Resolution (1 Km) from Remotely Sensed Snow Data and Multiple Optimized Environmental Factors: A Case Study over the Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 657. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, H.; Dai, Y.; Mou, N.; Wei, W. Contrasting Changes of Snow Cover between Different Regions of the Tibetan Plateau during the Latest 21 Years. Front. Earth Sci. 2023, 10, 1075988. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.-D.; Yang, X.-L.; Li, Y.-X.; Wang, Y.-L.; Liang, T.-G. Mapping Snow Depth Distribution from 1980 to 2020 on the Tibetan Plateau Using Multi-Source Remote Sensing Data and Downscaling Techniques. ISPRS J. Photogramm. Remote Sens. 2023, 205, 246–262. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 Snow Depth Downscaling Algorithm Based on a Multifactor Approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Trujillo, E.; Ramírez, J.A.; Elder, K.J. Topographic, Meteorologic, and Canopy Controls on the Scaling Characteristics of the Spatial Distribution of Snow Depth Fields. Water Resour. Res. 2007, 43, W07409. [Google Scholar]
- Shen, L.; Zhang, Y.; Ullah, S.; Pepin, N.; Ma, Q. Changes in Snow Depth under Elevation-dependent Warming over the Tibetan Plateau. Atmos. Sci. Lett. 2021, 22, e1041. [Google Scholar]
- Wang, Z.; Wu, R.; Huang, G. Low-Frequency Snow Changes over the Tibetan Plateau. Int. J. Clim. 2018, 38, 949–963. [Google Scholar] [CrossRef]
- Bao, Y.; You, Q. How Do Westerly Jet Streams Regulate the Winter Snow Depth over the Tibetan Plateau? Clim. Dyn. 2019, 53, 353–370. [Google Scholar]
- Jiang, Y.; Chen, F.; Gao, Y.; He, C.; Barlage, M.; Huang, W. Assessment of Uncertainty Sources in Snow Cover Simulation in the Tibetan Plateau. J. Geophys. Res. Atmos. 2020, 125, e2020JD032674. [Google Scholar] [CrossRef]
- Lei, Y.; Pan, J.; Xiong, C.; Jiang, L.; Shi, J. Snow Depth and Snow Cover over the Tibetan Plateau Observed from Space in against ERA5: Matters of Scale. Clim. Dyn. 2023, 60, 1523–1541. [Google Scholar] [CrossRef]
- Mendoza, P.A.; Musselman, K.N.; Revuelto, J.; Deems, J.S.; López-Moreno, J.I.; McPhee, J. Interannual and Seasonal Variability of Snow Depth Scaling Behavior in a Subalpine Catchment. Water Resour. Res. 2020, 56, e2020WR027343. [Google Scholar] [CrossRef]
- Miller, Z.S.; Peitzsch, E.H.; Sproles, E.A.; Birkeland, K.W.; Palomaki, R.T. Assessing the Seasonal Evolution of Snow Depth Spatial Variability and Scaling in Complex Mountain Terrain. Cryosphere 2022, 16, 4907–4930. [Google Scholar] [CrossRef]
- Tang, B.-H.; Shrestha, B.; Li, Z.-L.; Liu, G.; Ouyang, H.; Gurung, D.R.; Giriraj, A.; Aung, K.S. Determination of Snow Cover from MODIS Data for the Tibetan Plateau Region. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 356–365. [Google Scholar] [CrossRef]
- Yan, D. A Daily, 0.05° Snow Depth Dataset for Tibetan Plateau (2000–2018); National Tibetan Plateau Data Center, 2021; Available online: https://data.tpdc.ac.cn/zh-hans/data/0515ce19-5a69-4f86-822b-330aa11e2a28 (accessed on 4 March 2025).
- Yang, K.; Jiang, Y.; Tang, W.; He, J.; Shao, C.; Zhou, X.; Lu, H.; Chen, Y.; Li, X.; Shi, J. A High-Resolution Near-Surface Meteorological Forcing Dataset for the Third Pole Region (TPMFD, 1979–2022); National Tibetan Plateau Data Center, 2023; Available online: https://data.tpdc.ac.cn/en/data/44a449ce-e660-44c3-bbf2-31ef7d716ec7 (accessed on 4 March 2025).
