Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.)
Abstract
1. Introduction
2. Methods
2.1. Data Collection
2.2. Field Surveys
2.3. Geospatial Analysis
2.4. Statistical Analysis
3. Results
3.1. LiDAR-Derived Tree Height Accuracy
3.2. Correlation Between On-Ground Tree Height and Diameter
3.3. Correlation Between On-Ground Tree Diameter and Hollow Presence
3.4. Density Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DBH | Diameter at breast height |
RMSE | Root mean square error |
Appendix A
Model Predictors | R2 | AIC | ||
---|---|---|---|---|
DBH category (cm) | >30 | >50 | >30 | >50 |
None | 0 | 0 | 619.34 | 315.37 |
DBH | 0.01 | 0.01 | 620.03 | 317.31 |
DBH + RE | 0.47 | 0.57 | 571.52 | 287.31 |
DBH + Transect | 0.59 | 0.73 | 570.79 | 290.19 |
Model Predictors | R2 | AIC | ||
---|---|---|---|---|
DBH category (cm) | >30 | >50 | >30 | >50 |
None | 0 | 0 | 451.17 | 97.04 |
DBH | 0.09 | 0.09 | 412.21 | 89.98 |
DBH + RE | 0.11 | 0.13 | 410.30 | 94.45 |
DBH + Transect | 0.16 | 0.43 | 415.32 | 94.31 |
DBH + RE + Transect | 0.16 | 0.43 | 418.63 | 97.85 |
References
- Lindenmayer, D.; Taylor, C. Extensive recent wildfires demand more stringent protection of critical old growth forest. Pac. Conserv. Biol. 2020, 26, 384–394. [Google Scholar] [CrossRef]
- Green, M.C.; Michael, D.R.; Turner, J.M.; Wright, L.J.; Nimmo, D.G.; Robinson, N. The influence of severe wildfire on a threatened arboreal mammal. Wildl. Res. 2024, 51, WR23129. [Google Scholar] [CrossRef]
- Doherty, T.S.; Macdonald, K.J.; Nimmo, D.G.; Santos, J.L.; Geary, W.L. Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proc. Natl. Acad. Sci. USA 2024, 121, e2316417121. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.S.; Kuemmerle, T.; Li, H.; Ren, G.; Zhu, J.; Radeloff, V.C. Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sens. Environ. 2012, 121, 358–369. [Google Scholar] [CrossRef]
- Rueegger, N. Artificial tree hollow creation for cavity-using wildlife—Trialling an alternative method to that of nest boxes. For. Ecol. Manag. 2017, 405, 404–412. [Google Scholar] [CrossRef]
- Penton, C.E.; Radford, I.J.; Woolley, L.-A.; von Takach, B.; Murphy, B.P. Unexpected overlapping use of tree hollows by birds, reptiles and declining mammals in an Australian tropical savanna. Biodivers. Conserv. 2021, 30, 2977–3001. [Google Scholar] [CrossRef]
- Salmona, J.; Dixon, K.M.; Banks, S.C. The effects of fire history on hollow-bearing tree abundance in montane and subalpine eucalypt forests in southeastern Australia. For. Ecol. Manag. 2018, 428, 93–103. [Google Scholar] [CrossRef]
- Eyre, T.J.; Smith, G.C.; Venz, M.F.; Mathieson, M.T.; Hogan, L.D.; Starr, C.; Winter, J.; McDonald, K. Guide to Greater Glider Habitat in Queensland; Department of Environment and Science: Brisbane, Australia, 2022.
