Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.)
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Field Surveys
2.3. Geospatial Analysis
2.4. Statistical Analysis
3. Results
3.1. LiDAR-Derived Tree Height Accuracy
3.2. Correlation Between On-Ground Tree Height and Diameter
3.3. Correlation Between On-Ground Tree Diameter and Hollow Presence
3.4. Density Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DBH | Diameter at breast height |
RMSE | Root mean square error |
Appendix A
Model Predictors | R2 | AIC | ||
---|---|---|---|---|
DBH category (cm) | >30 | >50 | >30 | >50 |
None | 0 | 0 | 619.34 | 315.37 |
DBH | 0.01 | 0.01 | 620.03 | 317.31 |
DBH + RE | 0.47 | 0.57 | 571.52 | 287.31 |
DBH + Transect | 0.59 | 0.73 | 570.79 | 290.19 |
Model Predictors | R2 | AIC | ||
---|---|---|---|---|
DBH category (cm) | >30 | >50 | >30 | >50 |
None | 0 | 0 | 451.17 | 97.04 |
DBH | 0.09 | 0.09 | 412.21 | 89.98 |
DBH + RE | 0.11 | 0.13 | 410.30 | 94.45 |
DBH + Transect | 0.16 | 0.43 | 415.32 | 94.31 |
DBH + RE + Transect | 0.16 | 0.43 | 418.63 | 97.85 |
References
- Lindenmayer, D.; Taylor, C. Extensive recent wildfires demand more stringent protection of critical old growth forest. Pac. Conserv. Biol. 2020, 26, 384–394. [Google Scholar] [CrossRef]
- Green, M.C.; Michael, D.R.; Turner, J.M.; Wright, L.J.; Nimmo, D.G.; Robinson, N. The influence of severe wildfire on a threatened arboreal mammal. Wildl. Res. 2024, 51, WR23129. [Google Scholar] [CrossRef]
- Doherty, T.S.; Macdonald, K.J.; Nimmo, D.G.; Santos, J.L.; Geary, W.L. Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proc. Natl. Acad. Sci. USA 2024, 121, e2316417121. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.S.; Kuemmerle, T.; Li, H.; Ren, G.; Zhu, J.; Radeloff, V.C. Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sens. Environ. 2012, 121, 358–369. [Google Scholar] [CrossRef]
- Rueegger, N. Artificial tree hollow creation for cavity-using wildlife—Trialling an alternative method to that of nest boxes. For. Ecol. Manag. 2017, 405, 404–412. [Google Scholar] [CrossRef]
- Penton, C.E.; Radford, I.J.; Woolley, L.-A.; von Takach, B.; Murphy, B.P. Unexpected overlapping use of tree hollows by birds, reptiles and declining mammals in an Australian tropical savanna. Biodivers. Conserv. 2021, 30, 2977–3001. [Google Scholar] [CrossRef]
- Salmona, J.; Dixon, K.M.; Banks, S.C. The effects of fire history on hollow-bearing tree abundance in montane and subalpine eucalypt forests in southeastern Australia. For. Ecol. Manag. 2018, 428, 93–103. [Google Scholar] [CrossRef]
- Eyre, T.J.; Smith, G.C.; Venz, M.F.; Mathieson, M.T.; Hogan, L.D.; Starr, C.; Winter, J.; McDonald, K. Guide to Greater Glider Habitat in Queensland; Department of Environment and Science: Brisbane, Australia, 2022.