- Jiang, Y.; Yang, K.; Qi, Y.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.; Li, X.; Zhou, B.; et al. TPHiPr: A Long-Term (1979–2020) High-Accuracy Precipitation Dataset (1/30°, Daily) for the Third Pole Region Based on High-Resolution Atmospheric Modeling and Dense Observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Cao, Y.; Barros, A.P. Topographic Controls on Active Microwave Behavior of Mountain Snowpacks. Remote Sens. Environ. 2023, 284, 113373. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Aggregation of Digital Terrain Data Using a Modified Fractal Interpolation Scheme. Comput. Geosci. 1996, 22, 907–917. [Google Scholar] [CrossRef]
- Kim, G.; Barros, A.P. Space–Time Characterization of Soil Moisture from Passive Microwave Remotely Sensed Imagery and Ancillary Data. Remote Sens. Environ. 2002, 81, 393–403. [Google Scholar] [CrossRef]
- You, Q.; Wu, T.; Shen, L.; Pepin, N.; Zhang, L.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Review of Snow Cover Variation over the Tibetan Plateau and Its Influence on the Broad Climate System. Earth-Sci. Rev. 2020, 201, 103043. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory. In Wiley Series in Telecommunications; Wiley: New York, NY, USA, 1991; ISBN 978-0-471-06259-2. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Pu, C.; Zhou, S.; Sun, P.; Luo, Y.; Li, S.; Sun, Z. Spatiotemporal Variations in Snow Cover on the Tibetan Plateau from 2003 to 2020. Water 2024, 16, 1364. [Google Scholar] [CrossRef]
- Zhang, C.; Mou, N.; Niu, J.; Zhang, L.; Liu, F. Spatio-Temporal Variation Characteristics of Snow Depth and Snow Cover Days over the Tibetan Plateau. Water 2021, 13, 307. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow Depth Derived from Passive Microwave Remote-Sensing Data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L.; Salomonson, V.V. MODIS/Terra Observed Seasonal Variations of Snow Cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, L06706. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.-Y. Elevation Dependency of Recent and Future Minimum Surface Air Temperature Trends in the Tibetan Plateau and Its Surroundings. Glob. Planet. Change 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R.; Xu, M. Warming in the Tibetan Plateau: Possible Influences of the Changes in Surface Water Vapor. Geophys. Res. Lett. 2009, 36, L06703. [Google Scholar] [CrossRef]
- Leathers, D.J.; Ellis, A.W.; Robinson, D.A. Characteristics of Temperature Depressions Associated with Snow Cover across the Northeast United States. J. Appl. Meteorol. Clim. 1995, 34, 381–390. [Google Scholar] [CrossRef]
- Ma, Q.; Keyimu, M.; Li, X.; Wu, S.; Zeng, F.; Lin, L. Climate and Elevation Control Snow Depth and Snow Phenology on the Tibetan Plateau. J. Hydrol. 2023, 617, 128938. [Google Scholar] [CrossRef]
- Ueno, K.; Tanaka, K.; Tsutsui, H.; Li, M. Snow Cover Conditions in the Tibetan Plateau Observed during the Winter of 2003/2004. Arct. Antarct. Alp. Res. 2007, 39, 152–164. [Google Scholar]
- Liu, X.; Jia, X.; Wang, M.; Qian, Q. The Impact of Tibetan Plateau Snow Cover on the Summer Temperature in Central Asia. Adv. Atmos. Sci. 2022, 39, 1103–1114. [Google Scholar] [CrossRef]
- Xie, Z.; Hu, Z.; Xie, Z.; Jia, B.; Sun, G.; Du, Y.; Song, H. Impact of the Snow Cover Scheme on Snow Distribution and Energy Budget Modeling over the Tibetan Plateau. Theor. Appl. Clim. 2018, 131, 951–965. [Google Scholar] [CrossRef]