- Bowser, J.; Briggs, A.; Thompson, P.; McLean, M.; Bowen, A. A Geospatial Approach to Improving Fish Species Detection in Maumee Bay, Lake Erie. Fishes 2022, 8, 3. [Google Scholar] [CrossRef]
- Rodríguez-Puerta, F.; Gómez-García, E.; Martín-García, S.; Pérez-Rodríguez, F.; Prada, E. UAV-Based LiDAR Scanning for Individual Tree Detection and Height Measurement in Young Forest Permanent Trials. Remote Sens. 2021, 14, 170. [Google Scholar] [CrossRef]
- Sanchez Diaz, B.; Mata-Zayas, E.E.; Gama-Campillo, L.M.; Rincon-Ramirez, J.A.; Vidal-Garcia, F.; Rullan-Silva, C.D.; Sanchez-Gutierrez, F. LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. Int. J. Eng. Geosci. 2022, 7, 283–293. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Kong, B.; Li, R.; Wang, G. Landscape ecology development supported by geospatial technologies: A review. Ecol. Inform. 2019, 51, 185–192. [Google Scholar] [CrossRef]
- Ndao, B.; Leroux, L.; Gaetano, R.; Diouf, A.A.; Soti, V.; Bégué, A.; Mbow, C.; Sambou, B. Landscape heterogeneity analysis using geospatial techniques and a priori knowledge in Sahelian agroforestry systems of Senegal. Ecol. Indic. 2021, 125, 107481. [Google Scholar] [CrossRef]
- Samiappan, S.; Shamaskin, A.; Liu, J.; Liang, Y.; Roberts, J.; Sesser, A.L.; Westlake, S.M.; Linhoss, A.; Evans, K.O.; Tirpak, J.; et al. Evidence-based land conservation framework using multi-criteria acceptability analysis: A geospatial tool for strategic land conservation in the Gulf coast of the United States. Environ. Model. Softw. 2022, 156, 105493. [Google Scholar] [CrossRef]
- Laxmi, G.; Ahmad, F.; Sinha, D. Quantification and Conservation Status of Forests Fragments of Tropical Dry Deciduous Forests—A Geospatial Analysis Running Head: Tropical Dry Deciduous Forests. Contemp. Probl. Ecol. 2020, 12, 629–641. [Google Scholar] [CrossRef]
- Mao, Y.; Harris, D.L.; Xie, Z.; Phinn, S. Global coastal geomorphology—Integrating earth observation and geospatial data. Remote Sens. Environ. 2022, 278, 113082. [Google Scholar] [CrossRef]
- Koma, Z.; Seijmonsbergen, A.C.; Kissling, W.D.; Pettorelli, N.; Disney, M. Classifying wetland-related land cover types and habitats using fine-scale lidar metrics derived from country-wide Airborne Laser Scanning. Remote Sens. Ecol. Conserv. 2020, 7, 80–96. [Google Scholar] [CrossRef]
- Terryn, L.; Calders, K.; Bartholomeus, H.; Bartolo, R.E.; Brede, B.; D’Hont, B.; Disney, M.; Herold, M.; Lau, A.; Shenkin, A.; et al. Quantifying tropical forest structure through terrestrial and UAV laser scanning fusion in Australian rainforests. Remote Sens. Environ. 2022, 271, 112912. [Google Scholar] [CrossRef]
- Ellis, M.V.; Taylor, J.E.; Rayner, L. Remotely-sensed foliage cover and ground-measured stand attributes are complimentary when estimating tree hollow abundances across relictual woodlands in agricultural landscapes. Ecol. Manag. Restor. 2015, 16, 114–123. [Google Scholar] [CrossRef]
- Mohan, M.; Mendonça, B.A.F.d.; Silva, C.A.; Klauberg, C.; de Saboya Ribeiro, A.S.; Araújo, E.J.G.d.; Monte, M.A.; Cardil, A. Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning. Ecol. Model. 2019, 409, 108736. [Google Scholar] [CrossRef]
- Pendall, E.; Hewitt, A.; Boer, M.M.; Carrillo, Y.; Glenn, N.F.; Griebel, A.; Middleton, J.H.; Mumford, P.J.; Ridgeway, P.; Rymer, P.D.; et al. Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia. Climate 2022, 10, 86. [Google Scholar] [CrossRef]