- Bowser, J.; Briggs, A.; Thompson, P.; McLean, M.; Bowen, A. A Geospatial Approach to Improving Fish Species Detection in Maumee Bay, Lake Erie. Fishes 2022, 8, 3. [Google Scholar] [CrossRef]
- Rodríguez-Puerta, F.; Gómez-García, E.; Martín-García, S.; Pérez-Rodríguez, F.; Prada, E. UAV-Based LiDAR Scanning for Individual Tree Detection and Height Measurement in Young Forest Permanent Trials. Remote Sens. 2021, 14, 170. [Google Scholar] [CrossRef]
- Sanchez Diaz, B.; Mata-Zayas, E.E.; Gama-Campillo, L.M.; Rincon-Ramirez, J.A.; Vidal-Garcia, F.; Rullan-Silva, C.D.; Sanchez-Gutierrez, F. LiDAR modeling to determine the height of shade canopy tree in cocoa agrosystems as available habitat for wildlife. Int. J. Eng. Geosci. 2022, 7, 283–293. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Kong, B.; Li, R.; Wang, G. Landscape ecology development supported by geospatial technologies: A review. Ecol. Inform. 2019, 51, 185–192. [Google Scholar] [CrossRef]
- Ndao, B.; Leroux, L.; Gaetano, R.; Diouf, A.A.; Soti, V.; Bégué, A.; Mbow, C.; Sambou, B. Landscape heterogeneity analysis using geospatial techniques and a priori knowledge in Sahelian agroforestry systems of Senegal. Ecol. Indic. 2021, 125, 107481. [Google Scholar] [CrossRef]
- Samiappan, S.; Shamaskin, A.; Liu, J.; Liang, Y.; Roberts, J.; Sesser, A.L.; Westlake, S.M.; Linhoss, A.; Evans, K.O.; Tirpak, J.; et al. Evidence-based land conservation framework using multi-criteria acceptability analysis: A geospatial tool for strategic land conservation in the Gulf coast of the United States. Environ. Model. Softw. 2022, 156, 105493. [Google Scholar] [CrossRef]
- Laxmi, G.; Ahmad, F.; Sinha, D. Quantification and Conservation Status of Forests Fragments of Tropical Dry Deciduous Forests—A Geospatial Analysis Running Head: Tropical Dry Deciduous Forests. Contemp. Probl. Ecol. 2020, 12, 629–641. [Google Scholar] [CrossRef]
- Mao, Y.; Harris, D.L.; Xie, Z.; Phinn, S. Global coastal geomorphology—Integrating earth observation and geospatial data. Remote Sens. Environ. 2022, 278, 113082. [Google Scholar] [CrossRef]
- Koma, Z.; Seijmonsbergen, A.C.; Kissling, W.D.; Pettorelli, N.; Disney, M. Classifying wetland-related land cover types and habitats using fine-scale lidar metrics derived from country-wide Airborne Laser Scanning. Remote Sens. Ecol. Conserv. 2020, 7, 80–96. [Google Scholar] [CrossRef]
- Terryn, L.; Calders, K.; Bartholomeus, H.; Bartolo, R.E.; Brede, B.; D’Hont, B.; Disney, M.; Herold, M.; Lau, A.; Shenkin, A.; et al. Quantifying tropical forest structure through terrestrial and UAV laser scanning fusion in Australian rainforests. Remote Sens. Environ. 2022, 271, 112912. [Google Scholar] [CrossRef]
- Ellis, M.V.; Taylor, J.E.; Rayner, L. Remotely-sensed foliage cover and ground-measured stand attributes are complimentary when estimating tree hollow abundances across relictual woodlands in agricultural landscapes. Ecol. Manag. Restor. 2015, 16, 114–123. [Google Scholar] [CrossRef]
- Mohan, M.; Mendonça, B.A.F.d.; Silva, C.A.; Klauberg, C.; de Saboya Ribeiro, A.S.; Araújo, E.J.G.d.; Monte, M.A.; Cardil, A. Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning. Ecol. Model. 2019, 409, 108736. [Google Scholar] [CrossRef]
- Pendall, E.; Hewitt, A.; Boer, M.M.; Carrillo, Y.; Glenn, N.F.; Griebel, A.; Middleton, J.H.; Mumford, P.J.; Ridgeway, P.; Rymer, P.D.; et al. Remarkable Resilience of Forest Structure and Biodiversity Following Fire in the Peri-Urban Bushland of Sydney, Australia. Climate 2022, 10, 86. [Google Scholar] [CrossRef]