- Bai, S.; Wu, Q. Relationship between the Spatial and Temporal Distribution of Snow Depth and the Terrain over the Tibetan Plateau. Remote Sens. Nat. Resour. 2015, 27, 171–178. [Google Scholar] [CrossRef]
- Huang, N.; Dai, X.; Zhang, J. The Impacts of Moisture Transport on Drifting Snow Sublimation in the Saltation Layer. Atmos. Chem. Phys. 2016, 16, 7523–7529. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef]
- Qiao, X.; Liu, J.; Wang, S.; Wang, J.; Ji, H.; Chen, X.; Liu, H.; Lu, F. Lead-Lag Correlations between Snow Cover and Meteorological Factors at Multi-Time Scales in the Tibetan Plateau under Climate Warming. Theor. Appl. Clim. 2021, 146, 1459–1477. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Dong, L.; Wang, S.; Yu, B.; Wu, J.; Zheng, Z.; Huang, Y. Temperature-Dominated Spatiotemporal Variability in Snow Phenology on the Tibetan Plateau from 2002 to 2022. Cryosphere 2024, 18, 1817–1834. [Google Scholar] [CrossRef]
- Basang, D.; Barthel, K.; Olseth, J.A. Satellite and Ground Observations of Snow Cover in Tibet during 2001–2015. Remote Sens. 2017, 9, 1201. [Google Scholar] [CrossRef]
- Chu, D.; Liu, L.; Wang, Z. Snow Cover on the Tibetan Plateau and Topographic Controls. Remote Sens. 2023, 15, 4044. [Google Scholar] [CrossRef]
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
2008 | 33.43°N–36.13°N 75.88°E–78.58°E (55 × 55) | 35.68°N–36.63°N 76.08°E–77.03°E (20 × 20) | 35.43°N–36.88°N 75.63°E–77.08°E (30 × 30) | 35.68°N–38.13°N 70.98°E–73.43°E (50 × 50) |
2009 | 36.43°N–38.98°N 71.13°E–73.68°E (52 × 52) | 38.08°N–39.48°N 71.88°E–73.28°E (29 × 29) | 35.43°N–36.88°N 75.88°E–77.33°E (30 × 30) | 34.73°N–37.78°N 73.38°E–76.43°E (62 × 62) |
2010 | 36.68°N–38.98°N 71.63°E–73.93°E (47 × 47) | 35.43°N–35.63°N 80.63°E–80.83°E (5 × 5) | 35.93°N–37.08°N 74.88°E–76.03°E (24 × 24) | 36.88°N–39.03°N 70.98°E–73.13°E (44 × 44) |
2011 | 36.43°N–38.63°N 71.38°E–73.58°E (45 × 45) | 38.48°N–39.43°N 71.88°E–72.83°E (20 × 20) | 35.68°N–36.88°N 75.88°E–77.08°E (25 × 25) | 35.68°N–38.98°N 70.98°E–74.28°E (67 × 67) |
2012 | 36.43°N–38.98°N 71.38°E–73.93°E (52 × 52) | 38.43°N–39.38°N 71.63°E–72.58°E (20 × 20) | 35.43°N–36.38°N 76.38°E–77.33°E (20 × 20) | 35.68°N–38.98°N 70.98°E–74.28°E (67 × 67) |
2013 | 32.93°N–35.13°N 76.38°E–78.58°E (45 × 45) | 35.43°N–36.38°N 76.38°E–77.33°E (20 × 20) | 35.68°N–36.88°N 75.63°E–76.83°E (25 × 25) | 29.68°N–32.03°N 93.18°E–95.53°E (48 × 48) |
2014 | 36.53°N–38.98°N 71.38°E–73.83°E (50 × 50) | 38.53°N–39.48°N 71.88°E–72.83°E (20 × 20) | 35.68°N–36.88°N 76.13°E–77.33°E (25 × 25) | 34.68°N–37.43°N 73.33°E–76.08°E (56 × 56) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Jiang, L. Power Spectra’s Perspective on Meteorological Drivers of Snow Depth Multiscale Behavior over the Tibetan Plateau. Land 2025, 14, 790. https://doi.org/10.3390/land14040790
Cao Y, Jiang L. Power Spectra’s Perspective on Meteorological Drivers of Snow Depth Multiscale Behavior over the Tibetan Plateau. Land. 2025; 14(4):790. https://doi.org/10.3390/land14040790
Chicago/Turabian StyleCao, Yueqian, and Lingmei Jiang. 2025. "Power Spectra’s Perspective on Meteorological Drivers of Snow Depth Multiscale Behavior over the Tibetan Plateau" Land 14, no. 4: 790. https://doi.org/10.3390/land14040790
APA StyleCao, Y., & Jiang, L. (2025). Power Spectra’s Perspective on Meteorological Drivers of Snow Depth Multiscale Behavior over the Tibetan Plateau. Land, 14(4), 790. https://doi.org/10.3390/land14040790