- Sotomayor, L.N.; Cracknell, M.J.; Musk, R. Supervised machine learning for predicting and interpreting dynamic drivers of plantation forest productivity in northern Tasmania, Australia. Comput. Electron. Agric. 2023, 209, 107804. [Google Scholar] [CrossRef]
- Saeed, T.; Hussain, E.; Ullah, S.; Iqbal, J.; Atif, S.; Yousaf, M. Performance evaluation of individual tree detection and segmentation algorithms using ALS data in Chir Pine (Pinus roxburghii) forest. Remote Sens. Appl. Soc. Environ. 2024, 34, 101178. [Google Scholar] [CrossRef]
- Chehreh, B.; Moutinho, A.; Viegas, C. Latest Trends on Tree Classification and Segmentation Using UAV Data—A Review of Agroforestry Applications. Remote Sens. 2023, 15, 2263. [Google Scholar] [CrossRef]
- Mohan, M.; Leite, R.V.; Broadbent, E.N.; Wan Mohd Jaafar, W.S.; Srinivasan, S.; Bajaj, S.; Dalla Corte, A.P.; do Amaral, C.H.; Gopan, G.; Saad, S.N.M.; et al. Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners. Open Geosci. 2021, 13, 1028–1039. [Google Scholar] [CrossRef]
- Perry, G.L.W.; Seidl, R.; Bellvé, A.M.; Rammer, W. An Outlook for Deep Learning in Ecosystem Science. Ecosystems 2022, 25, 1700–1718. [Google Scholar] [CrossRef]
- Pichler, M.; Hartig, F. Machine learning and deep learning—A review for ecologists. Methods Ecol. Evol. 2023, 14, 994–1016. [Google Scholar] [CrossRef]
- Linnell, M.A.; Davis, R.J.; Lesmeister, D.B.; Swingle, J.K. Conservation and relative habitat suitability for an arboreal mammal associated with old forest. For. Ecol. Manag. 2017, 402, 1–11. [Google Scholar] [CrossRef]
- Wagner, F.H.; Roberts, S.; Ritz, A.L.; Carter, G.; Dalagnol, R.; Favrichon, S.; Hirye, M.C.M.; Brandt, M.; Ciais, P.; Saatchi, S. Sub-meter tree height mapping of California using aerial images and LiDAR-informed U-Net model. Remote Sens. Environ. 2024, 305, 114099. [Google Scholar] [CrossRef]
- Mandal, M.; Das Chatterjee, N. Geospatial approach-based delineation of elephant habitat suitability zones and its consequence in Mayurjharna Elephant Reserve, India. Environ. Dev. Sustain. 2021, 23, 17788–17809. [Google Scholar] [CrossRef]
- de Vries, J.P.R.; Koma, Z.; WallisDeVries, M.F.; Kissling, W.D.; Tingley, R. Identifying fine-scale habitat preferences of threatened butterflies using airborne laser scanning. Divers. Distrib. 2021, 27, 1251–1264. [Google Scholar] [CrossRef]
- Erasmy, M.; Leuschner, C.; Balkenhol, N.; Dietz, M. Three-dimensional stratification pattern in an old-growth lowland forest: How does height in canopy and season influence temperate bat activity? Ecol. Evol. 2021, 11, 17273–17288. [Google Scholar] [CrossRef]
- Rhodes, M.; Wardell-Johnson, G.W.; Rhodes, M.P.; Raymond, B. Applying network analysis to the conservation of habitat trees in urban environments: A case study from Brisbane, Australia. Conserv. Biol. 2006, 20, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Stobo-Wilson, A.M.; Murphy, B.P.; Cremona, T.; Carthew, S.M.; Levick, S.R.; Pettorelli, N.; Carter, A. Illuminating den-tree selection by an arboreal mammal using terrestrial laser scanning in northern Australia. Remote Sens. Ecol. Conserv. 2020, 7, 154–168. [Google Scholar] [CrossRef]
- Owers, C.J.; Kavanagh, R.P.; Bruce, E. Remote sensing can locate and assess the changing abundance of hollow-bearing trees for wildlife in Australian native forests. Wildl. Res. 2014, 41, 703–716. [Google Scholar] [CrossRef]
- Miltiadou, M.; Agapiou, A.; Gonzalez Aracil, S.; Hadjimitsis, D.G. Detecting Dead Standing Eucalypt Trees from Voxelised Full-Waveform Lidar Using Multi-Scale 3D-Windows for Tackling Height and Size Variations. Forests 2020, 11, 161. [Google Scholar] [CrossRef]