- Sotomayor, L.N.; Cracknell, M.J.; Musk, R. Supervised machine learning for predicting and interpreting dynamic drivers of plantation forest productivity in northern Tasmania, Australia. Comput. Electron. Agric. 2023, 209, 107804. [Google Scholar] [CrossRef]
- Saeed, T.; Hussain, E.; Ullah, S.; Iqbal, J.; Atif, S.; Yousaf, M. Performance evaluation of individual tree detection and segmentation algorithms using ALS data in Chir Pine (Pinus roxburghii) forest. Remote Sens. Appl. Soc. Environ. 2024, 34, 101178. [Google Scholar] [CrossRef]
- Chehreh, B.; Moutinho, A.; Viegas, C. Latest Trends on Tree Classification and Segmentation Using UAV Data—A Review of Agroforestry Applications. Remote Sens. 2023, 15, 2263. [Google Scholar] [CrossRef]
- Mohan, M.; Leite, R.V.; Broadbent, E.N.; Wan Mohd Jaafar, W.S.; Srinivasan, S.; Bajaj, S.; Dalla Corte, A.P.; do Amaral, C.H.; Gopan, G.; Saad, S.N.M.; et al. Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners. Open Geosci. 2021, 13, 1028–1039. [Google Scholar] [CrossRef]
- Perry, G.L.W.; Seidl, R.; Bellvé, A.M.; Rammer, W. An Outlook for Deep Learning in Ecosystem Science. Ecosystems 2022, 25, 1700–1718. [Google Scholar] [CrossRef]
- Pichler, M.; Hartig, F. Machine learning and deep learning—A review for ecologists. Methods Ecol. Evol. 2023, 14, 994–1016. [Google Scholar] [CrossRef]
- Linnell, M.A.; Davis, R.J.; Lesmeister, D.B.; Swingle, J.K. Conservation and relative habitat suitability for an arboreal mammal associated with old forest. For. Ecol. Manag. 2017, 402, 1–11. [Google Scholar] [CrossRef]
- Wagner, F.H.; Roberts, S.; Ritz, A.L.; Carter, G.; Dalagnol, R.; Favrichon, S.; Hirye, M.C.M.; Brandt, M.; Ciais, P.; Saatchi, S. Sub-meter tree height mapping of California using aerial images and LiDAR-informed U-Net model. Remote Sens. Environ. 2024, 305, 114099. [Google Scholar] [CrossRef]
- Mandal, M.; Das Chatterjee, N. Geospatial approach-based delineation of elephant habitat suitability zones and its consequence in Mayurjharna Elephant Reserve, India. Environ. Dev. Sustain. 2021, 23, 17788–17809. [Google Scholar] [CrossRef]
- de Vries, J.P.R.; Koma, Z.; WallisDeVries, M.F.; Kissling, W.D.; Tingley, R. Identifying fine-scale habitat preferences of threatened butterflies using airborne laser scanning. Divers. Distrib. 2021, 27, 1251–1264. [Google Scholar] [CrossRef]
- Erasmy, M.; Leuschner, C.; Balkenhol, N.; Dietz, M. Three-dimensional stratification pattern in an old-growth lowland forest: How does height in canopy and season influence temperate bat activity? Ecol. Evol. 2021, 11, 17273–17288. [Google Scholar] [CrossRef]
- Rhodes, M.; Wardell-Johnson, G.W.; Rhodes, M.P.; Raymond, B. Applying network analysis to the conservation of habitat trees in urban environments: A case study from Brisbane, Australia. Conserv. Biol. 2006, 20, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Stobo-Wilson, A.M.; Murphy, B.P.; Cremona, T.; Carthew, S.M.; Levick, S.R.; Pettorelli, N.; Carter, A. Illuminating den-tree selection by an arboreal mammal using terrestrial laser scanning in northern Australia. Remote Sens. Ecol. Conserv. 2020, 7, 154–168. [Google Scholar] [CrossRef]
- Owers, C.J.; Kavanagh, R.P.; Bruce, E. Remote sensing can locate and assess the changing abundance of hollow-bearing trees for wildlife in Australian native forests. Wildl. Res. 2014, 41, 703–716. [Google Scholar] [CrossRef]
- Miltiadou, M.; Agapiou, A.; Gonzalez Aracil, S.; Hadjimitsis, D.G. Detecting Dead Standing Eucalypt Trees from Voxelised Full-Waveform Lidar Using Multi-Scale 3D-Windows for Tackling Height and Size Variations. Forests 2020, 11, 161. [Google Scholar] [CrossRef]