- Best, K.; Haslem, A.; Maisey, A.C.; Semmens, K.; Griffiths, S.R. Occupancy of chainsaw-carved hollows by an Australian arboreal mammal is influenced by cavity attributes and surrounding habitat. For. Ecol. Manag. 2022, 503, 119747. [Google Scholar] [CrossRef]
- Eyre, T.J. Regional habitat selection of large gliding possums at forest stand and landscape scales in southern Queensland, Australia. For. Ecol. Manag. 2006, 235, 270–282. [Google Scholar] [CrossRef]
- Hofman, M.; Gracanin, A.; Mikac, K.M.; Goldingay, R. Greater glider (Petauroides volans) den tree and hollow characteristics. Aust. Mammal. 2022, 45, 127–137. [Google Scholar] [CrossRef]
- Kolstad, A.L.; Snøan, I.B.; Austrheim, G.; Bollandsås, O.M.; Solberg, E.J.; Speed, J.D.M.; Pettorelli, N.; Kuemmerle, T. Airborne laser scanning reveals increased growth and complexity of boreal forest canopies across a network of ungulate exclosures in Norway. Remote Sens. Ecol. Conserv. 2021, 8, 5–17. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; El-Zeiny, A.; El-Halawany, E.-S.F.; Elsayed, A.; El-Esawi, M.A.; Noureldeen, A.; Darwish, H.; Al-Barty, A.; Elagami, S.A. Environmental and Stress Analysis of Wild Plant Habitat in River Nile Region of Dakahlia Governorate on Basis of Geospatial Techniques. Sustainability 2021, 13, 6377. [Google Scholar] [CrossRef]
- Wormington, K.R.; Lamb, D.; McCallum, H.I.; Moloney, D.J. The characteristics of six species of living hollow-bearing trees and their importance for arboreal marsupials in the dry sclerophyll forests of southeast Queensland, Australia. For. Ecol. Manag. 2003, 182, 75–92. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Cunningham, R.B.; Tanton, M.T.; Smith, A.P.; Nix, H.A. Characteristics of hollow-bearing trees occupied by arboreal marsupials in the montane ash forests of the Central Highlands of Victoria, south-east Australia. For. Ecol. Manag. 1991, 40, 289–308. [Google Scholar]
- Department of Climate Change, Energy, the Environment and Water. Species Profile and Threats Database. Available online: https://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl (accessed on 10 July 2023).
- DoR—Queensland Government Investment Portal (QGIP). Queensland LiDAR Data—Fraser Coast 2009 Project. 2009. Available online: https://qldspatial.information.qld.gov.au/catalogue/custom/viewMetadataDetails.page?uuid=%7B98F6DF53-5DC7-431D-8F83-4859483EE590%7D (accessed on 31 July 2022).
- Powell, J. People and Trees, A Thematic History of Sourth East Queensland with Particular Reference to Forested Areas 1823–1997; Forests Taskforce, Department of the Prime Minister and Cabinet: Canberra, Australia, 1998.
- The Queensland Parks and Wildlife Service (QPWS). Code of Practice for Native Forest Timber Production on Queensland’s State Forest Estate 2020. 2020. Available online: https://parks.des.qld.gov.au/__data/assets/pdf_file/0012/160104/cop-native-forest-timber-production-qpws-estate.pdf (accessed on 19 May 2023).
- Westerhuis, E.L.; Schlesinger, C.A.; Nano, C.E.M.; Morton, S.R.; Christian, K.A. Characteristics of hollows and hollow-bearing trees in semi-arid river red gum woodland and potential limitations for hollow-dependent wildlife. Austral Ecol. 2019, 44, 995–1004. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Jean-Romain Roussel, T.R.H.G.; Tompalski, P. The lidR package. In A Guide to the Lidr Package; Github: San Francisco, CA, USA, 2022; Available online: https://r-lidar.github.io/lidRbook/index.html (accessed on 24 May 2022).