- Best, K.; Haslem, A.; Maisey, A.C.; Semmens, K.; Griffiths, S.R. Occupancy of chainsaw-carved hollows by an Australian arboreal mammal is influenced by cavity attributes and surrounding habitat. For. Ecol. Manag. 2022, 503, 119747. [Google Scholar] [CrossRef]
- Eyre, T.J. Regional habitat selection of large gliding possums at forest stand and landscape scales in southern Queensland, Australia. For. Ecol. Manag. 2006, 235, 270–282. [Google Scholar] [CrossRef]
- Hofman, M.; Gracanin, A.; Mikac, K.M.; Goldingay, R. Greater glider (Petauroides volans) den tree and hollow characteristics. Aust. Mammal. 2022, 45, 127–137. [Google Scholar] [CrossRef]
- Kolstad, A.L.; Snøan, I.B.; Austrheim, G.; Bollandsås, O.M.; Solberg, E.J.; Speed, J.D.M.; Pettorelli, N.; Kuemmerle, T. Airborne laser scanning reveals increased growth and complexity of boreal forest canopies across a network of ungulate exclosures in Norway. Remote Sens. Ecol. Conserv. 2021, 8, 5–17. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; El-Zeiny, A.; El-Halawany, E.-S.F.; Elsayed, A.; El-Esawi, M.A.; Noureldeen, A.; Darwish, H.; Al-Barty, A.; Elagami, S.A. Environmental and Stress Analysis of Wild Plant Habitat in River Nile Region of Dakahlia Governorate on Basis of Geospatial Techniques. Sustainability 2021, 13, 6377. [Google Scholar] [CrossRef]
- Wormington, K.R.; Lamb, D.; McCallum, H.I.; Moloney, D.J. The characteristics of six species of living hollow-bearing trees and their importance for arboreal marsupials in the dry sclerophyll forests of southeast Queensland, Australia. For. Ecol. Manag. 2003, 182, 75–92. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Cunningham, R.B.; Tanton, M.T.; Smith, A.P.; Nix, H.A. Characteristics of hollow-bearing trees occupied by arboreal marsupials in the montane ash forests of the Central Highlands of Victoria, south-east Australia. For. Ecol. Manag. 1991, 40, 289–308. [Google Scholar]
- Department of Climate Change, Energy, the Environment and Water. Species Profile and Threats Database. Available online: https://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl (accessed on 10 July 2023).
- DoR—Queensland Government Investment Portal (QGIP). Queensland LiDAR Data—Fraser Coast 2009 Project. 2009. Available online: https://qldspatial.information.qld.gov.au/catalogue/custom/viewMetadataDetails.page?uuid=%7B98F6DF53-5DC7-431D-8F83-4859483EE590%7D (accessed on 31 July 2022).
- Powell, J. People and Trees, A Thematic History of Sourth East Queensland with Particular Reference to Forested Areas 1823–1997; Forests Taskforce, Department of the Prime Minister and Cabinet: Canberra, Australia, 1998.
- The Queensland Parks and Wildlife Service (QPWS). Code of Practice for Native Forest Timber Production on Queensland’s State Forest Estate 2020. 2020. Available online: https://parks.des.qld.gov.au/__data/assets/pdf_file/0012/160104/cop-native-forest-timber-production-qpws-estate.pdf (accessed on 19 May 2023).
- Westerhuis, E.L.; Schlesinger, C.A.; Nano, C.E.M.; Morton, S.R.; Christian, K.A. Characteristics of hollows and hollow-bearing trees in semi-arid river red gum woodland and potential limitations for hollow-dependent wildlife. Austral Ecol. 2019, 44, 995–1004. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Jean-Romain Roussel, T.R.H.G.; Tompalski, P. The lidR package. In A Guide to the Lidr Package; Github: San Francisco, CA, USA, 2022; Available online: https://r-lidar.github.io/lidRbook/index.html (accessed on 24 May 2022).
- Douss, R.; Farah, I.R. Extraction of individual trees based on Canopy Height Model to monitor the state of the forest. Trees For. People 2022, 8, 100257. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Kim, K.; Quackenbush, L. Machine Learning Approaches for Estimating Forest Stand Height Using Plot-Based Observations and Airborne LiDAR Data. Forests 2018, 9, 268. [Google Scholar] [CrossRef]
- Farhadur Rahman, M.; Onoda, Y.; Kitajima, K. Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. For. Ecol. Manag. 2022, 503, 119792. [Google Scholar] [CrossRef]
- Wilson, N.; Bradstock, R.; Bedward, M. Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning (TLS). For. Ecol. Manag. 2021, 488, 119037. [Google Scholar] [CrossRef]
- Lewis, T.; Menzies, T.; Pachas, A.N. Fire Regime Has a Greater Impact Than Selective Timber Harvesting on Vegetation in a Sub-Tropical Australian Eucalypt Forest. Forests 2021, 12, 1478. [Google Scholar] [CrossRef]
- Radford, I.J.; Oliveira, S.L.J.; Byrne, B.; Woolley, L.A. Tree hollow densities reduced by frequent late dry-season wildfires in threatened Gouldian finch. Wildl. Res. 2021, 48, 511–520. [Google Scholar] [CrossRef]
- Santos, A.A.D.; Marcato Junior, J.; Araujo, M.S.; Di Martini, D.R.; Tetila, E.C.; Siqueira, H.L.; Aoki, C.; Eltner, A.; Matsubara, E.T.; Pistori, H.; et al. Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors 2019, 19, 3595. [Google Scholar] [CrossRef] [PubMed]
- Ganz, S.; Käber, Y.; Adler, P. Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef]
- Norman, P.; Mackey, B.; Doherty, T. Priority areas for conserving greater gliders in Queensland, Australia. Pac. Conserv. Biol. 2023, 30, PC23018. [Google Scholar] [CrossRef]
- Givnish, T.J.; Wong, S.C.; Stuart-Williams, H.; Holloway-Phillips, M.; Farquhar, G.D. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 2014, 95, 2991–3007. [Google Scholar] [CrossRef]
- Imani, G.; Boyemba, F.; Lewis, S.; Nabahungu, N.L.; Calders, K.; Zapfack, L.; Riera, B.; Balegamire, C.; Cuni-Sanchez, A. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLoS ONE 2017, 12, e0179653. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; Munks, S.A.; Driscoll, D.; Kirkpatrick, J.B. Does hollow occurrence vary with forest type? A case study in wet and dry Eucalyptus obliqua forest. For. Ecol. Manag. 2008, 255, 3938–3951. [Google Scholar] [CrossRef]
- McLean, C.M.; Bradstock, R.; Price, O.; Kavanagh, R.P. Tree hollows and forest stand structure in Australian warm temperate Eucalyptus forests are adversely affected by logging more than wildfire. For. Ecol. Manag. 2015, 341, 37–44. [Google Scholar] [CrossRef]
- Zörner, J.; Dymond, J.R.; Shepherd, J.D.; Wiser, S.K.; Jolly, B. LiDAR-Based Regional Inventory of Tall Trees—Wellington, New Zealand. Forests 2018, 9, 702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, J.E.; Brunton, E.A.; Leon, J.X.; Eyre, T.J.; Cristescu, R.H. Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.). Land 2025, 14, 784. https://doi.org/10.3390/land14040784
Evans JE, Brunton EA, Leon JX, Eyre TJ, Cristescu RH. Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.). Land. 2025; 14(4):784. https://doi.org/10.3390/land14040784
Chicago/Turabian StyleEvans, Jess E., Elizabeth A. Brunton, Javier X. Leon, Teresa J. Eyre, and Romane H. Cristescu. 2025. "Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.)" Land 14, no. 4: 784. https://doi.org/10.3390/land14040784
APA StyleEvans, J. E., Brunton, E. A., Leon, J. X., Eyre, T. J., & Cristescu, R. H. (2025). Possibilities and Limitations of a Geospatial Approach to Refine Habitat Mapping for Greater Gliders (Petauroides spp.). Land, 14(4), 784. https://doi.org/10.3390/land14040784