- Douss, R.; Farah, I.R. Extraction of individual trees based on Canopy Height Model to monitor the state of the forest. Trees For. People 2022, 8, 100257. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Kim, K.; Quackenbush, L. Machine Learning Approaches for Estimating Forest Stand Height Using Plot-Based Observations and Airborne LiDAR Data. Forests 2018, 9, 268. [Google Scholar] [CrossRef]
- Farhadur Rahman, M.; Onoda, Y.; Kitajima, K. Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. For. Ecol. Manag. 2022, 503, 119792. [Google Scholar] [CrossRef]
- Wilson, N.; Bradstock, R.; Bedward, M. Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning (TLS). For. Ecol. Manag. 2021, 488, 119037. [Google Scholar] [CrossRef]
- Lewis, T.; Menzies, T.; Pachas, A.N. Fire Regime Has a Greater Impact Than Selective Timber Harvesting on Vegetation in a Sub-Tropical Australian Eucalypt Forest. Forests 2021, 12, 1478. [Google Scholar] [CrossRef]
- Radford, I.J.; Oliveira, S.L.J.; Byrne, B.; Woolley, L.A. Tree hollow densities reduced by frequent late dry-season wildfires in threatened Gouldian finch. Wildl. Res. 2021, 48, 511–520. [Google Scholar] [CrossRef]
- Santos, A.A.D.; Marcato Junior, J.; Araujo, M.S.; Di Martini, D.R.; Tetila, E.C.; Siqueira, H.L.; Aoki, C.; Eltner, A.; Matsubara, E.T.; Pistori, H.; et al. Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors 2019, 19, 3595. [Google Scholar] [CrossRef] [PubMed]
- Ganz, S.; Käber, Y.; Adler, P. Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef]
- Norman, P.; Mackey, B.; Doherty, T. Priority areas for conserving greater gliders in Queensland, Australia. Pac. Conserv. Biol. 2023, 30, PC23018. [Google Scholar] [CrossRef]
- Givnish, T.J.; Wong, S.C.; Stuart-Williams, H.; Holloway-Phillips, M.; Farquhar, G.D. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 2014, 95, 2991–3007. [Google Scholar] [CrossRef]
- Imani, G.; Boyemba, F.; Lewis, S.; Nabahungu, N.L.; Calders, K.; Zapfack, L.; Riera, B.; Balegamire, C.; Cuni-Sanchez, A. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLoS ONE 2017, 12, e0179653. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; Munks, S.A.; Driscoll, D.; Kirkpatrick, J.B. Does hollow occurrence vary with forest type? A case study in wet and dry Eucalyptus obliqua forest. For. Ecol. Manag. 2008, 255, 3938–3951. [Google Scholar] [CrossRef]
- McLean, C.M.; Bradstock, R.; Price, O.; Kavanagh, R.P. Tree hollows and forest stand structure in Australian warm temperate Eucalyptus forests are adversely affected by logging more than wildfire. For. Ecol. Manag. 2015, 341, 37–44. [Google Scholar] [CrossRef]
- Zörner, J.; Dymond, J.R.; Shepherd, J.D.; Wiser, S.K.; Jolly, B. LiDAR-Based Regional Inventory of Tall Trees—Wellington, New Zealand. Forests 2018, 9, 702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, J.E.; Brunton, E.A.; Leon, J.X.; Eyre, T.J.; Cristescu, R.H. Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.). Land 2025, 14, 784. https://doi.org/10.3390/land14040784
Evans JE, Brunton EA, Leon JX, Eyre TJ, Cristescu RH. Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.). Land. 2025; 14(4):784. https://doi.org/10.3390/land14040784
Chicago/Turabian StyleEvans, Jess E., Elizabeth A. Brunton, Javier X. Leon, Teresa J. Eyre, and Romane H. Cristescu. 2025. "Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.)" Land 14, no. 4: 784. https://doi.org/10.3390/land14040784
APA StyleEvans, J. E., Brunton, E. A., Leon, J. X., Eyre, T. J., & Cristescu, R. H. (2025). Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.). Land, 14(4), 784. https://doi.org/10.3390/land14040784